Volume 2, Number 5 (6-2001)                   IJPR 2001, 2(5): 301-310 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

G. A. parsafar, S. R. Noorian. Common intersection points in dense fluids via equations of state. IJPR. 2001; 2 (5) :301-310
URL: http://ijpr.iut.ac.ir/article-1-25-en.html

Abstract:   (11308 Views)

  Some new equations of state which are derived for dense fluids in recent years, namely the linear isotherm regularity (LIR), the dense system equation of state (DSEOS), Inm-Song-Mason equation of state (ISM), and a newly derived semi-emperical equation of state have been used to investigate the common intersection point of isobaric expansivity in αp dense fluids. We have shown that the accuracy of these equations of state in predicting such a common intersection point is reduced from the new semi-imperical equation of state, DSEOS, LIR, to ISM. respectively.

  Form physical point of view, the van der Waals equation of state is used to investigate such an intersection point. It is shown that the van der Waals repulsion forces and temperature dependency of the effective molecular diameter are important for existence of this common point.

  Finally, we have shown that the common intersection points of the isotherms of thermal pressure coefficient, the isotherms of heat capacity at constant volume, and the isochores of internal pressure for a fluid are related to each other. Also, the common intersection points of the reduced bulk modulus and 1/(Tαp) for isotherms of a fluid both appear at the same density.

Full-Text [PDF 541 kb]   (2080 Downloads)    
Type of Study: Research | Subject: general

Add your comments about this article : Your username or email:
Write the security code in the box

© 2015 All Rights Reserved | Iranian Journal of Physics Research

Designed & Developed by : Yektaweb