Flux dynamics in $\text{Y}_3\text{Ba}_5\text{Cu}_8\text{O}_{18}$ superconductor

A Aliabadi1, Y Akhavan-Farshchi2 and M Akhavan1

1. Magnet Research Laboratory (MRL), Department of Physics, Sharif University of Technology, Tehran
2. Department of Material Science, Science and Research Center, Islamic Azad University, Tehran
E-mail: aliabadi@physics.sharif.edu

Abstract
We have studied the thermally activated flux creep of a newly fabricated superconductor $\text{Y}_3\text{Ba}_5\text{Cu}_8\text{O}_{18}$ with the superconducting transition temperature 102 K. Analysis of the transition spread from the normal state to superconducting state in the electrical resistivity revealed that the thermally activated flux creep explains the electron share in the vicinity of the transition temperature T_c. The activation energy U in a magnetic field below 15 kOe has been calculated by the corrected thermally activated flux creep model, and the pinning energy is exponentially related to the magnetic field.

Keywords: high temperature superconductor, flux dynamics, pinning energy

For the full article refer to the Persian section