Design and simulation of pressuresensor and accelerometer based on integrated optical circuits using photoelastic effect of LiNbO$_3$

N Joudi1, R Asadi1, P Heydari2 and M Ganji1

1- Department of Electronic, Maleke Ashtar University, Lavizan, Tehran, Iran
2- Department of Mechanical Engineering, Islamic Azad University Roudehen Branch, Iran

(Received 9 May 2015 ; in final form 05 December 2015)

Abstract

In this paper a novel optical pressure and acceleration sensor based on micro electro mechanical systems (MEOMS) has been designed. For this purpose an integrated Mach-Zander interferometer has been used in LiNbO$_3$ diaphragm. In this sensor, the strain caused by applied pressure or acceleration leads to a change in refractive index of the wave guide in the diaphragm due to the photoelastic effect. The refractive index change leads to a phase change in the light wave that propagates in the waveguide. This phase change is converted to intensity change using the Mach- Zander interferometer. The software ANSYS 14.5 was used for calculation of the strain in the diaphragm. The pressure and acceleration sensitivity of the designed sensor have been obtained 2.33×10^{-4} (rad /Pa) and 2.16×10^{-5} (rad.s2/m), respectively.

Keywords: Micro-Opto-Electro-Mechanical systems (MOEMS), optics, photo-elastic, pressure sensor

For full article, refer to the Persian section