Volume 8, Number 2 (6-2008)                   IJPR 2008, 8(2): 110-110 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Thalmeier P. Quantum frustrated and correlated electron systems. IJPR. 2008; 8 (2) :110-110
URL: http://ijpr.iut.ac.ir/article-1-272-en.html

Abstract:   (14016 Views)

 Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the high field magnetization are surveyed. The possible quantum phase transitions are discussed and applied to layered vanadium oxides. In itinerant electron systems frustration is an emergent property caused by electron correlations. It leads to enhanced spin fluctuations in a very large region of momentum space and therefore may cause heavy fermion type low temperature anomalies as in the 3d spinel compound LiV2O4 . Competing on-site and inter-site electronic interactions in Kondo compounds are responsible for the quantum phase transition between nonmagnetic Kondo singlet phase and magnetic phase such as observed in many 4f compounds. They may be described by Kondo lattice and simplified Kondo necklace type models. Their quantum phase transitions are investigated by numerical exact diagonalization and analytical bond operator methods respectively.

Full-Text [PDF 442 kb]   (1981 Downloads)    
Type of Study: Research | Subject: general

Add your comments about this article : Your username or email:
Write the security code in the box

© 2015 All Rights Reserved | Iranian Journal of Physics Research

Designed & Developed by : Yektaweb