محاسبه سطح مقطع پراکنده گی برهمکنش‌های $\gamma e \rightarrow e\gamma$ و $\gamma \gamma \rightarrow \gamma\gamma$

مریم زینبی و منصور حرفیت
دانشگاه فیزیک دانشگاه صنعتی اصفهان

چکیده

ما ضمن متانالی گی برهمکنش ممکن گی برهمکنش نورانی از سطه‌های نورتونی، سطح مقطع پراکنده $\gamma e \rightarrow e\gamma$ و $\gamma \gamma \rightarrow \gamma\gamma$ را به صورت تحلیلی در ناحیه $m_p < E < M_W$ محاسبه کردیم. همچنین با فرض ناهنجاریها با لایه فضایی سطح مقطع پراکنده $\gamma \gamma \rightarrow \gamma\gamma$، را به دست آورده، نتایج به دست آمده در مقایسه با سطح مقطع پراکنده گی برهمکنش های $\gamma e \rightarrow e\gamma$ و $\gamma \gamma \rightarrow \gamma\gamma$ در فضای ناهنجاری‌های سری‌های نورتونی نشان می‌دهد که در بازه $\gamma e \rightarrow e\gamma$ در ناحیه $200 < E < 1000 \text{ GeV}$، سطح مقطع پراکنده برهمکنش $\gamma \gamma \rightarrow \gamma\gamma$ در ناحیه $200 < E < 1000 \text{ GeV}$ در فضای ناهنجاری‌های سری‌های نورتونی در مقایسه با مورد مشابهی در فضای معمول برهمکنش با قدرت یا هم مربوط است.

واژه‌های کلیدی: برهمکنش رونو - نورتونی، فضای ناهنجاری‌های، سطح مقطع پراکنده

1. مقدمه

اکنون فراهم‌هایی که شمار نورتونی‌ها مشاهده نموده، مورد توجه زیادی واقع شده‌اند. این گونه فراهم‌هایی توضیح دهنده برخی پدیده‌های طبیعی در حوزه سطاهای شناسی و کهیمی شناسی هستند.

یکی از مدلاتی که سطاهای شناسی به دنیای بازی برای آن هستند، علت سردر سطاهای نورتونی است. سطاهای نورتونی اجسام فوق‌چگالی هستند که محتوای انحراف ابرتوانشان، دارای میدان‌های مغناطیسی قوی از مرتبه 10^{-10} G هستند و جرمی سطگین تر از جرم خورشید دارند. این سطاهای به هنگام تولد دمای فوق‌العاده زیادی دارند (حدود 10^{11} K) و لیل به تدریج رو به سردر می‌روند.

کهنه می‌باشد مه ته‌پرینگ که به دست آمده از الکترون‌های توسط سطاهای نورتونی، گی برهمکنش نورتونی است [2] علت این مطلب را
می‌توان به جفت‌شادگی مستقیم فوتون و نوترنیو در فضای ناهنجاری‌یابی اشاره کرد. بنابراین فوتون و نوترنیو در فضای ناهنجاری‌یابی در ماده برمهرکش مشاهده می‌شوند. در مدل استاندارد، اولین ماده برمهرکش (1) و (2) از طریق حلقه انجام می‌شود.

\[y
ightarrow e \nu \overline{\nu} \]
\[y
ightarrow e \nu \nu \]
\[y
ightarrow e \bar{\nu} \]

سطح مقطع برمهرکش‌های (1) و (2) در انرژی‌های مختلف در فضای معمولی محاسبه شده است. در انرژی‌های پایین به دلیل وجود توانایی از کسر \(\frac{m_W}{m_Y} \) در سطح مقطع فوتون \(W \), که انرژی برخورد در دستگاه مختصات مکانیک و جرم و جرم پوزون \(W \) است، این فرا کلید نور نظر کردن است.

در واقع عملکرد سطح مقطع برمهرکش \((1) \) فضای بانگ است \(K \) که واکنشی در فوتون وارد شود \(y ~ y \) بکار رفته \(l = 1 \), ممکن است.

اما در جفت‌شادگی سه فوتون به دلیل تاریکی، چنین محدوده‌های مشابه نداریم. با توجه به به دلیل وجود توانایی مانند، سطح مقطع برمهرکش \((2) \) مشاهده می‌شود که مقدار انرژی در مقایسه با سطح مقطع برمهرکش \((1) \), از طریق \(m_Y \) تغییر پیدا می‌کند که این خود که این مطلب است که سطح مقطع برمهرکش \((2) \) بر مورد مشابهات در محدوده انرژی \(\frac{m_Y}{m_W} \) این است.

همچنین به دلیل وجود میدان‌های مغناطیسی برزگ در ستاره‌های نوترنیو، سطح مقطع این برمهرکش‌ها در حضور میدان‌های مغناطیسی زمین نیز به دست آمده است \([5] \) و نرخ از دست دادن انرژی توسط ان برمهرکش‌ها محاسبه شده است.

\[\text{ pomp } \left(0.98 \right) \]

نتیجه محاسبات این است که حضور میدان‌های مغناطیسی، آهنگ از دست دادن انرژی ستاره‌ای را تقویت می‌کند. به عبارت دیگر سطح مقطع برمهرکش‌های مادکار در حضور میدان‌های خارجی تقویت می‌شود. بنابراین وجود میدان‌های مغناطیسی یک عامل مهم در سرده‌شناسی ستاره‌های نوترنیو است.

4. دیگر راه‌های فاینمن، دانمار براکنگ

در مدل استاندارد و در مورد نمونه‌دوره‌های درختی، چهره دیگری در نمودارهای مربوط به فوتون \(y
ightarrow e \nu \nu \) و رسم کرده.

دیگر راه‌های فاینمن در شکل 1 نشان داده شده است. با استفاده از قواعد فاینمن \([10] \), دانمار براکنگ \(k \) برای به صورت \((\gamma + e + p) \rightarrow (e + p + \nu(x') + \bar{\nu}(x)) + \Delta \nu + \Delta (\gamma + e) \) زیرنویسه می‌شود.
در عباراتی بالا، $\sigma(q)$ چاربردار قطیع فوتون و رودی است. ضمنا چون پراکنده‌گی را در محدوده انرژی $m_e < E < M_W$ بررسی می‌کنیم، می‌توانیم از ثابت جفت شدگی فرمی، G_F استفاده کنیم. همچنین از جرم الکترون در عباراتی مربوط به انتشارگری صرف نظر کردیم.

البته اگر $v = v_F$ باشد، برای حفظ قانون بناء عدد لیتوی فقط دو دیاگرام ناشی از پراکنده چرخان خنثی می‌باشد. ν فقط نمودارهای (1) و (3) در دامنه پراکنده‌گی کل سهم خواهد داشت؛ اما می‌تواند در دو دیاگرام ناشی از پراکنده چرخان باردار باشد. $\nu = v_e$ و (2) را نیز مطرح کرد.

در یک رشته که از حاصل ضرب ماتریسهای دو را ساخته می‌شود، این شرایط باید برقرار است:

$$(\gamma_{\mu}(-\gamma_5))_{ij} (\gamma_{\mu}(-\gamma_5))_{kl} = - (\gamma_{\mu}(-\gamma_5))_{ij} (\gamma_{\mu}(-\gamma_5))_{kl}.$$

اندیس‌های مشخص شده، اندیس‌های ماتریسیان که معرف منطق و ستوت یک ماتریس 4×4 هستند. به طوری که داریم $i,j,k,l = 1,2,3,4$.

با استفاده از اتحاد فوق، عباراتی که صورت زیر می‌گردد

$$m_{tot} = m_e + m_\mu + m_\nu + m_{\tau},$$

که در آن m_i دامنه پراکنده‌گی مربوط به i آمیز دیاگرام در شکل 1 است و برای است

$$m_e = \frac{eG_F}{\sqrt{\pi}} \phi(q) \phi(k') \gamma_{\mu}(-\gamma_5) \gamma_{\mu}(-\gamma_5) \psi(k') \psi(k) \int \psi(p') \gamma_{\mu} \gamma_5 \gamma_{\mu} \gamma_5 \psi(p) \, dp,$$

$$m_\mu = \frac{eG_F}{\sqrt{\pi}} \phi(q) \phi(k') \gamma_{\mu}(-\gamma_5) \gamma_{\mu}(-\gamma_5) \psi(k') \psi(k) \int \psi(p') \gamma_{\mu} \gamma_5 \gamma_{\mu} \gamma_5 \psi(p) \, dp,$$

$$m_\nu = \frac{eG_F}{\sqrt{\pi}} \phi(q) \phi(k') \gamma_{\nu}(-\gamma_5) \gamma_{\nu}(-\gamma_5) \psi(k') \psi(k) \int \psi(p') \gamma_{\nu} \gamma_5 \gamma_{\nu} \gamma_5 \psi(p) \, dp,$$

$$m_{\tau} = \frac{eG_F}{\sqrt{\pi}} \phi(q) \phi(k') \gamma_{\tau}(-\gamma_5) \gamma_{\tau}(-\gamma_5) \psi(k') \psi(k) \int \psi(p') \gamma_{\tau} \gamma_5 \gamma_{\tau} \gamma_5 \psi(p) \, dp,$$
\[
\alpha \beta + \gamma = \gamma \alpha, \\
\gamma q \mathbf{f} = m^\prime = 0,
\]

خواص دانست

\[
q_\alpha T^\alpha = \frac{eG_f}{\sqrt{\gamma}} \pi(k') \gamma^\mu (\gamma^5) \gamma(v(k)) \times
\]
\[
\pi(p') \gamma^\mu (\gamma^5) \frac{1}{p + q} u(p),
\]

\[
m_{\gamma} = \frac{eG_f}{\sqrt{\gamma}} \pi(k') \gamma^\mu (\gamma^5) \gamma(v(k)) \times
\]
\[
\pi(p') \gamma^\mu (\gamma^5) \frac{1}{p' - q} u(p),
\]

در نتیجه برای
m_{\gamma} = \frac{eG_f}{\sqrt{\gamma}} \pi(k') \gamma^\mu (\gamma^5) \gamma(v(k)) \times
\]
\[
\pi(p') \gamma^\mu (\gamma^5) \frac{1}{p' - q} u(p).
\]

\[
\text{که این به روش صفر است و لذا دامنه پراکنده کل، تحت تبدیل (5) ناوردای باقی میماند.}
\]

\[
\gamma e \to e \gamma \bar{\nu}
\]

\[
\text{4. سطح مقطع پراکنده برمکنش}
\]

\[
\text{1.3. سطح مقطع دیفرانسیل}
\]

سطح مقطع دیفرانسیل به شکل کلی زیر نوشته می شود
\[
d\sigma = \frac{m_{\gamma}}{F} dQ
\]

که فاکتور فضایی فاز است و برای است با
\[
dQ = \frac{1}{(2\pi)^5} \delta^\nu (p + q - p' - k - k')
\]
\[
d^5 \vec{P'} d^5 \vec{K'} d^5 \vec{K}
\]
\[
\times \epsilon^\nu \epsilon_{k' \bar{K}'},
\]

در رابطه اخیر چاربردار اندامه حرکت خطی ذرات نهایی را به

\[
p' = (E', \vec{P'}),
\]
\[
k' = (E_{k'}, \vec{K'}),
\]
\[
k = (E_k, \vec{K}).
\]

با استفاده از معادله ی پاک کردن ذره آزاد
\[
p_{\gamma} u(p) = 0,
\]
\[
\pi(p) p = 0,
\]

و رابطة
ذرات مختصات در جواب آخر تأثیری ندارد. بنابراین ما پراکنده را در دستگاه مختصات مرکز جرم (COM) در نظر می‌گیریم.

که شار و ورودی است، در دستگاه مختصات مرکز جرم به صورت زیر نوشته می‌شود

\[F = \sqrt{(pq)^2 - m_p^2 m_e^2} \]

و اگر فوتون حقیقی یک ذره جرمی از این سطح مختصات مرکز جرم خواهیم داشت

\[d\sigma = \frac{1}{(\pi \delta^2 \delta \sigma) \rho_p p_q m_{tot}^\dagger} \]

متوسط مجزا دامنه پراکنده، می‌شود

\[m_{tot}^\dagger = \frac{1}{\rho} \sum_{pol} m_{tot} m_{tot} \]

که در عبارت بالا ما ضمن اینکه روى حالت‌های مختلف اسپینی ذرات نهایی جمع می‌شنیم، روى حالت‌های ممکن قطبیزش ذرات فردی نیز می‌گنجیم که مکانی، از آنجایی که قوتون فیزیکی، فقط دارای دو حالت قطبیزش طولی و عرضی می‌باشد، لذا به عنوان یک حالت ممکن اسپینی باید فوتون و الکترون فردی وجود دارد.

2.4 سطح مقطع کل

برای محاسبه سطح مقطع کل گرایش داخل از رابطه (6) روى بردار اندازه حکایت خطر ذرات نهایی انتقال به قطبیزش. اما ما عاطفه هم به محاسبه سطح مقطع در انرژی‌های بالا هستیم. بنابراین فرض می‌کنیم که به دو عضو انتخاب کنیم در شرایط \(s \to \infty \) تنا دامنه پولین جرم در رابطه (8) اهمیت بی‌پایان می‌کند. عظیم داریم.

\[(p' - q)^2 - m_e^2 = \frac{1}{\rho_p} \left(p'q \right)^2 \]

مخرج کسر را به صورت زیر می‌نویسیم.
بعضی از کمیته‌نورداپی که برای رسیدن به رابطه (12) از رابطه (11) استفاده می‌شوند، عبارتند از

\[p q = \alpha E^\gamma, \]
\[q = (p+q)^\gamma = \alpha p E^\gamma, \]
\[q_p = E^\gamma(1+\cos \theta), \]
\[p_p = E^\gamma(1-\cos \theta), \]
\[r = p + p' \Rightarrow r^\gamma = \alpha E(E-E'), \]
\[r_p = E(\alpha E-E'(1+\cos \theta)), \]
\[r_p = E(\alpha E-E'(1+\cos \theta)), \]
\[r_p = \epsilon E^\gamma. \]

و در نتیجه، برای سطح مقطع کل عبارات تحلیلی زیر را خواهیم داشت

\[\sigma = \frac{\alpha G f^\gamma}{\tau} \left(\sum_{q=1}^{\infty} \left(\frac{s}{\tau m_e^\gamma} \right) \right), \]

که نباید سخت‌ترین ریز است و \(\sigma \) بر اساس \(\gamma \) به این ترتیب یک عبارت تحلیلی برای سطح مقطع پراکندگی \(\gamma \) به دست می‌آوریم. همان طور که از رابطه (13) معلوم است، محدوده انتخاب درستی سطح مقطع، بازه \(m_e^\gamma < E \) می‌باشد. البته این شرط در انتظار نیست، چرا که این نامعلومی همان فرض اساسی بود که در هنگام انتگرال کیهانی در نظر گرفته می‌شود.

8. فضاهای ناجابه جایی

در فضا – زمان ناجابه جایی، مختصات فضا – زمان با هم جابجایی نمی‌شوند. عویض در رابطه جابجایی زیر صدق می‌کند

\[[x^\mu, x^\nu]_e = x^\mu \times x^\nu - x^\nu \times x^\mu = i \theta^\mu\nu, \]

که در آن \(\theta^\mu\nu \) یک تنسور یاد متقان و نتیجه است و همان طور که از رابطه فوق بر می‌آید، دارای بعد محدود طول است.

\[p^\mu q - p^\nu q = -((p+q)\theta - p\theta), \]
\[-\theta(p^\mu q - p^\nu q) = -((p+q)\theta - p\theta), \]
\[-\theta(p^\mu q - p^\nu q) = -((p+q)\theta - p\theta). \]

در به دست آوردن تئوری دیگر، نتایج بخود تفاوت فروندی را در راستای \(\theta \) انتخاب کرده‌ایم. همچنین فرض کردیم. زاویه پراکندگی الکترون نسبت به راستای \(\theta \) باشد.

از طرفی

\[s = (p+q)^\gamma = m_e^\gamma + \frac{\epsilon}{\tau} p q, \]
\[\Rightarrow p q = \frac{s - m_e^\gamma}{\tau}. \]

در نتیجه رابطه (8) به شکل زیر نوشته می‌شود

\[d \sigma = \frac{\alpha G f^\gamma}{\tau} \left(\sum_{q=1}^{\infty} \left(\frac{s}{\tau m_e^\gamma} \right) \right), \]

از طرفی ما رابطه انگرالی زیر را داریم [11]

\[\int d^\gamma \delta(k+k'-r)k^\mu k^\nu = \frac{\pi}{\tau} (r^\gamma \mu k^\nu + \nu r^\mu k^\nu). \]

حالا با دانستن رابطه بالا و تعريف به صورت زیر

\[r = p + q - p', \]

رابطه (10) به عبارت زیر تبدیل می‌شود

\[d \sigma = \frac{\alpha G f^\gamma}{\tau} \left(\sum_{q=1}^{\infty} \left(\frac{s}{\tau m_e^\gamma} \right) \right), \]

با جابجایی‌کننده الکترون نهایی است؛ داریم
ا) \[a \mu \theta_{\mu \nu} b_{\nu} = a \theta b = \bar{\theta} (\bar{a} \times \bar{b}) \]

ب) \[a \mu \theta_{\mu \nu} s_{\nu} = a \theta b = \bar{\theta} (\bar{a} \times \bar{b}) - (\bar{\bar{a}} a) (\bar{\bar{b}} b) \]

که در عبارت بالا، \(a \) و \(b \) در یک برد دو جزء از مجموعه است و به صورت زیر تعریف می‌شوند:

\[a^\mu = (a_1, a_2, a_3) \]

\[b^\mu = (b_1, b_2, b_3) \]

این احتمالات احتمالی را از روابط (16) و (17) می‌رساند.\\n\\nسررود است.

نواحی که از این تکنیک به دست می‌آیند، به فرض که روابط \(B(x) \) و \(A(x) \) از روابط زیر تعریف می‌شود:

\[A(x) = B(x) = \exp \left(\frac{i}{2} \theta_{\mu \nu} \bar{\phi} \psi (x) \right) \]

گمله آخر از سطح تابع نمایی به دست می‌آید. با فرض که معنی به دست می‌آید. با فرض که بودن پارامتر \(\theta \) می‌توان از جملات مربوط به سطح سه‌ضایت \(\theta \) و \(\bar{\theta} \) بازدید کنید.

برای حفظ یک‌پارامتر بودن نظریه میدان مربوط، سطح اول و سطح اول ماتریس \(\theta_{\mu \nu} \) را صفر در نظر می‌گیرد.

یعنی داریم:

\[\theta_{\mu \nu} = \theta_{\mu \nu} = 0, \quad \mu = \nu = 1, 2, 3 \]

بنابراین ماتریس اولیه سطح مولفه مستقل بودن. با استفاده از این سطح مولفه مستقل، می‌توان یک بردار به صورت زیر ساخت:

\[\bar{\theta} = \left(\theta_{1}, \theta_{2}, \theta_{3} \right) \]

سپس پارامتر \(\theta_{1} \) را از روی بردار \(\bar{\theta} \) به شکل زیر تعریف می‌شود:

\[\Lambda = \frac{1}{\sqrt{\sum_{\mu = 1}^{3} \theta_{\mu}^{2}}} \]

ارائه‌ای از احتمالات زیر برای انجام محاسبات بعید در فضای ناجابه‌جایی می‌باشد.

شکل 2: دیگرام ناحیه یک‌پارامتر \(\theta \) در فضای \(\theta \) ناجابه‌جایی می‌باشد.
عبارت $e \theta$ را به ازای هر رأس ناجابه‌جایی در دامنه پراکندگی خواصی داشت و جنون توزیع بدون جرم است، پس سطح $\frac{\rho^2 E^2}{M_z^2}$ شواعده بود که توان E با توجه به آنالیز ابعاد قابل شناخت است. مرتبه برگزی سطح مقطع چهارمین دیاگرام در شکل 1 به عنوان وجود انتشارگر بوزونی در مقایسه با سه دیاگرام دیگر، به نسبت $\frac{1}{M_z}$ کمتر است. بنابراین دیب در تحلیل ابعاد فوک کتبی‌نامه نشد.

با انتخاب $\Lambda = 100 \text{GeV}$، ضمن اینکه می‌دانیم جرم بوزون Z است، مشاهده می‌شود که این دو سطح مقطع دارای برگزی پیکاسی هستند.

با بر استدلال فوک و با توجه به نقش مهم این گونه برهمکنش‌ها در بیشتر شناسی و در ساختار شناسی اهمیت برسی برهمکنش‌های فوتون و توزیع تا مرتبه θ' در فضای ناجابه‌جایی نیز روش‌ن است.

اما در این مقاله ثابت نمی‌شود برهمکنش $\gamma \gamma \rightarrow 77$ در فضای ناجابه‌جایی تا مرتبه θ' می‌پذیرد. مطالعه برهمکنش‌های فوتون و توزیع در مراکز بالاتر اختلال خود به تنهایی دارای اهمیت است.

قاعدتاً فاصله برای رأس برهمکنش $\gamma \gamma \rightarrow 77$ در شکل زیر نشان داده شده است، به وسیله زابه‌ی (19) داده می‌شود.

شکل 3. دیاگرام‌های فاصله برای پراکندگی $\gamma \gamma \rightarrow 77$ در فضای ناجابه‌جایی تا مرتبه θ'.

در سطح مقطع عبارت $\left(\frac{\alpha \theta}{M_z^2}\right)$ ظاهر خواهد شد. این دنیا برای دیگری که جزء اطلاعات منحکم است، از این ذرات فرودی در دستگاه‌های مختصات مکان جرم، E، براش در نتیجه، و جرم $\frac{\alpha^2 E^2}{M_z^2}$ یا $\frac{\alpha^2 \theta E^2}{M_z^2}$ خواهد شد. از طرف دیگر، در اولین سه دیاگرام شکل 3.
بای استفاده از رابطه (18) و با توجه به این که در دستگاه مختصات مرکز جرم، مجموع بردار اندازه حرکت خطی ذرات فروندی k_i و k_r صفر است، جملات پنجم، ششم و هفتم به یکدیگر دارای کرنش کاهش ندارند. رابطه بالا به شکل زیر ساده می‌شود:

$$m = \frac{-ie^2 k_{\beta \gamma}}{M_z} \sum_{\gamma} (p_{\gamma} - \bar{p}_{\gamma}) (\gamma - \gamma^\prime) v(p_{\gamma}) \times \left\{ (k_r, \gamma') \left[\Theta_{\gamma^\prime} k_{\beta} - \Theta_{\gamma^\prime} k_{\gamma} - \Theta_{\gamma^\prime} k_{\gamma^\prime} \right] + \Theta_{\gamma^\prime} k_{\gamma} \right\}.$$

در همه این رابطه بدون اضافه چار ممتعوم در رأس γ, درست استفاده کرده‌ایم. ضمن این که جملات k_{γ}^\prime حاوی γ' را برای صفر قرار دادیم. چرا که γ' از این روی جمله جریان نوترنیو در دامنه خواهش داشت $k_{\gamma}^\prime (p_{\gamma} - \bar{p}_{\gamma}) (\gamma - \gamma^\prime) v(p_{\gamma}) = \bar{p}(p_{\gamma}) k_{\gamma} (\gamma - \gamma^\prime) v(p_{\gamma})$, از طرف دیگری داریم $k_{\gamma} = -p_{\gamma} - \bar{p}_{\gamma}$، در آخر با استفاده از معادله دیبرای نوترنیوها صفر بودن جمله مذکور روش من شود.

نظیر ناجابجایی نیز یک چرخش در نظر می‌گیریم. با این چرخش، نیز می‌توان به راحتی نشان داد که دامنه براکنگی برهم‌کنش $\gamma \rightarrow \gamma^\prime$ تحت تبدیل (5) ناوردی ماند. به عبارات دیگر $e(p_{\gamma}) \bar{p}(p_{\gamma}) (\gamma - \gamma^\prime) v(p_{\gamma}) = \left\{ (k_r, \gamma') \left[\Theta_{\gamma^\prime} k_{\beta} - \Theta_{\gamma^\prime} k_{\gamma} - \Theta_{\gamma^\prime} k_{\gamma'} \right] + \Theta_{\gamma^\prime} k_{\gamma} \right\}$ که در آن Θ_{γ^\prime} به ترتیب زیر تعریف می‌شود:

$$\Theta_{\gamma^\prime} = \frac{-ie^2 k_{\beta \gamma}}{M_z} \sum_{\gamma} (p_{\gamma} - \bar{p}_{\gamma}) (\gamma - \gamma^\prime) v(p_{\gamma}) \times \left\{ (k_r, \gamma') \left[\Theta_{\gamma^\prime} k_{\beta} - \Theta_{\gamma^\prime} k_{\gamma} - \Theta_{\gamma^\prime} k_{\gamma'} \right] + \Theta_{\gamma^\prime} k_{\gamma} \right\}.$$
نتیجه می‌شود که انتظار آن‌ها نیز به هم برای پاشیده به طور خلاصه، چارپدیدار انداده حرکت ذرات را به شکل زیر نمایش می‌دهم:

\[k_i = (E, \vec{K}), \]

\[k_r = (E, -\vec{K}), \]

\[p_i = (E_i, \vec{P}_i) , \]

\[p_r = (E_r, \vec{P}_r) . \]

بیان اینکه انتگرال‌گیری از رابطه (20) روی بردار انداده حرکت خطی یا تغییری که تولید شده خواهیم داست

\[
\sigma = \frac{1}{\pi^2 x_k k_r} \delta \left(E + E_r - E' \right)
\]

(الف) نتایج چنین داشت، می‌توان گفت با دستگاه‌های ما ترسیم شده در نهایت، پس از جابجاگری و انتکنال‌گیری روی به عبارت زیر سطح مقطع دیفرانسیلی می‌رسیم:

\[
\sigma = \frac{1}{\pi^2 x_k k_r} d \beta d \alpha E, \quad E' = E .
\]

حالا به محاسبه می‌پردازیم.

\[
\left[m \right] = \sum_{m} m^{\dagger} m^{\dagger T} .
\]

در واقع ضریب 4 به کلیه حالاتی که حرکت ذرات زیر حرکت گردیده می‌شود به صورت زیر نوشته می‌شود:

\[
\left[m \right] = \frac{1}{2} \sum_{m} \delta E
\]

در اینجا، بیوکسکسی می‌باشد که حرکت ذرات زیر حرکت گردیده می‌شود:

\[
\left[m \right] = \frac{m^{\dagger} m}{\left[m \right]^T} e^{\gamma^\dagger} \left(k_i, \vec{E}_i \right) \left(k_r, \vec{E}_r \right) \left(p_i, \vec{P}_i \right) \left(p_r, \vec{P}_r \right) \left(E_i, \vec{E}_i \right) \left(E_r, \vec{E}_r \right) \left(\gamma, \vec{\gamma} \right) \left(\gamma', \vec{\gamma}' \right) \alpha \beta
\]

در اینجا، بیوکسکسی می‌باشد که حرکت ذرات زیر حرکت گردیده می‌شود:

\[
\left[m \right] = \frac{m^{\dagger} m}{\left[m \right]^T} e^{\gamma^\dagger} \left(k_i, \vec{E}_i \right) \left(k_r, \vec{E}_r \right) \left(p_i, \vec{P}_i \right) \left(p_r, \vec{P}_r \right) \left(E_i, \vec{E}_i \right) \left(E_r, \vec{E}_r \right) \left(\gamma, \vec{\gamma} \right) \left(\gamma', \vec{\gamma}' \right) \alpha \beta
\]

(الف) نتایج چنین داشت، می‌توان گفت با دستگاه‌های ما ترسیم شده در نهایت، پس از جابجاگری و انتکنال‌گیری روی به عبارت زیر سطح مقطع دیفرانسیلی می‌رسیم:

\[
\sigma = \frac{1}{\pi^2 x_k k_r} \delta \left(E + E_r - E' \right)
\]

(الف) نتایج چنین داشت، می‌توان گفت با دستگاه‌های ما ترسیم شده در نهایت، پس از جابجاگری و انتکنال‌گیری روی به عبارت زیر سطح مقطع دیفرانسیلی می‌رسیم:

\[
\sigma = \frac{1}{\pi^2 x_k k_r} \delta \left(E + E_r - E' \right)
\]
جدول 1: سطح مقطع بعضی از پراکنده‌های اوراکا در جهت مقدار انرژی. داده‌های ستون آخر با فرض $A = 100$ GeV به دست آمد است.

E (MeV)	$\sigma_{\gamma\gamma \rightarrow \nu\nu}$	$\sigma_{\gamma\gamma \rightarrow \nu\nu'}$	$\sigma_{\gamma\nu \rightarrow \nu\nu}$	$\sigma_{\gamma\nu \rightarrow \nu\nu'}$	NC
1	$1/2 \times 10^{-37}$	$1/2 \times 10^{-37}$	–	–	$2/5 \times 10^{-37}$
10	$1/2 \times 10^{-37}$	$1/2 \times 10^{-37}$	–	–	$2/5 \times 10^{-37}$
100	$1/2 \times 10^{-34}$	$1/2 \times 10^{-34}$	–	–	$2/5 \times 10^{-34}$
1	$1/2 \times 10^{-37}$	$1/2 \times 10^{-37}$	–	–	$2/5 \times 10^{-37}$
10	$1/2 \times 10^{-37}$	$1/2 \times 10^{-37}$	–	–	$2/5 \times 10^{-37}$
100	$1/2 \times 10^{-34}$	$1/2 \times 10^{-34}$	–	–	$2/5 \times 10^{-34}$

$\sigma \equiv \left(\frac{n}{k_{2\gamma}} \right) \frac{\alpha^2 E^n}{A M^2}$

(27)

بنابراین سطح مقطع پراکنده $\gamma\gamma \rightarrow \nu\nu$ در فضای $\gamma\gamma \rightarrow \nu\nu$ با توجه به آزمایش‌های نجات‌جایی به رابطه (27) به دست می‌آید. اما باید ذکر کند که نظریه نجات‌جایی یک نظریه اختلالی است. برای اعتبار دقیق سطح مقطع در رابطه (27)، مشروط به انجام تجربه درست پراکنده E به مقایسه Λ با Λ می‌تواند نوشت شود. یا در این صورت

$$\left(\frac{p}{A} \right)^2 \leq 1$$

بنابراین

$$\theta = \sqrt{\frac{E^2}{M^2}}$$

(27) با ناحیدی تعیین می‌کند که شرط برابری بداند.

$$k_{\gamma}, \theta, k_{\nu} = k_{\gamma}, \theta, k_{\nu} = -k_{\gamma}, \theta, k_{\nu} = \frac{E^2}{\sin^2 \alpha} \times$$

(27) درستی نشان می‌دهد، بنابراین نتایج از احتمالات رابطه (18) قابل تحقیق است.

8 خلاصه

در این مقاله، ضمن معرفی همبستگی بررسی پراکنده‌های $\gamma\nu \rightarrow \nu\nu'$ اوراکا در سطح مقطع پراکنده $\gamma\gamma \rightarrow \nu\nu$ به دست آمده. همچنین در حالی که وجود نجات‌جایی جایگزین، سطح مقطع پراکنده $\gamma\gamma \rightarrow \nu\nu'$ را نا ممکن که شرط می‌کند. نتایج این محاسبات در روابط (13) و (27) نشان می‌دهد.

2.7 سطح مقطع کل $\gamma\gamma \rightarrow \nu\nu$ در انتگرال گیری روزی زاویه‌ای می‌تواند به صورت زیر با دسته می‌آوریم.

$$\text{NC}$$
آورده شده است. مقدار عددی مربوط به این سطح مقاطع در انرژی‌های مختلف در جدول ۱ ذکر شده است. محاسبات سطح مقاطع پراکنده‌گی (1) و (2) به صورت تحلیلی در مراجع ذکر شده است (3). به دلیل اینکه این محاسبات در دو حد انرژی $m_e << M_W$ و $E << m_e$ انجام شده است، لذا برای مقادیر تقریبی فقط ذکر شده است. اما همان طور که قبل بیان کردیم، رابطه (13) در محدوده $m_e << E$ اعتبار دارد. بنابراین نمی‌توان سطح مقاطع پراکنده‌گی $e^+ \rightarrow e^+ e^-$ در انرژی‌های پایین را از این رابطه محاسبه کرد.

تشکر و قدردانی

قسمتی از هزینه‌های مربوط به پژوهش حاضر توسط معاونت محترم پژوهشی دانشگاه صنعتی اصفهان تأمین شده است.

منابع
