Study of optical properties of thin copper films on glass substrate using Kramers-Kronig method

A morteza ali¹, R maddah² and M Heidari¹

1. Department of Physics, Azzahra University, Tehran
 E-mail: amortezaali@yahoo.com
2. Islamic Azad University, Semnan Branch

(Received 26 February 2009 ; in final form 11 May 2010)

Abstract
Different thicknesses of 99.97% Cu are deposited on glass substrate by thermal evaporation method at the rate of 2Å/sec. Kramers-Kronig method is used for the analysis of the reflectivity constant in the range of 200 nm < λ < 3000 nm, and the results are compared with those of bulk sample. For E>2eV, by increasing the thickness, the imaginary part of refraction index, k, increases and real part, n, decreases. At higher energies, both constants reach the asymptotic value of 1. Also, for more thickness of the film, ε₁, the real part of dielectric constant becomes more negative, and ε₂, its imaginary part, decreases. For E<2eV, there are some oscillations on thin films curves. This effect occurs due to the void, grain boundaries, and size effects, which are not the case for bulk copper. The plasma frequency shows thickness dependence, which is similar to that for bulk sample in thickness of 40nm.

Keywords: thin films, optical constants, Kramers Kronig, Drude’s theory

For the full article refer to the Persian section