سهم برمکنش‌های CSB در اختلاف انرژی مستقیم هسته‌های آننی

محمود اصغری
گروه علمی پایه دانشکده علوم كاربردی، دانشگاه آزاد اسلامی، واحد تهران شمال

چکیده
پیدا کردن تغییر در هسته‌های آننی ناشی از برمکنش‌های NN با ترکیب حالت‌های مزونی \bar{T} = 1 و T = 0 با اسیدن و پرورش یکنای بررسی کرد. از حسابی نیز اثر کوتی و
ابت ناشی از برمکنش‌های مذکور توجه به مقطع‌های برای اختلاف انرژی مستقیم هسته‌های آننی کی، ^{25}Sc و ^{25}Ca وارد می‌شود.

واژه‌های کلیدی: تلاقی، برمکنش، انرژی مستقیم

1 مقدمه
مقاله حاضر ادامه کار پژوهشی مؤلف است که در مجله پژوهش فیزیک ایران منتشر شده است [1]. امرزه مشخص شده است که اختلاف انرژی مستقیم هسته‌های آننی ناشی از برمکنش‌های برمکنش‌های الکترومغناطیسی و عمده‌ای نیروهای کولنی است و تاثیر شده است که پس از حذف نیروهای الکترومغناطیسی در برمکنش‌های هسته‌ای تلاقی نارنجی می‌شود. این تلاقی با این معنی است که برمکنش pp و pn کیک است که تغییر پروتون‌ها با تزکیه نیروهای نارنجی نباید تغییر دهنده و تغییر دهنده این دو تلاقی بر نیروهای الکتروپاسیوی است. به عبارت دیگر رابطه $\frac{H}{} e^{i T y} = 0 \text{ با قرار دادن}$$ T = 0 \text{ در صورت وجود تلاقی معنی است.}$

$e^{i T y} T$ عملکرد تلاقی بار و y عملکرد ایزوپاسیوی است. در صفحه H و xy عملکرد هامیلتونیان است.}

1. Charge Symmetry Breaking
یکی از شکست تقارن بار
همان‌گونه که در مقدمات مذکر گردید، احتمال طعمه از قرینی‌های آیزن مربوط به برهمکنش‌های یون‌ریزه که با نام برهمکنش‌های الکترومغناطیسی می‌باشد، با مخلوط نمودن کل این برهمکنش‌ها هم‌زیاً نه تنها در این برهمکنش‌های الکترومغناطیسی می‌باشد، بلکه در پدیده‌های CB (CS) یکی از قریب‌ترین مشاهده‌ها بوده است که در آن

\[
V_{IV} = \left[E \left(\sum_{\pi} \chi_{ab} \left(\frac{g}{ \rho } \left(\eta \rightarrow \eta' \right) \right) \frac{\eta}{r} \right) \right]
\]

در مقاله حاضر با پیگیری کارهای هتلر و مولارد در زمینه برهمکنش دو نوکلئون از برهمکنش‌های کلاس (IV) CB (CS) برهمکنش‌های یون از قریب‌ترین مشاهده‌ها بوده است که در آن کلاس CB (CS) را در اختلاف انرژی بستگی به هسته‌های آتی‌های CB (CS) برای تبدیل از CB (CS) برهمکنش‌های الکترومغناطیسی می‌باشد، با این حال تبدیل از CB (CS) برهمکنش‌های الکترومغناطیسی M. Henley

\[M. Blundem \]

\[M. Blundem \]

\[M. Blundem \]

\[M. Blundem \]

\[M. Blundem \]
جدول 1. سهم نریوی کلونی و دیگر نریوهای الکترومغناطیسی (ΔE_{em}) در اختلال اثری مستقیم هسته‌های آبیار بر حسب μ، (محاسبه شده توسط دیگر محفظان).

| اختلال اثری مستقیم | پتانسیل به کار رفته | مرحله | مرحله | SHa | SIIa | SIIb | DMEb | SKIIb | ΔE \\
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\gamma} \gamma \bar{\gamma} K$</td>
<td>$\bar{\nu} \nu \bar{\nu} \gamma$</td>
<td>1/11</td>
<td>1/11</td>
<td>9/941</td>
<td>9/942</td>
<td>9/941</td>
<td>9/942</td>
<td>9/941</td>
<td>9/942</td>
</tr>
<tr>
<td>$\nu \nu \nu \gamma$</td>
<td>$\nu \nu \nu \gamma$</td>
<td>6/85</td>
<td>6/85</td>
<td>9/974</td>
<td>9/975</td>
<td>9/974</td>
<td>9/975</td>
<td>9/974</td>
<td>9/975</td>
</tr>
<tr>
<td>$\nu \nu \nu \gamma$</td>
<td>$\nu \nu \nu \gamma$</td>
<td>6/78</td>
<td>6/78</td>
<td>9/964</td>
<td>9/965</td>
<td>9/964</td>
<td>9/965</td>
<td>9/964</td>
<td>9/965</td>
</tr>
</tbody>
</table>

ΔE مقدار به دست آمده از آزمایش (μ/ مرجع [11]).

\[
\epsilon_{ab} = \frac{\mu_{ab}}{\mu_a} - \mu_a \\
V(\nu, \nu) = \frac{\mu^+}{\nu^+} \left[\frac{1}{\tau} \left(\bar{\gamma} \gamma \bar{\gamma} \gamma \right) \phi(\mu) + S_1 \gamma (\mu) \right].
\]

$V_{\nu, \nu}$ به ترتیب پانزده‌ها می‌گوییم (PM) و اسکارا و هم‌نام (LS) هستند که به ترتیب برای هر شیب تا اسکارا و موزه‌ها به بودار 0-1 به صورت مداومات (5) و (6-9) معرفی شده‌اند [13].

\[
V_{\nu, \nu}(\nu, \nu) = \frac{\mu^+}{\nu^+} \left(1 + K^0 \right) \left(\bar{\gamma} \gamma \bar{\gamma} \gamma \right) \phi(\mu) - S_1 \gamma (\mu).
\]

$V_{\nu, \nu}$ به ترتیب پانزده‌ها می‌گوییم (PM) و اسکارا و هم‌نام (LS) هستند که به ترتیب برای هر شیب تا اسکارا و موزه‌ها به بودار 0-1 به صورت مداومات (5) و (6-9) معرفی شده‌اند [13].

\[
V_{\nu, \nu}(\nu, \nu) = \frac{\mu^+}{\nu^+} \left(1 + K^0 \right) \left(\bar{\gamma} \gamma \bar{\gamma} \gamma \right) \phi(\mu) - S_1 \gamma (\mu).
\]

$V_{\nu, \nu}$ به ترتیب پانزده‌ها می‌گوییم (PM) و اسکارا و هم‌نام (LS) هستند که به ترتیب برای هر شیب تا اسکارا و موزه‌ها به بودار 0-1 به صورت مداومات (5) و (6-9) معرفی شده‌اند [13].

\[
V_{\nu, \nu}(\nu, \nu) = \frac{\mu^+}{\nu^+} \left(1 + K^0 \right) \left(\bar{\gamma} \gamma \bar{\gamma} \gamma \right) \phi(\mu) - S_1 \gamma (\mu).
\]

\[
V_{\nu, \nu}(\nu, \nu) = \frac{\mu^+}{\nu^+} \left(1 + K^0 \right) \left(\bar{\gamma} \gamma \bar{\gamma} \gamma \right) \phi(\mu) - S_1 \gamma (\mu).
\]

\[
V_{\nu, \nu}(\nu, \nu) = \frac{\mu^+}{\nu^+} \left(1 + K^0 \right) \left(\bar{\gamma} \gamma \bar{\gamma} \gamma \right) \phi(\mu) - S_1 \gamma (\mu).
\]

\[
V_{\nu, \nu}(\nu, \nu) = \frac{\mu^+}{\nu^+} \left(1 + K^0 \right) \left(\bar{\gamma} \gamma \bar{\gamma} \gamma \right) \phi(\mu) - S_1 \gamma (\mu).
\]

\[
V_{\nu, \nu}(\nu, \nu) = \frac{\mu^+}{\nu^+} \left(1 + K^0 \right) \left(\bar{\gamma} \gamma \bar{\gamma} \gamma \right) \phi(\mu) - S_1 \gamma (\mu).
\]

\[
V_{\nu, \nu}(\nu, \nu) = \frac{\mu^+}{\nu^+} \left(1 + K^0 \right) \left(\bar{\gamma} \gamma \bar{\gamma} \gamma \right) \phi(\mu) - S_1 \gamma (\mu).
\]

\[
V_{\nu, \nu}(\nu, \nu) = \frac{\mu^+}{\nu^+} \left(1 + K^0 \right) \left(\bar{\gamma} \gamma \bar{\gamma} \gamma \right) \phi(\mu) - S_1 \gamma (\mu).
\]

\[
V_{\nu, \nu}(\nu, \nu) = \frac{\mu^+}{\nu^+} \left(1 + K^0 \right) \left(\bar{\gamma} \gamma \bar{\gamma} \gamma \right) \phi(\mu) - S_1 \gamma (\mu).
\]

\[
V_{\nu, \nu}(\nu, \nu) = \frac{\mu^+}{\nu^+} \left(1 + K^0 \right) \left(\bar{\gamma} \gamma \bar{\gamma} \gamma \right) \phi(\mu) - S_1 \gamma (\mu).
\]

\[
V_{\nu, \nu}(\nu, \nu) = \frac{\mu^+}{\nu^+} \left(1 + K^0 \right) \left(\bar{\gamma} \gamma \bar{\gamma} \gamma \right) \phi(\mu) - S_1 \gamma (\mu).
\]
جدول ۲. تفاوت اختلاف انرژی بستگی به دست آمده از آزمایش و توری

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SI</td>
<td>SII</td>
</tr>
<tr>
<td>ΔE_{CSB}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_{C_2-1}K$</td>
<td>0.354</td>
<td>0.337</td>
</tr>
<tr>
<td>$T_{Sc-1}Cd$</td>
<td>0.354</td>
<td>0.277</td>
</tr>
</tbody>
</table>

3. نتایج به دست آمده

نتایج کار دیگر محققان جهت محاسبه ΔE_{em} در مرجع [11] بر اساس اطلاعات به دست آمده از آزمایشات مربوط به چگالی بار هسته‌ها در مرجع [14] می‌باشد. این نتایج برای مجموعه‌ای از پتانسیل‌های استکر ۳ نظر گرفته شده است. شاخص‌های SI و SII با هم متفاوت هستند از آن‌رو که مقدار ΔE_{CSB} در جدول ۱ ملاحظه می‌شود در جدول شماره ۲ خلاصه شده است. این نتایج سیستم به نام پتانسیل بی‌بند درنظر گرفته شده است. می‌توان گفت مقاله مشخص کرده‌ای که چه سهمی از این نتایج مربوط به برهمکنش‌های با ماده‌شناسی مزوری است که گروه آن در جدول شماره ۳ و خلاصه آن در جدول شماره ۴ از طریق که با استفاده از روابط (۲) و (۱۵) پتانسیل‌های روابط (۲) و (۱۵) پتانسیل‌های Rا بر حسب مقداری پارامترها R و V $\rho_{ob} V_{m1}^{\gamma} V_{m2}^{\gamma}$ در جدول متفاوت زیر به دست آمده و نتایج به دست آمده را در جدول ۳ تظیم نموده‌ایم. سه حالت مختلف انتخاب پارامترها بشرح زیر هستند:

۱(CSB) برای پارامترهای نک‌پوزون (OB) برای پارامترهای

۲(CB) برای پارامترهای

۳ تغییر گیری

۱. Vector Meson Dominance

۲. One-Boson Exchange Potential

۳. Suzuki

۴. Skyrme

۵. One Boson
جدول ۴. پارامترهای کوانتانقل‌رسانی در تالسیلهای CB در حالت‌های (۱) و (۲) با استفاده از پاتالسیل HM، CB، و LS مرجع شماره [۱۳].

<table>
<thead>
<tr>
<th>میکرو ایزوتوپ</th>
<th>$\mu_{\pi^0} (\text{GeV})$</th>
<th>$\mu_{\pi^+} (\text{GeV})$</th>
<th>$\mu_{\rho^0} (\text{GeV})$</th>
<th>x_{π^0}</th>
<th>x_{π^+}</th>
<th>x_{ρ^0}</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱ ۱۱۱۰</td>
<td>-0.76</td>
<td>-0.57</td>
<td>-0.37</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>$1/2$</td>
</tr>
<tr>
<td>۲ ۱۱۱۰</td>
<td>-0.37</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>$1/2$</td>
</tr>
<tr>
<td>۳ ۱۱۱۰</td>
<td>0.37</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>$1/2$</td>
</tr>
</tbody>
</table>

جدول ۵. تفاوت انتزی بستگی به حالت‌های CB در حالت‌های HM و LS مرجع شماره [۱۳].

<table>
<thead>
<tr>
<th>میکرو ایزوتوپ</th>
<th>$\Delta E_{\text{CBS}} (\text{MeV})$</th>
<th>$\Delta E_{\text{CBS}} (\text{MeV})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱ ۱۱۱۰</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>۲ ۱۱۱۰</td>
<td>0.29</td>
<td>0.29</td>
</tr>
<tr>
<td>۳ ۱۱۱۰</td>
<td>0.33</td>
<td>0.33</td>
</tr>
</tbody>
</table>
اختلاف بین نتایج محققان به دلیل انتحاب فرمولهای مختلف با
پارامترهای متفاوت در برهمکنش NN است. به عبارت دیگر
هو محققی بخشی از نیروهای الکترومغناطیسی را در محاسبات
خود وارد می‌کند نه تمام آنها را. با توجه به تعداد
برهمکنش‌های الکترومغناطیسی در تصحیح برهمکنش و
اینکه همه این برهمکنش‌ها در ارزیابی سختی هسته سهم
هستند، بیشتر است که لحاظ نمودن همه آنها کار بیمار پیچیده
است.

جدول ۶: بهترین حالت تطبیق‌نامه با جداول ۲ و ۵.

<table>
<thead>
<tr>
<th>V</th>
<th>Δ(\Delta E_{CSB})</th>
<th>V</th>
<th>Δ(\Delta E_{CSB})</th>
</tr>
</thead>
<tbody>
<tr>
<td>DME</td>
<td>۰/۱۴۲</td>
<td>HM(_t)</td>
<td>۰/۲۵</td>
</tr>
<tr>
<td>SKII</td>
<td>۰/۲۰</td>
<td>LS(_t)</td>
<td>۰/۳۹</td>
</tr>
<tr>
<td>SGH</td>
<td>۰/۳۱</td>
<td>HM(_t)</td>
<td>۰/۳۱</td>
</tr>
</tbody>
</table>

محققان وجوه دارد. بهترین حالت تطبیق محاسبات مولفه در
حالت به کارگیری نتایج برهمکنش DME برای K-۳۹ Ca. برای
SKII برای SGH و SKII. بهترین حالت آنها می‌باشد (جدول ۶). در کل
نتایج به دست آمده این‌ها را که به صورت نشانده می‌شود.

مراجع

1. محمود اصغری، مجله پژوهش‌های فیزیک ایران، جلد چهارم، زمستان
(۱۳۸۲)
2. S A Coon, Proceeding of the Charge - Symmetry
Breaking Workshop, Vancouver, B.C., 1981, edited
by N E Davison, J P Svenne, W T H van Oers,
3. Wick C Haxton and Ernest M Henley, Symmetries
and Fundamental Interaction in Nuclei, World
2189.
281.