Effect of uniaxial strain on the current of (6,6) finite armchair carbon nanotube

S E Faizabadi and Z Kargar
Department of Physics, Iran University of Science & Technology, Tehran
E-mail: edris@iust.ac.ir

(Received 11 March 2011 ; in final form 28 August 2011)

Abstract
In this paper, the uniaxial strain effect on the electronic properties of (6,6) finite armchair carbon nanotube was investigated by using the Green function technique and Landure-Buttiker formula. It was found that, in (6,6) finite carbon nanotube with $3q$ and $3q+1$ length, where q is a certain integer, the current was induced by the application of a suitable tensile strain and compressive strain in low voltage, respectively. The current of (6,6) finite carbon nanotube with $3q-1$ length was decreased by loading the uniaxial strain. According to the results semiconductor-metal transition in (6,6) finite carbon nanotube and vice versa is observed by applying uniaxial strain.

Keywords: finite carbon nanotube, Green function, current, uniaxial strain

For full article, refer to the Persian section