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Abstract 

By specifying the electric susceptibility tensor ij and the magnetic permeability tensor ij , we introduce two isotropic 

but inhomogeneous media which are analogous to the Rindler spacetime and the Poincaré half-space. The propagation of 

electromagnetic waves in these media is investigated. 
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1. Introduction 

curved, and this curvature leads to various observable 

effects. Doing experiments in gravitational fields, for 

example near the horizon of black holes, is not possible. 

Therefore, it is of great value if one finds a laboratory 

system which somehow simulates the behavior of a 

curved space-time. Such systems are said to be analogous 

to the given gravitational field. If we can find such 

systems, and if we can make them in a laboratory, then we 

can do experiments, the results of which indicate 

information about the gravitational field. For a review of 

this analogue gravity we refer the reader to [1]. As an 

example, [2] found a theoretical laboratory analogue of an 

event horizon of a black hole. 

    A class of such analogue systems consists of 

ponderable media with non-homogeneous or anisotropic 

electric susceptibility and magnetic permeability tensors; 

the medium can also be nonlinear. The system 

investigated by [3] is such a system, where the relative 

electric permittivity tensor depends on the fields, 

)( BE,



  = , and the relative magnetic permeability is a 

constant isotropic tensor µ. 

   The analogy of a ponderable medium with a curved 

space or space-time may be used the other way, i.e., 

writing Maxwell's equations in a ponderable medium as 

those defining electromagnetic fields in a curved space or 

space-time (see [4] for example). 

    Plebanski has formulated the analogy between an 

empty curved space-time and the electromagnetic fields 

of a ponderable media [5]. 

    Transformation optics is a technique that models 

optical media to space or space-time. Of course, 

everything is derived from Maxwell's equations in 

ponderable media. This method creates an equivalence 

relation between the components of a metric tensor and 

the permittivity and permeability of a media. Leonhardt 

and Philbin formulated the refractive index, the electric 

permittivity, and the magnetic permeability in terms of 

metrics of a space or space-time [6]. For an almost 

complete review see [7]. 

Among the space-times of interest, the Rindler space-time 

holds particular prominence. It elucidates the 

observations of observers experiencing constant proper 

acceleration, each within their own frame of reference.  

Though transformed coordinates reveal the Rindler space-

time to be akin to the flat Minkowski variety, accelerated 

observers therein nonetheless detect noticeable 

phenomena, such as the materialization of particle pairs. 

The Poincaré plane differs in its intrinsic curvature, 

precluding any change of variables able to recast it as a 

Minkowski space-time.  

However, a relation of conformal equivalence unites the 

Poincaré and Rindler spaces. Therefore, the propagation 

of massless particulates shares a common character within 

these two realms. 

In this paper, we investigate Maxwell equations for a 

ponderable medium analogous to the Rindler space-time, 

and the Poincaré half-space. 

2. The Analogy 

Source free Maxwell equations are: 
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Where E is the electric field, H is the magnetic field, D is 

the electric displacement, , and B is the magnetic 

induction vector. 

Now consider a space-time with metric 
2 μ ν

μν
μν

ds =   g dx dx ,∑  (5) 

Where the space time coordinates are denoted by 𝑥𝜇 and 

μ, ν = 0,1, 2,3  

      As shown by Plebanski in [5], in a curved empty space 

the constitutive relations are given by: 

0= + × ,
c

 
w
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B H - E  (7)   

Where the permittivity   and the permeability   are 

symmetric tensors given by 

ij ij ij

00

-g
= = -c g ,
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and the vector w has components given by 

0i
i

00

g
w = ,

g
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      The vector w is the magneto-electric coupling 

parameter, coupling the magnetic and the electric fields; 
g  are the elements of the inverse matrix the elements 

of which are 3,2,1,; =jig , and g is the determinant of 

the matrix with elements g . 

In summary, Maxwell's equations in a curved empty space 

are, in form, the same as Maxwell equations in Cartesian 

coordinates of a Euclidean space for a ponderable medium 

with certain constitutive equations. This enables us to 

design ponderable media corresponding to non-Euclidean 

space-times. 

Media with 
ij ij=   (10) 

are called impedance-matched media. The terminology is 

derived from the definition of the impedance of isotropic 

ponderable media 

0

0

Z = .
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3. The Rindler Space-time 

The Rindler space time is described as the line element 
2

2 2 2 2 2 2
2

z
ds = - c dt + dx + dy + dz ,

a
 (12) 

    Where c is the velocity of light in vacuum and a is a 

characteristic length. For later reference we write 
2 2

R

μν 2

z c
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Which means a diagonal matrix with specified diagonal 

elements. This metric describes the Minkowski space-

time as observed by a uniformly accelerated observer. The 

proper acceleration of the particle at (x; y; z) is 

2c
α = .

z
 (14) 

As z approaches 0, the proper acceleration diverges. The 

z = 0 surface is the horizon of the Rindler space-time. For 

a review of the basic definitions of the Rindler frame see 

[8, pp. 150-154]. 

For a light ray, propagating along the z-axis we have ds2 

= 0, dx = dy = 0, and 

0
0

dz z c
a = cdt ln = ± (t - t )

z z a
⇒  (15) 

0

c
± (t-t )

a
0z(t) = z e  (16) 

Using the formalism of section 2, the electric permittivity 

and the magnetic permeability can be obtained as: 

ij ij ija
= =

z
    (17) 

0 0
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Following the formulation given by Born and Wolf in [9, 

p. 11], we have: 
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Using (17) we have: 

ˆ
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Now following (19) we get 
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For the time dependence 
tie −
 we get: 

( )
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4 . The Poincaré Space 

The three-dimensional Poincaré Space is given by the 

spatial metric 

( )
2

2 2 2 2
2

a
ds = dx + dy + dz ,

z
 (26) 

where a is a characteristic length. This space has constant 

negative scalar curvature 
2/1 a−= . 

Now let us study the space-time with line element 

( )
2

2 2 2 2 2 2
2
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z
 (27) 

or the space-time metric 
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By replacing in(8) we write 
2 2

0 0

a a
= , = .

z z
     (29) 

These are the same as (17), from which we conclude that 

Maxwell equations in this space-time are the same as the 

Maxwell equations in the Rindler space-time. This is not 

surprising, since these two space-times are conformally 

related, that is, we have: 
2

R P
2

z
g = g .

a
   (30) 

5. Solving the Wave Equations 

We now investigate some solutions to the wave equations 

(22, 23) with time dependence 
tie −
, 

which leads to equations (24, 25). 

5.1 Propagation Along the Z-Axis 

Consider the case when a light signal is moving in the z 

direction with 

ˆ ˆE = E(z)i, H = H(z)j.  (31) 

Maxwell's equations now read: 

z zE Hˆ ˆ× = j , × = -i ,
z z

E H
∂ ∂

∂ ∂
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from which it follows that 
2 2 2
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E 1 E a ω
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The solution of this equation is 

1 2

0 0 0

E(z) aω z aω z
= c sin( ln ) + c cos( ln ),

E c z c z
 (34) 

or in complex form 

0

a
±i ln(z/z )

c
0E(z) = E e .
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The wave is therefore 

0

a
±i ln(z/z )-i t

c
0E(z, t) = ReE e .




 (36) 

The constant-phase equation for this wave is 

±ct a
0

0

a z
± ln = t z = z e ,

c z


   (37) 

which is the same as (16). 

the constant-phase surfaces given by equation 37 align 

precisely with the geodesic trajectory equation (16) of test 

particles in Rindler coordinates. This shows light follows 

the intrinsic curvature of the emulated space-time. 

The magnetic field could be easily derived from the 

Maxwell equation 

× = - ,
t

B
E

∂

∂
 (38) 

and it is 

-iωt

0 1 2

0 0

ia aω z aω z
B(z, t) = Re E -c cos ln + c sin ln e ,

cz c z c z
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5.2 Propagation In the (x; z) Plane 

Consider an electromagnetic field such that 

( )-iωt ikx= Re e e (z) .E F  (40) 

Inserting this in the wave equation (24) we get: 
2 2

2

x z2 2

d 1 d β iα
0 = + + -α F - F ,

du u du u u
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2 2
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2 2
2

z2 2

d 1 d 1+β
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du u du u
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Where 

z
β = aω, α = ak, u = .

a
 (44) 

The Maxwell equation 0 =D  reads 

zE
- = 0,

z
E  (45) 

and using (40) we get 

x z

i d 1
F = - F .

α du u

 
 
 

 (46) 

Solving equation (43) we can get .zF  Equation (42) is the 

modified Bessel equation with an imaginary index. The 

solution reads: 

y iβ iβF = fI (αu) +eK (αu),  (47) 

where f and e are constants, and I  , K  are modified 

Bessel functions of the first and second type with indices 

 . Similarly, equation (43) has the solutions 

z iβ iβF = gαuI (αu) +hαuK (αu),  (48) 

where g and h are arbitrary constants. Now, equation (46) 

yields 

x iβ iβF = giαuI (αu) +hiαuK (αu),   (49) 

where a prime means the derivative with respect to the 

argument. 

   The boundary condition is that for →z  the fields 

must be finite, which leads to the solution 

iβ iβ iβ
ˆ ˆ ˆ= hαu iK (αu)i +K (αu)k +eK (αu)j. 

 
F  (50) 

Now using the Maxwell equation 

× = iωE B  (51) 

and 

0

z
=
μ a

H B  (52) 

We get 
ikx= e (z),H G  (53) 

And 
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The time average of the Poynting vector becomes: 

( )
22 2

0 iβ
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1 α ˆ= ε c e + h u K (αu)
2 β

α ˆ+ Im(he ) u K (αu) .
β
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The special case k = 0 is treated separately. Here the 

electric and magnetic fields are directly obtained from (41 

- 43). 

= exp(iβlnu)+ exp(-iβlnu),+ -
F f f  (56) 

0
ˆμ c = × exp(iβlnu) - exp(-iβlnu) ,  

+ -G k f f  (57) 

where 
+f  and 

−f  are arbitrary constant vectors subject 

to the conditions 

ˆ 0. =±
k f  (58) 

Now the time average of the Poynting vector becomes: 

( )2 2
0ε c ˆ= -
2

+ -
S f f k  (59) 

5.3 Polarization In the (x; z) Plane 

We now show that if the polarization is considered to be 

in the (x, z) plane, then the wave would be of the form 

investigated in the previous section, that is equation (40). 

Consider the electric field as 

x z
ˆ ˆ= E i + E k.E  (60) 

Equation (24) now reads 
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From the second equation, =)(yE z constant. Also 

0
2

2

=




y

E z
, So the third equation simplifies to 

2 2 2 2

z z z
z2 2 2

E E E1 (1+ a ω )
+ - + E = 0.

x z z z z
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This equation could be solved by separating variables: 

zE (x,z) = f(z)g(x),  (65) 

'' ' 2 2 ''
2

2

f (z) 1 f (z) 1+ a ω g (x)
- + = - = ±α .

f(z) z f(z) z g(x)
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Case 
2− leads to 

xexg =)(  which is not 

acceptable, because it diverges either at →x  or at 

−→x . The case 
2+  leads to 

±iαxg(x) = e ,  (67) 

iβf(z) = K (αz),  (68) 

Where 

β = aω . (69) 

Therefore 
±iαx

z iβE (x, z) = e K (αz).  (70) 

Now equation (61) reads 
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This is an inhomogeneous linear equation for Ex. 

The solution to the homogeneous equation could be found 

by the separation of variables. 

xE (x, y,z) = g(x)h(y)f(z),  (72) 

leading to 
'' '' '' ' 2 2

2

g (x) h (y) f (z) 1 f (z) a ω
+ + + + = 0,

g(x) h(y) f(z) z f(z) z
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Considering fields independent of y we set  0
)(

)(h ''

=
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y
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and we get: 
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The case
2− leads to 

xexg =)(   which is not 

acceptable, because it diverges either at →x  or at 

−→x . The case 
2+  leads to 

±iαxg(x) = e ,  (75) 

iβf(z) = K (αz),  (76) 

±iαx

x iβE (x, z) = e K (αz).  (77) 

Finally, considering a possible phase difference between 

the two polarizations, we get 

 ±iαx

0 iβ= E Re e K (αz) ,E   (78) 

Where    is a complex polarization vector, in the (x; z)-

plane. 

6. The Eikonal Equation 

In a ponderable medium with refractive index n, the 

eikonal equation, describing the rays in geometric optics 

reads [9, p. 119] 
22 2

2S S S
+ + = n

x y z

      
    

      
 (79)                      



 

 

The medium we are studying is given by the refractive 

index 

a
n = με = .

z
 (80) 

Let us consider a solution to this equation with  

S(x, y,z) = ξx +f(z).  (81)                       

We note that S has the dimensions of length and  is 

dimensionless. The eikonal equation then reads 
2

2 2

2

df a
ξ + ( ) = ,

dz z
 (82) 

Or 

2
2

2

df a
= ± - ξ .

dz z
 (83) 

The vector ∇S is tangent to the ray. So that the slope of 

the ray, in the (x; z) plane is 

2

2 2

ˆdz S 1 df a
m = = = = ± -1.

ˆdx ξ dz ξ zS





k

i




 (84) 

This slope diverges at the horizon z = 0, and vanishes at 

the height 

a
z = .

ξ
 (85) 

This means that a ray moving away from the horizon, will 

eventually return to the horizon, unless 

the ray is moving parallel to the z axis. 

7. Conclusion 

Overall, This work offers a compelling proof-of-concept 

for the transformation optics approach to modeling curved 

space-times using analogue systems. This could 

illuminate new avenues in fields from cosmology to 

quantum information.  

In essence, by directly solving the wave dynamics using 

this optical analogue and consistently recovering both ray 

trajectories and field behavior expected from the original 

curved space-time, we've demonstrated this 

transformation optics framework faithfully replicates key 

gravitational phenomena. This establishes the validity of 

studying more exotic cosmological and quantum 

gravitational effects in tabletop photonics experiments. 
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