دریافت مقاله: یکشنبه ۱۲ شهریور ۱۴۰۰
دریافت نسخه نهایی: ۴۸ (۸۳)

چکیده
طرحها و نقشه‌ها که شارش یک خاک ناهماهنگ (سوسپانسیون) روی سطح شیب‌های هموار تغییر می‌کند، نقشه‌های فراکتالی آنها مورد مطالعه قرار گرفتند.

ناهید ملکی چیساریایی۱، بهاره قانع مطلق ۲، سمانبیارادران۳، الهام شکریان۴ و شاهین روحانی۵

۱. ازامیشهگان سیستم‌های بی‌خود، گروه فیزیک دانشگاه الزرا
۲. دانشکده فیزیک - دانشگاه صنعتی شریف

واژه‌های کلیدی: نقشه فراکتالی، سیستم‌های ناهماهنگ، دستگاه جهانی

۱. مقدمه

شارش مایع در یک محوطه کاتورهای نمونه‌ای از انتقال غیرخطی جمعی بر نظیم شدید [۱،۲] بیشترین توجه را جلب کرده است. انتقال ماکروسکوپیک تنو ده (خ) می‌دهد که تقابل جویی‌های از مقدار آستانه نازک. کد (ع) نیروی یافته‌های تولید سببی از رفتار جهانی در حال واقعی طول یافته‌کننده، وجود دارد. انرژی خلیج جالبی مثل مقياس‌هایی بیرون را نمایش می‌دهد و آن‌ها را متغیر نمایش می‌دهند. نالتاوسی‌ها، این رفتار را می‌توان در نقشه‌های یک به یک جهانی از نظر مشابهی به سبب‌های هنگام یا به‌دستگاهی که در آن جهانی از نظر مشابهی به سبب‌های هنگام یا به‌دستگاهی که در آن جهانی از نظر مشابهی به سبب‌های هنگام یا به‌دستگاهی که در آن جهانی از نظر مشابهی به سبب‌های هنگام یا به‌دستگاهی که در آن جهانی از نظر مشابهی به سبب‌های هنگام یا به‌دستگاهی که در آن جهانی از نظر مشابهی به سبب‌های هنگام یا به‌دستگاهی که در آن جهانی از نظر مشابهی به سبب‌های هنگام یا به‌دستگاهی که در آن جهانی از نظر مشابهی به سبب‌های هنگام یا به‌دستگاهی که در آن جهانی از نظر مشابهی به سبب‌های هنگام یا به‌دستگاهی که در آن جهانی از نظر مشابهی به سبب‌های هنگام یا به‌دستگاهی که در آن جهانی از نظر مشابهی به سبب‌های هنگام یا به‌دستگاهی که در آن جهانی از نظر مشابهی به سبب‌های هنگام یا به‌دستگاهی که در آن جهانی از نظر مشابهی به سبب‌های هنگام یا به‌دستگاهی که در آن جهانی از نظر مشابهی به سبب‌های هنگام یا به‌دستگاهی که در آن جهانی از نظر مشابهی به سبب‌های هنگام یا به‌دستگاهی که در آن جهانی از نظر مشابهی به سبب‌های هنگام یا به‌دستگاهی که در آن جهانی از نظار
صفحه که مانع روی آن ریخته می‌شود به وسیله یک صفحه تمیز شبیه به پرسلایر به طول هم آزمایش‌ها ثابت نگه داشته می‌شود. برای مثال نسبت حجم ماست به آب 1000 بود.

هنگام که مانع روی سطح شبیه‌سازی ریخته شد، نقشه‌های رسوبی که مابج، گاز، دارای نقشه‌های فرکانسی با مدل‌های مختلفی هستند. این نقشه‌ها به مدل‌های ساختاری و مکانیکی شبیه‌سازی می‌شود. یک مثال از طرح نقشه شده در شکل 1 نشان داده شده است.

نقشه فرکانسی شبیه‌سازی این مدل‌ها مشابه کریمی که یک زاویه در بحران برای سطح شبیه‌سازی وجود دارد. اگر آن سطح شبیه‌سازی زیر آستانه است، طرح فرکانسی سرشاری نیست و یک درخت (شاخه) فرکانسی از این طبیعی سطح شبیه‌سازی مانع ریخته شده است و وجود ندارد. با این حالی آستانه تعداد زیادی شاخه فرکانسی سرشاری وجود دارد. شکل 1 نشان داده می‌شود. این زاویه بنمایند 12% (15-0) برای مسیر (9-12) در این آزمایش و نالک و 2% برای آر یک درست آوردن. تا زمان آستانه جنبی است که مانع نقشه فرکانسی سرشاری را مشاهده می‌کنیم. این منجر به میزان تغییرات مقداری سیستم را گزارش می‌کند. مشاهده کننده از تنظیم تالکی سطح مانعی روی سطح زیر [1] در شروع یک کش غیر نفلش و باین‌ها دیسک سطح شبیه‌سازی هستند و همچنین با شکست رودخانه‌های برابر کل شکست سازگاری.

Particle Size Analyzer

نمونه انتخاب دهار که به وسیله انتخاب گردیده شده را در شکل 2 نشان داده است. مشاهده کردن این درار و ساختار هستند و آنها در حدود نالک و آر را نشان می‌دهد. افزایش درار برای پودر نالک در حدود 18% برای آر تقریباً 15 μm همچنین مشخصات این سوماسیون تا حدود 19 درصد یک دهار است.

3. آنالیز توصیفی

بعد از وارد کردن طرحها به رایانه از طریق اسکنر و رقیمی

شیب‌دار به آرامی افزایش داده می‌شود، باعث در غیرت موجب کردن نسبت تغییرات همگام که حد اولیت پرند. آنگاه گودال‌های نیازمند را زنده کردن و لغو خود را گودال‌ها شکل گیرنده می‌کند. اگر زاویه سطح شبیه‌سازی کوچک باشد، آنگاه آب گودال‌ها را کاملاً بر می‌گیرد. هنگامی که زاویه سطح شبیه‌سازی برگیرنده می‌شود طول خود را افزایش می‌یابد و در زاویه آستانه جزئی به مقدار نیروی می‌رسد. زیر این حداکثر بحراش تعادل زیادی خوشه‌های شده می‌تواند بیننده کم کامل از شارس جدا است. در راستای هم از گودال فاز تعطیف به می‌رسد. با کم رودخانه جاری از بالا به پایین وارد دارد (بنیت) سطح کم یک خوش که طول مهندسی این تی اینثای است.

از سوی دیگر شبکه‌های شاخه شاخه شده رودخانه‌ها از میان منطقین تنظیم شده در پرسیده که در بیشتر یافته یافت می‌شود به طور خودی پس به دریای عظیم ایجاد می‌کند. مطالعه شبکه رودخانه‌ها در این هدف است که نیازدهرهای این مورد به تنصل شدن آب به کانال و تهاتاً شبکه رودخانه‌ای می‌شود به‌شماره [8]. درک فرکانسی این ساختار در حدود 17/5 تا 1/8 است [8].

در مقایسه مالیات، بیشتر از دسته‌بندی در حال فعال. سیستم یک شبکه رودخانه‌ای است. سیستم یک شبکه رودخانه‌ای دارای این هدف است که نیازدهرهای این مورد به تنصل شدن آب به کانال و تهاتاً شبکه رودخانه‌ای می‌شود به‌شماره [8].

4. مراحل آزمایش

این آزمایش‌ها با سه سوماسیون نیازمند شده‌اند: مسیر و آب (دوگ)، پودر نالک و آب. برای آزمایش‌های مطرح شده معمولاً می‌سیستم این سرکل زاویه و کوچک دسترسی بودن آنها است. ابزار کار شایع یک ظرف است که از مانع پر شده و با سرکل به بیمار اجازه مده که از آن به‌کاررد سطح شبیه‌سازی به‌طور یکسان با پر شده صفحه کیفیت ویژه بروز. صفحه کیفیت ویژه بروز. صفحه کیفیت ویژه بروز.
شکل ۱ طرح رقموی شده جریان موزیسیون ماست و آب روی یک سطح شیبیدار بالای زاویه آستانه. مناطق سفید روب از ماست هستند و

کردنشان، بعد فراکتالی آنها را به روش‌های مختلف اندازه‌گیری می‌کنند.

با برآوردن محاسبه بعد فراکتالی از روی روش مختلف استفاده

کردن:

روش ۱- جرم هر جریان معین \(m \) به طول جریان نقاط می‌باشد. به بیانی جریان در واقع مساحت کل شاخه

\[m(t) = \ell^d \]

در این روش چندین نقطه از شاخه‌های فراکتالی در مقیاس‌های مختلف انتخاب شده و برای هر کدام از آنها \(m(t) \) \(d \)
شكل ۲. توزیع اندازه ذره برای ماسه.

شكل ۳. توزیع اندازه ذره برای آرد.

شكل ۴. توزیع اندازه ذره برای پودر تالک.
جدول 4 مشخصات ذرات

<table>
<thead>
<tr>
<th>سوپرسیون</th>
<th>قطر متوسط (μm)</th>
<th>قطر صوری (مودال) (μm)</th>
<th>مساحت مسطح (m²/ g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماست</td>
<td>49/37</td>
<td>48/28</td>
<td>1/14</td>
</tr>
<tr>
<td>آرد</td>
<td>17/75</td>
<td>12/49</td>
<td>0/28</td>
</tr>
<tr>
<td>بودر تالک</td>
<td>24/75</td>
<td>24/24</td>
<td>0/22</td>
</tr>
</tbody>
</table>

جرم شارس $m(t)$ را می‌توان بر حسب تابع همبستگی بیان کرد که بعد فراکسول طبق رابطه زیر از آن حاصل می‌شود [4]

$$d_f = 2 - \alpha$$

این رابطه همان چیزی است که vicosk [4] ارائه کرد جز اینکه آن غیر همبستگی است. غیر همبستگی، رابطه میانگین دارد که در مرجع [1] که هندی است تغییر نمی‌دهد. ما در شکل 7 فکر کردیم که منحنی از $\ln C(r)$ بر حسب r هنگامی متغیر در $\ln C(r)$ راست شکلی می‌دهد که به آن اینکه بعد فراکسول نقش قسمت بالایی نقش فراکسول را به قسمت آغاجنی تغییر از نظر \bar{r}_m است.

$$C(r) = \frac{1}{N} \sum_j \rho(r) \rho(\bar{r}_m + r)$$

در اینجا ρ, چگالی مولکول است و \bar{r}_m نقطه در موضع 4، $\rho(r)$ نقطه در باز هم 6، $\rho(r)$ نقطه در باز هم 6.

است. [4] اینکه طبق رابطه زیر تعریف می‌شود:

$$R = \frac{C(r)}{C(\bar{r}_m)}$$

در پایان بعد فراکسول نقش تغییر شده در زیر زایه استانه را نیز به دست آورده که حاصل از معادله 17/67 تا 1/78 بوده است. شکل 12 یک نمونه از این کار را نشان می‌دهد.
شکل 5 به فراکتالی مخلوط ماست که روی یک سطح شیبدار ریخته شده است. m مساحت سطح شاخه و L طول آن است.

شکل 6 به فراکتالی از طریق مقایسه جرم کل و طول کل شاخه.

شکل 7 تابع همبستگی برای شارش پایین سوی ماست برای بخشی از نقش که از بالای آن بسنده آغاز شکل چنین تئوری انتخاب شده است. به طوری که با بیشتر نقش انتخابی از جریانهای مستقل تئوری داده‌اند.
شکل 8. بخش میانی منحنی شکل 7 که آشکارا بخش غالب آن است مربوط به بخش بالا یعنی مراحل آغازین تشکیل نطفه است. بعد فراکتالی حاصل 1/4 است.

شکل 9. قسمت اول منحنی شکل 7 که آشکارا بخش غیرغالب آن است مربوط به بخش بالا یعنی مراحل آغازین تشکیل نطفه است. بعد فراکتالی حاصل 1/7 است. لذا برای مراحل آغازین تشکیل نطفه بعد فراکتالی 1/4 غالبه‌است.

شکل 10. تابع همبستگی برای آرد در ترکیب از مراحل آغازین تشکیل نطفه. بعد فراکتالی که شیب نمودار این افکاره 0.32 است.
شکل ۱۱. تابع همبستگی برای پودر نان، وقتی تمامی نقاط برای پرسی انتخاب شدند، بعد فراکتالی در این حالت ۱/۸۹ است.

شکل ۱۲. تابع همبستگی برای زیر آستانه. بعد فراکتالی حاصل از این نمودار ۱/۷ است.

شکل ۱۳. تابع همبستگی برای ماسی. وقتی تمامی نقاط برای پرسی انتخاب شدند، بعد فراکتالی در این حالت ۱/۷ است.

نتایج گیری

نازاران و فیشر [۴] برای رفتار غیرخطی شارش مایع روی سطح زیر کاتودیاز، یک مدل دیپشله‌کردن و کردن‌زدایی ارائه کردند که در این مدل، در نوع شارش روی تکنیک چندین کاتالیزور با شکل پلیمری به‌همراه تغییرات شیب بیشتری پدید می‌آمد. همچنین، این شیب سطح شیب بیشتری از آفرینش داده می‌شد مایع در گودالهای با پین عمک مشخص جمع می‌شود تا هگامی که به حد اشباع برسند. گودالهای مجاور را از بازی پر می‌کنند و خورش‌های گودالهای
سبیم تحت مطالعه با مدل‌های نارایان و فیشر متداوت است زیرا