Entanglement Amplification by Three-Level Laser Coupled to Vacuum
reservoir

Menisha Alemu? Fekadu Tolessa?, and Birke Alemu®

aDepartment of Physics, Wolkite University
b¢Adama Science and Technology University, P. O. Box 07, Wolkite, Ethiopia

E-mail: minisha.alemu@gmail.com

Abstract

In this paper we have studied the squeezing and entanglement properties of the ¢
laser. In this quantum optical system, N three-level atoms available i
reservoir, are pumped to the top level by means of electron bombard
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entanglement amplification as well as the normalized second‘o
we have shown that the presence of the spontaneous emission proc
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number variance and to decrease the quadrature
not have any effect on the mean photon num oreo
the laser, operating far below threshld, is felind
indicates that the quadrature squeezing
y = 0 than that fory = 0.4 for 0.35 <r,
light are directly related. As a resuft,an i
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light generated by a three-level
n open cavity, coupled to a two-mode vacuum
t constant rate. Applying the solutions of the
the quantum Langevin equations for the
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leads to a decrease in the mean and variance of the

ce

vity light'is in a squeezed state and the squeezing occurs in the
ct of the vacuum reservoir noise is to increase the photon-
the cavity light. However, the vacuum reservoir noise does
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be 37.5% below the vacuum-state level. In addition, our result
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entanglement and vice v@rsa. This shows that, whenever there is squeezing in the two-mode light, there exists an
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1. Introduction
Entanglement is o f, the fundamental tools for the

quantu rmation)”processing and communication
protoco eration and manipulation of the
entanglemeft has attracted a great deal of interest with

correction, and quantum cryptography [1-5]. Recently,
much attention is given to the generation of a continuous-
variable entanglement to manipulate the discrete
counterparts and quantum bits and to perform the
quantum information processing. In general, the degree of
entanglement decreases, when it interacts with the
environment. But, the quantum information processing
efficiency highly depends on the degree of entanglement.
Therefore, it is necessary to generate strongly entangled
states which can survive under the external noise. In

general, due to the strong correlation between the cavity
modes, a two-mode squeezed state violates certain
classical inequalities and then can be used in preparing the
Einstein—Podolsky—Rosen (EPR)-type entanglement [6].
The steady state entanglement in a nondegenerate three-
level laser has been studied, when the atomic coherence is
induced by initially preparing atoms in a coherent
superposition of the top and bottom levels [7-15] and
when the top and bottom levels of three-level atoms
injected into a cavity are coupled by coherent light [16-
21].

Recently, Menisha [17] has studied the squeezing and the
statistical properties of the light produced by a three-level
laser with the atoms placed in an open cavity and pumped
by electron bombardment. He has shown that the
maximum quadrature squeezing of the light generated by
the laser, operating below threshold, is found to be 50%


mailto:minisha.alemu@gmail.com

below the vacuum-state level. In addition, Fesseha [10]
has studied the squeezing and the statistical properties of
the light produced by a three-level laser with the atoms
placed in a closed cavity and pumped by coherent light.
He has shown that the maximum quadrature squeezing is
43% below the vacuum-state level, which is slightly less
than the result found with electron bombardment. He has
also found that a large part of the total mean photon
number is confined in a relatively small frequency
interval.

In this paper, we seek to analyze the squeezing and
entanglement properties of light emitted by three-level
atoms available in an open cavity and pumped to the top
level by electron bombardment. Thus taking into account
the interaction of the three-level atoms with a resonant
cavity light and the damping of the cavity light by a
vacuum reservoir, we obtain the photon statistics, the
quadrature squeezing, entanglement, and the normalized
second-order correlation function for the cavity light. We
carry out our calculation by considering the interaction of
the three-level atoms with the vacuum reservoir outside
the cavity light.
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to a two-mode vacuum reservoir.

2. Master Equation \«

We consider here the case in whigh N thrge-level atoms in
a cascade configuration and avai ifY an open cavity.
We denote the top, inter bottom levels of
these atoms by|a),, k» respectively. We
prefer to call the li
mode a and the
light modeb. We'c
a and ing the

[c), withydirect transition between |a), and |c), to be
electric-dip6le forbidden. The interaction of a three-level
atoms with cavity modes a and b can be described at
resonance by the Hamiltonian [9]

A =ig(si*a—atek +6*b - bt6k), 1)
Where

64 = |b)lal, 2
and

G5 = |c)(bl @)

The quantum Langevin equations for the operators @ and

b are given by [9, 10]
da X ATl B
d—‘zz —ga—L[a,H] + E, (1), (@)

here
! % ¢
My 7 |D)i(bl- (15)
Figure 1: Schematic representation of a three-level @pg

= —%b—i[b,H] + Fy(0), (5)
where « is the cavity damping constant and E,(t) and
F,(t) are noise operators associated with the vacuum

reservoir and having the following correlation properties:

(Fa(®) = (F, (D) =0, (6)
(BT OE,@)) = (Ff (©F,)) =0, (7)
(B.(OE] () = (B, (OF (£)) = k8(t — 1), ®)
(EL(OF (1) = (FJ(OF] () = (F(DF, (1)) =

(Fy(O) By () = 0. 9)

With the aid of Egs. [1], [4], and [5], one can easily
establish that

da ~ A~ &
d—: = —ga — geE + E,(b), 10)
db ~ N ~
—=—"b—g& +F,(. (11)

Furthermore, the master equati a -level atom

interacting with a vacuum rese

P Ak AA

a = sipey” | (12)
Antk A
péy ok

where y, cohsi to be the same for levels |a)and |b),

is the spontaneo
rewrite Eq. [12] as
ap _ ~

ission decay constant. We can

p — piit), (13)
(14)

Using Eq. [1], we can put Eq. [13] in the form
6*ap — polFa+ a6 bp —
= 9|po,"b—a'eip —bToyp+
patéy + pbtay (16)
v [26!:;36;" — 6P — P +
2| 265pa," —ip— piy |
Now applyingAthe relation
Ay =Tr(C2A) (17)
along with Eq. [16], we can easily establish that
%(@i‘) = —y(64) + gl(fa) — (Hka) + (bT6X)],  (18)
S(68) = =168y + gl(ilh) — (3kD) + (at6k)], (19)

ap
dt

=6y = —L(ay + gl(ara) — (6L, (20)
= (k) = —y (k) + g[(83*a) + @'e)), (21)
= (k) = v[%) — ()] + a[(BT65) + (6B) —
(64"a) - (atel)], (22)
= (%) = v (k) — g[(BT65) + (6°B)), (23)
where

8¥ = |e)aal, (24)
and

1 = (el (25)

We see that Eqs. [18]-[23] are nonlinear differential
equations and hence it is not possible to find exact time-
dependent solutions of these equations. We intend to
overcome this problem by applying the large-time
approximation [13]. Then using this approximation



scheme, we get from Eqgs. [10] and [11] the approximately
valid relations

—2—“"6;‘ + iﬁ (®), (26)
=-S5k 4= Fb(t) 27)
Evidently these would turn out to be exact relations at
steady state. Now combining Egs. [26] and [27] with
Egs. [18]-[23], we get

oY

(68 =~y +vl(88)
+22 Ak Fa(6)) — (AEF, (t)>+<F*(t)a;«>] (28)
d Y Vc -
@) ==z +3](h)
2k (t))—<ﬁ’;Fb(t)>—<F*(t)6c">] (29)
d Y Ys
g_t< -5 +3]6+
ek 0) - (64R,0) (30)
d
PTAY g = —ly + v (hg) +
2 (6 Fu(0)) + (B (0)8)], (31)
k) = —ly + v (k) + Iy + vl ()

L (EX(®)6f) + (6] F, (1)) —] (32)

(62 Fa®))y = (B ()68 |

d
608 = Iy +yel(ih) -
(ORI AGHE (33)
where
Ye = i
is the sKtimuIated emission decay constant.
We next proceed to find the expectation v f
product involving a noise operator anghan atomie’opefator
that appears in Egs. [28] - [33]. thi fter

removing the angular brackets, Eq. [31] be rewritten

as
Lk =y +yank+ @
dt c a

e A AGEN A GL : (35)

where £,(t) is the no erator associated with 7j,. A
formal solution of eq can be written as

t
k() = 7k (0)e~ VR f e~ r+ro(t-t')
0

(EXeHekHE, @) =

(G5 (tCE (tE(0) = 0,(1) (39)
(fatE®) = (fut))E®) = 0. (40)

Now on account of these approximately valid relations
along with the fact that a noise operator F' at a certain time
should not affect the atomic variable at earlier time,
Eq. [37] takes the form

(g (OF (1)) = 0. (41)
Following a similar procedure, one can also check that
(kO E(0) = 0, (42)
(e OF, (D) =0, (43)
(5@ F,®) =0, 44)
<F*(t)6zf(t)) =0, (45)
(Fy ()35 (1)) = 0. (46)
We also take

(FI (0650) = (F (06! k(t))@ (47)
With the aid of Eqs. [41]-[4#, te Egs. [28], [29],
[31], [32], and [33] as

%(6}; = - ) (48)
—65 =3 : (49)
Sy = —ly + 7 (50)
() g [y + Ve IE) + [y + vel(nk), (51)
= (5). (52)

en t Egs. [48] - [52] represent the equation of
for the atomic operators in the absence of the
pumping process. The pumping process must surely affect
the dynamics of (%) and (¥). We seek here to pump the
atoms by electron bombardment. If 7, represents the rate
at which a single atom is pumped from the bottom to the
top level, then (%) increases at the rate of r, (5%) and (%)
decreases at the same rate. In view of this, we rewrite

Egs. [50] and [52] as
i<ﬁ';> = —[y + y J(AE) + 1,38, (53)
=Ky = [y + v () — ratic). (54)

We next sum Eqs. [48], [49], [51], [53], and [54] over the
N three-level atoms, so that

(g} = —[y + vl (a), (55)
£ (i) = = [L + X my), (56)
S (Na) = = + vl(Na) + (N, (57)

[ 61 FINGEEN] + fult)]at'. @36)  S(W,) = —[y + v l(Np) + [y + v )(Fa), (58)

Multiplyiag Eq. [36] on the right by £, (t) and taking the i(A N.) = [y + v (N,) — (W), (59)
expectatiof value of the resulting equation, we have ;irﬁ which

(Ak( E c (1) = (1 (o)p (t))e_(Y+Yc)t +f e~ v (t-tn i, = 1};1 16,;‘, (60)

[(“*"(t IAGLAG) ]+ My = Tk=1 63, (61)

A A IAGE I L No = Zie=1 Tl (62)

£ el ﬁ Nb = Lk=11p, (63)

(fa(t)Ea(1)) N, = SN 4k (6)

@37)
Ignoring the noncommutativity of the atomic and noise
operators and neglecting the correlation between E,(t)
and 6% (t"), assumed to be considerably small [6] , one can
write the approximately valid relations

(I HE,NE,®) = (61 (tHNE.(t)E.(0)) = 0, (38)

Wlth the operators N,,, N,,, and N, representing the number
of atoms in the top, intermediate, and bottom levels. In
addition, employing the completeness relation

e +1p +1¢ =1, (65)
we easily arrive at

(Ng) + (Np) +(Nc) = N. (66)



Furthermore, applying the definition given by Eq. [2] and
setting for any k

= |b)al, (67)
we have
Mg = N|b)(al. (68)
Following the same procedure, one can also check that
my = Nlc)(b|, (69)
m. = N|cXal, (70)
N, = Nla)(al, (71)
N, = N|b)(b, (72)
N¢ = Nlc)c|, (73)
where
e = YN=1 68 (74)
Moreover, using the definition
m =M, + M, (75)

and taking into account Egs. [68]-[73], it can be readily
established that

mtm = N(N, + Np), (76)
mmt = N(N, + N,), (77)
m? = N,. (78)

With the aid of Eq. [66], one can put Eq. [57] in the form
S (No) = =y +¥e +TalNa) +7a[N —(N,)]. (79)
Applying the large-time approximation scheme to
Eq. [58], we get

(W) = (Na).

(80)

Thus on taking into account this result, Eq. [79] can be @

written as

d —

Z(N"> = —[y + v, + 21, ](N,) + Nr.

The steady-state solution of Eq. [81] is expressible as

= TaN
Wa) = e

Using the steady-state solution of Eg. [59] ; ,
Eqg. [80], we have

(81)

(Nc} =Lk <Na>'

Ta

On account of Eq. [82], Eq. [83] takes th

S\ _ y+yoN
<NC) Y+yeterg (84)
For r, = 0, we see that @ =40 and (N,) = N

This result holds whether t
or bottom level.
In the presence of

Eq [10] as [10]

initially in the top

el atoms, we rewrite

(85)

—fa) + =

[d,a'], [ EX] (86)
and on su ing over all atoms we have

[a,a'] = (Nb N.) + S [Fu Rl (87)
where

[a,a'] = XR_[a,at], (88)

stands for the commutator of @ and @™ when light mode a
is interecting with all the N three-level atoms. On the other
hand, applying the large-time approximation to Eq. [85],
one can easily find

2
[a,a") = N2 (F, - R,) + £ [, E]].
Thus on account of Egs. [87] and [89], we see that

(89)

A=+ (90)
B =+VN. (91)

In view of Egs. [90] and [91], Eq. [85] can be written as
C=-fa+L g +VNE, (D). (92)

at
Followmg a 5|m|Iar procedure, one can also readily
establish that

[5,51] = 2 (N, - N,) + 2[Ry B, (93)
Z—f:—-b+ mb+\/_Fb(t) (94)
Furthermore, in order to include the effect of pumping
process, we rewrite Eqgs. [55] and [56] as

Emaz—zma+G (o), 95)
%mb = =3y, + Gp(t) (96)
in which G,(t) and G,(t) arg ators with

vanishing mean and p is a para
to be determined. Employi

(97)
(98)
Ga () +(Gi(OM,)]. (99)
ison of Eqs. [ﬂl and [99] shows that
y PV, + 21, (100)
an
(mlG. () + (Gl (t)m,) = 1,N2. (101)
We observe that Eq. [101] is equivalent to
(GI ()G, (1)) = ,N28(t — t"). (102)
One can also easily verify that
(GG () = (v + ¥ IN?6(t —t). (103)
Furthermore, adding Egs. [55] and [56], we have
S(m) = [y +v ) — [y +vl(ma),  (104)
where 7 is given by Eq. [75]. Upon casting Eq. [104] into
the form
i = —Lm—Lm, + G, (105)

dt
one can also eaS|Iy verify that u has the value given by

Eqg. [100] and

(GTOG(t)) =T,N25(t — t). (106)
On the other hand, assuming the atoms to be initial in the
bottom level, the expectation value of the solution of
Eq. [95] happens to be

(Mg (t)) = 0. (107)
Hence the expectation value of the solution of Eq. [92]
turns out to be

(@) =0. (108)
In view of Egs. [92] and [108], we claim that a(t) is a
Gaussian variable with zero mean. One can also easily
verify that

(b(®)) = 0. (109)
Then on account of Eqgs. [94] and [109], we realize that
b(t) is a Gaussian variable with zero mean.

Furthermore adding Eqgs. [108] and [109], we obtain
(¢)=0 (110)
where



Mean photon number

dryvpe 3:Plots of the mean photon number for the two-mode cavity light at steady state [Eq. [133]] vs r, and y fora = 0.8, y,
0.4,and N = 100.
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¢=a+b. (111)
In addition, adding Eqs.[92] and [94], we get
Z—f:—-c+ M+ VNE.(t), (112)
where

F.(t) = () + F, (1) (113)
and 71 is given by Eq. [75]. One can also easily check that
(E®) =0, (114)
(AGIAGHEN) (115)
(FIF! ) = (F.OF.®) =0, (116)
(B.(OFT (D) = 2K8(t — t"). (117)

In view of Egs.[110] and [112], we see that ¢ is a
Gaussian variable with zero mean.

3. Photon statistics

In this section we wish to calculate the mean and variance
of the photon number for the two-mode cavity light at
steady state. To this end, using the relation

Lete) = (L) + (0D ws)
along with Eq. [112], we readily find
i(CA*t)CA(t)) —K(ef@®em) + %

HN[E e + (FF (t))]
(119)
Next we seek to evaluate(¢T (£)(t)). Applying the large-
time approximation,
approximately valid relation
6@ = 22w+ 20 A (o). (120)
Multiplying the adjoint of Eq. [120] on the right by m
and taking the expectation value of the resylti
expression, we get

(@t (Om®) = LE[(F,0) + (F,©0)] +
%ﬁ(ﬁj(t)m(t)). 21)
We now proceed to evaluate(ﬁc*(t fi(t)). is end, a

written
m(t) = m(0)e” 5 +f e B L (t) +
G(th]dt'. N (122)
Multiplying Eq. [122 m‘ y EX(t) and taking the
expectation value er g expression, we have

(EF m©) = (F@@(0))e 2 + jte—%(t—t')
0

formal solution of Eq. |105| can

[-4(E (BH )G @n)]ar' (123)
Taking ini@ account the fact that a noise operator F at a
certain ti ould not affect the atomic variable at earlier

time and assuming that the cavity mode and atomic mode
operators are not correlated, we get

(Ff ©)ym(®)) = o. (124)
On account of this result, Eq. [121] takes the form

A PN \/_ 5

(M) = 2L2[(F, ) + (N, (0)] (125)
We next seek to evaluate(FCJr(t)c“(t)). To this end, a
formal solution of Eq. [112] can be written as

£(0) = e)e 2 + e [Lm(e) +
\/ﬁﬁ'c(t’)] dt’. (126)

A CHOLIGIES (m*di‘qﬂ@ly)pg asi

one gets from Eq.[112] the @ cal

Multiplying Eq. [126] on the left by FCT(t) and taking the
expectation value of the resulting expression, we get

(FH©eD) = (BT ©e0))e ™" + f )

[% (B (©)ym(t") + VN(E! (t)ﬁc(t'))] dt’. (127)
In view of Egs. [115] and [124] along with the fact that a
noise operator F at a certain time should not affect the
atomic variable at earlier time, Eq. [127] becomes
(Ef®e) = o. (128)
Now on account of Egs. [125] and [128] along with their
complex conjugates, we can rewrite Eq. [119

OO O0O0O0CPlots of the mean photo r for
the two-mode cavity light at steady st Eq. [133]] for
k=08, y. =04, y = 0.2 (dashed ="0 (solid

curve), and N = 100.
(et e = —x(é*(t)é(t@(%(t)) +
(N, (D)) _ (129)

The steady-state is equation is expressible as

(etey = [(N, ) Y

ety =" [(N,) + + 2N, (131)
(62) ¥ = (M) (132)
In vie . [801], [82], and [84], Egs. [130] and [131]

nas
At a 2Nrg
¢) y+yc+2ra]’ (133)
Y+YctTa
(C [m] N + 2N. (134)

In the absence of spontaneous emission(y = 0), the mean
photon number for the two-mode cavity light has the form

A= ( 2NTg ) (135)

Yct+2rg
It can be seen from the plots in Fig. 2 and 3 that the
presence of spontaneous emission leads to a decrease in
the mean photon number for the two-mode cavity light.
Furthermore, the variance of the photon number for the
two-mode cavity light is expressible as
(An)? = ((eT6)?) — (¢Te)?. (136)
Using the fact that ¢ is a Gaussian variable with zero
mean, we readily get
(4n)? = (eteyeety + (62T)(é?). (137)
We now proceed to calculate the expectation value of the
atomic operator 7, following the approach presented in
[10]. To this end, applying the identity given by Eq. [65],
the state vector of a three-level atom can be put in the form

[Yi) = calax) + cplby) + cclek), (138)
in which

Ca = {ar|i), (139)
cp = {bil ), (140)
cc = {cxlr). (141)

The state vector described by Eq. [138] can be used to
determine the expectation value of an atomic operator
formed by a pair of identical energy levels or by two
distinct energy levels between which transition with the
emission of a photon is dipole forbidden. One can thus
readily establish that

(1§ = caca) (142)
(g = ccce, (143)



and

(68) = cqce. (144)
We then see that

GEN? = (HENAE), (145)
and on taking |(6%)| to be real, we see that

KGN = (nk)k) (146)

so that upon summing over k from 1 up to N, we get
(T/Y\lc) = ’(ﬁa><ﬁc> (147)
On account of this, Eq. [132] takes the form

(€%) =% [(N)(N,). (148)
Now using Eq. [83], we have

(&)=L (R, (149)

In view of Egs.[130], [131], and [149], Egq.[137]

becomes

an)® =T ((N,) + (N,)) s (E\/VTVC

(Em) + @) +2n |\ e
Finally, on account of Egs. [80], [82], [83], and [84] along
with Eq. [150], we arrive at

2

(Na)> . (150)

(4n)? = <82 (3n + 2) + 2N, (151)
where
n =1Te (152)

Ta

Now inspection of Eq. [151] indicates that (4n)? > @ and
hence the photon statistics of the two-mode cavity light is
super-Poissonian. Our result shows that the photon
number variance of the two-mode cavity light is gre
than the one obtained by Menisha [17]. This must
to the reservoir noise operators. The plots in F
indicate that the effect of spontaneous emij is
decrease the variance of the photon namber.

4. Quadrature squeezing

We now proceed to calculate the ature squeezing of
the two-mode cavity lightgin the efitire fregguency interval.
To this end, the squeezing gropettiesfof the two-mode

cavity light are describe 0 quadrature operators
defined by
é,=¢ct+eé (153)

and

=it -o. (154)
Itcan b i shed that [12]

[e_,¢.] —(Va) — (N,)) — 4Ni. (155)
It then follows that [13]

AcyAc_ 2F#((N,) — (Ng)) + 2N. (156)
Upon setting r, = 0, we see that

AcyAc_ = EN +2N. (157)

This represents the quadrature variance for two-mode
vacuum state. The variance of the quadrature operator is
expressible as

(Acp)? = KT £ O F [(eT+ O (158)
so that on account of Eq. [110], we have
(Acy)? = (€Te) + (ceT) £ (ET2) £ (¢?). (159)

Now employing Eqgs. [66], [130], [131], and [149], we
arrive at

(4c)? =L(N +(N,) + 2 [Z2(N,)) + 2N, (160)

(4 )? =L(N +(N,) -2 /%(ﬁa)) +2N.  (161)

Moreover, on setting r, = 0 in Egs. [160] and [161], we
get
(Ac))’ = (Ac)z = fN + 2N. (162)
This represents the quadrature variance of a two-mode
cavity vacuum state. From Eqs. [157] and [162], we see
that the two-mode cavity light is in a minimum
uncertainty state. We seek to calculate the guadrature
squeezing of the two-mode cavity light r
quadrature variance of the two-mode cavity
We then define the quadrature squeezi the
cavity light by
§ = @e)i—(ac)?

(Ac2)j
Now employing Egs. [16 d
Eq. [163] in the form

(163)
, one can put

(164)
, EQ. [164] takes the form

(165)

c
=
=
@
—*
=
@
3
@
o
S
o
=
o
—
o
=]
S
c
3
o
@
4_‘
—
=
@

squeezing does not depend on the number of
is implies that the quadrature squeezing of the
cavity light is independent of the number of photons. The
plots in Fig. 5 and 6 indicate that the quadrature squeezing
is greater for y = 0 than that for y = 0.4 for 0.01 <r, <
0.35 and is smaller for y = 0 than that for y = 0.4 for 0.35
< 1, < 1. In addition, from the plots we see that the
maximum quadrature squeezing is 37.5% both fory = 0
and y = 0.4. This occurs when the three-level laser is
operating at r, = 0.30 and r, = 0.40, respectively. This
result is less than the one obtained by Menisha[17] .

5. Entanglement Properties of the Two-Mode Light

Here we proceed to study the entanglement condition of
the two modes in the cavity. A pair of particles is taken to
be entangled in quantum theory, if its states cannot be
expressed as a product of the states of its individual
constituents. The preparation and manipulation of these
entangled states that have nonclassical and nonlocal
properties lead to a better understanding of the basic
guantum principles [16-20]. That is, if the density
operator for the combined state cannot be described as a
combination of the product of density operators of the
constituents,

p # %; P pj®p;, (166)
where P, > 0 and },; P; = 1 is set to ensure normalization
of the combined density of state. Nowadays, a lot of
criteria have been developed to measure, detect, and
manipulate the entanglement generated by various
guantum optical devices. According to DGCZ[18] , a
guantum state of a system is said to be entangled if the
sum of the variances of the EPR-like quadrature
operators, @ and 7, satisfy the inequality
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Figure 9:

(40)? + WD)? < 2N, (167)
where

a=%, — % (168)
U =pa + P (169)
where £,=(at + a)/v2, %,=(bT + b)/V2 p.=i(a" —
&) /N2, py=i(b* —b)/V2, are quadrature operators

for modes @ and b. Taking into account [168] and [169],
[167] yields
(40)% + (4D)? = 2%[N + (N,) — ()] (170)
Thus, in view of equation [170] together with [160] and
[161], the sum of the variances of @ and © can be
expressed as

(40)? + (4D)? = 24c2, (171)
where Ac? given by [161]. One can readily see from this
result that the degree of entanglement is directly
proportional to the degree of squeezing of the two- mode
light. One can immediately notice that this particular
entanglement measure is directly related the two-mode
squeezing. This direct relationship shows that, whenever
there is a two-mode squeezing in the system, there will be
entanglement in the system as well. It is worth to note that
the entanglement disappears when the squeezing
vanishes. This is due to the fact that the entanglement is
directly related to the squeezing, as given by [161]. It also
follows that, like the mean photon number and quadrature



variance, the degree of entanglement depends on the
number of atoms. With the help of criterion [168], we get
that a significant entanglement occurs between the states
of the light generated in the cavity. This is due to the
strong correlation between the radiation emitted, when the
atoms decay from the upper energy level to the lower via
the intermediate level. In figure 7, the sum of the
variances of a pair of EPR-type operators A2 + 492 is
plotted against the pumping rate so that the available
entanglement is clearly evident for various values of the
spontaneous emission rate, y.

6. Normalized Second-Order Correlation

Functions

The second-order correlation function for the
superposition of the two modes of the cavity radiation at
equal time, can also be investigated, by using [18-21]:
(2) (atabth)

g(ab)(o) (ata)(bTh) (172)
Since @ and b are Gaussian variables with vanishing
means, the normalized second-order correlation function
for the two-mode light takes, at the steady-state, the form

2 _ (ba)a®sT)
9(ap)(0) = (ata)ptay (173)
It then follows that
= \2
Iam@ =1+ <1é:;§z)vb>' (174)
In view of [82], [83], and [147], we obtain
92,0 =1+ u (175)

It can be seen from this result that the second-order
correlation function of the two-mode light does gt
depend on the number of atoms.

Figure 8 and 9 shows that the second-order cg

One can see from this flgure that g,
increases in both cases. It can be 0

figure that the second-order correlation function vanishes
for r, < 0.01. Moreover, the effect of the spontaneous
emission increases the second-order correlation function.

7. Conclusion

In this paper we have studied the squeezing and
entanglement properties of the light generated by three-
level atoms available in an open cavity and pumped to the
top level by electron bombardment at constant rate.
Applying the large-time approximation scheme, we have
obtained the steady-state solutions of the equations of
evolution for the expectation values of atomic
operators and the quantum Langevin equatio the
cavity mode operators.

Using the resulting steady-state sgluti
calculated the mean photon number, arjance of the
photon number, the quadrat arjane€, quadrature
squeezing, and entanglement thejtwo-mode cavity
light. In addition, the nor e d-order correlation
function is obtal superposmon of the two
t generated by the three-
ezed state and the squeezing occurs
re. It so turns out that the maximum

e have

at the intracavity quadrature squeezing is
en ed due to the spontaneous emission. It is found that
the Squeezing and entanglement in the two-mode light are
directly related. As a result, an increase in the degree of
squeezing directly leads to an increase in the degree of
entanglement and vice versa. This shows that, whenever
there is squeezing in the two-mode light, there exists an
entanglement in the system.
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