شیب‌سازی نسبی معادله ولاسوف برای انیساف پلاسماسی به خلاء

مونا مریدی، رضا شکوهی و حسین عباسی

1. دانشکده فیزیک، دانشگاه صنعتی امیرکبیر، تهران
2. کروم، دانشکده علوم پایان‌یافته، دانشگاه صهرکرد

پست الکترونیک: moridi_m@aut.ac.ir

(دریافت مقاله: 24/12/1389؛ دریافت نسخه پذیرفته: 1390/4/6)

چکیده

شیب‌سازی نسبی معادله ولاسوف برای انیساف پلاسماسی بدون بروخورد به خلاء ارائه شده است. مدل شیب‌سازی براساس قضای فار 101 مبدع و تقریب الکترون‌ای فیزیک قرار دارد. به این منظور، الکترون‌های با معادله ولاسوف نسبی بررسی می‌شود. هر نوع گردش‌کننده از معادلهای برای دیگر الکترون‌ها استفاده می‌شود. نتایج توزیع الکترون‌ها و مکانسی نسبی عایش نشان دهنده که به دلیل دمای نسبی الکترون‌ها، فرآیند انیساف در مقایسه با دمای‌های نسبی سرعتی افق می‌افتد. میدان الکتریکی حاصل浔یمایی یون‌ها و برون آن سرعت‌های بالایی نشان می‌دهد.

واژه‌های کلیدی: معادله ولاسوف، انیساف نسبی، انیساف پلاسماسی، شیب‌سازی

1. مقدمه

عملکرد انیساف پلاسماسی پی‌برخورد به خلاء که در چند دهه اخیر مورد توجه قرار گرفته است در جوی‌های مختلف فیزیکی آزمایش‌های بالایمکش فلز‌های لازیوم شدید با هدف‌های جامد با قابیت مشاهده شده است [3-11]. یک ساز و کار در این آزمایش‌ها این است که وقتی یک لیزر بر قدرت به هدف می‌تابد یک اثر الکترونی پرانزی در پشت هدف شکل می‌گیرد. این فرآیند جدایی بار باعث به وجود آمدن میدان الکتریکی قوی می‌شود که موجب شده، خواهد شد

\[\text{MeV} \]

تولید باریک‌های پویای با انرژی‌های از مرتبه 15-15 به شناسی نشان دهنده می‌باشد [13]. الکترون‌های بر انرژی نه تنا در شتاب داده یون‌ها تا انرژی‌های بالا بخش بیش از ۱۵ در فرآیند

2. Inertial Confinement Fusion (ICF)

3. Semi-infinite

4. Self-similar

5. Fast ignition
هم حركت هیدروفیزیکی و هم حركت‌های حرارتی ذرات

می‌توانند نسبتی باشند. برای بررسی چنین فرآیندهایی باید مطالعات خود را در محدوده نسبی انجام دهیم و از معادلات دینامیک نسبی استفاده کنیم. تاکنون مطالعات در جهت بررسی فرآیند

تغییر شده در پلاسمای گازی می‌گیند [19] و 20. در مصلح

نیمه‌ی- پیشنهاد انرژی سیستم نامحدود است و پیوسته‌های که در

جهان حیاتی قرار دارند می‌توانند به صورت نامحدود شتاب

بگیرند. روش‌های واقعی برای بررسی ساختار مولکولی پلاسمای به

خلاء از طریق پلاسمای محدود است [21-23]. در پلاسمای

محدود، احساس می‌شود شدت بُرت ذرات شاهراه ماله‌های

هامره است. به طوری که اثرِ درون‌یابی آنها به انرژی جنبشی

پن‌ها تبدیل می‌شود. از این طریق انرژی لازم برای ایجاد

پلاسمای به خلا تأمین خواهد شد. در این هدف به دلیل محدود

پن‌ها انرژی پلاسمای پن‌ها نمی‌تواند در پلاسمای محدودشته

می‌گیند. مدل‌های مطرح برای بررسی فرآیند احساس پلاسمای به

خلاء گرفتگی هیدروفیزیکی بوده است. در این مدل‌ها

الکترون‌ها و پن‌ها به شکل مشابه در نظر گرفته می‌شوند

[24-26] پرداختن به اثرات دمای نسبی در قابلیت چنین

مدل‌های امکان پذیر نبوده و لازم است دینامیک جنبشی ذرات

را در نظر بگیریم. در نظریه جنبشی دینامیک تابع توزیع ذرات

پدید می‌باشد. فرآیند انرژی پلاسمای به خلا دارد با

دینامیک جنبشی ذرات اخیراً مورد توجه واقع شده و اثرات

توزیع ذرات در حین فرآیند انرژی پلاسمای نیز در نظر

گرفته است [27-29]. البته تمامی این کارها در حالت گیرویسی

انجام شدهاند.

امروزه با ساخت لیزرهای پرقدرت با شدت‌های زیرکوکر از

W cm^{-2} 101 و استفاده از آنها در اندرکش لیزر برای

پلاسمایی تولید می‌شود که دمای گاز بدون های آن را انرژی

سکوکوکنن طالب مقایسه است (1) K_B E_c - m c^2 / [(5) [11] همچنین در فرآیندهای مربوط به هموجینی درون شاره‌ها دمای

ذرات معقول‌های در حد دماهای نسبی بیشتر است. در این صورت

\[\frac{\partial f}{\partial t} + \frac{p}{\gamma m} \frac{\partial f}{\partial x} + \frac{\partial}{\partial x} \frac{\partial f}{\partial p} = 0 \] (1)

\[f(x, p, t) \] تابع توزیع الکترون در فضای فاز، p اندیشه

\[\frac{\partial f}{\partial t} + \frac{p}{\gamma m} \frac{\partial f}{\partial x} + \frac{\partial}{\partial x} \frac{\partial f}{\partial p} = 0 \] (1)

\[f(x, p, t) \] تابع توزیع الکترون در فضای فاز، p اندیشه
آنجا که این مجموعه یک مسئله مقدار اولیه و مزیت را توصیف می‌کند ابتدا به‌این شرایط اولیه و مزیت مناسب با مسئله تعریف کرد.

6.2 شرایط اولیه و مرزی

یک توده از جویانه با مقدار اولیه که برای یک مسئله مقدار اولیه و مزیت در نظر گرفته می‌شود مقدار جایگذاری است (برای مثال فرض مورد استفاده در فرآیند همگونی‌های به روحی مانند). همچنین برای شبیه‌سازی حالت واقعی تری از انتساب بالاستامه‌ای یک مقدار مطلق با رابطه (6) به عنوان جریان های اولیه محاسبه می‌شود.

$$n_i(x) = n_i(x) = n_i \left(\frac{1}{\pi} \arctan \left(\frac{\beta_i - L/n_i}{d} \right) \right) \left(\frac{1}{\pi} \arctan \left(\frac{\beta_i - L/n_i}{d} \right) \right)$$

در جریان سه از جریان های بالاستامه‌ای n_i, محدود جریان d به‌ینهای مقطع جیلی در مسیر بالاستامه و خلاء استفاده از این مقدار شرایط مقطع جیلی در مسیر بالاستامه و خلاء را تنظیم کرد. هر چه فاصله d کوچک‌تر باشد شرایط مقطع تندر گوشد به طریقی که در $d = \infty$ با یک جیلی بالای مطلوب انتساب (3) در اینجا کاهش K_n و λ_{De} به ثابت $K_n = \left(\frac{K_BT_e}{\pi e i \epsilon} \right)^{1/3}$ بولتمن، دو مسئله اولیه الکترون و الکتریکی بالاستامه‌ای مخلوط شده است.

در محاسبه نسبی از تابع توزیع تصادفی جانتر - سینگا (ماکسول نسبی) استفاده می‌شود که در یک بدست بی‌صورت $f(\mu) = \frac{n_v}{v_{mn} c K_n(\mu)} \exp \left\{ -\mu y \right\}$

که λ_{De} پارامتر دما و $\mu = m c^2 / K_BT_e$ نیاز دارد تعمیم $K_n(\mu)$ که توسط v_{mn} دما و $\mu = m c^2 / K_BT_e$ دسته‌بندی می‌شود.

1. Jutta-Synge

شکل 1

حرکت جریان الکترون در سطح الکترون است. فاکتور n_i نسبی نیز به صورت زیر تعریف می‌شود

$$\gamma = \sqrt{1 + \frac{p_i}{m_i c^2}}$$

که در γ مقدار نور در خلاء است. مانند هر γ الکترون استکانیکی است که در معادله مونسون صدق می‌کند

$$\frac{\partial \gamma}{\partial t} = -4 \pi (n_e - n_i)$$

که در آن n_i جریان الکترون و n_e جریان الکترون است و از کشدار اول تابع توزیع الکترون به دست می‌آید.

$$n_e = \int f(x, p_x, \ldots) dp_x$$

چون وزن سرعت در نظر گرفته شد در معادلات انتخاب مناسب. با توجه به معادلات

$$\frac{d\rho}{dt} + \frac{\partial}{\partial x} \left(n_i \rho \right) = 0$$

مقدار (4) و (5) به ترتیب معادلات پیوستگی و حرکت در هیدرودینامیک معمولی است که در آنها ρ سرعت شاره‌ای v_i مقدار است. معادلات (1) تا (5) مجموعه معمولی است که توجه می‌شود که در ادامه به شبیه‌سازی آن پرداخته شده است. از
رش اوالی بر روی روش تکرار پیشگو - اصلاح‌گر به کار برده شده است. در کد شبیه‌سازی ما در هر ولتاژ و آنتن‌پذیری دقت کمتر از جنگ درصد پایسته سنتینل. همچنین بر اساس بررسی دقت کد رابطه باشگاهی پیوسته به امواج الکترونیکی الکترونیکی در حالت سنتینل به دست آمده است که با تغییر مرجع [۲۴] سازگاری خوبی دارد. علاوه برای انتشال سالیتونون - صوتی که جواب پایایی شبیه‌سازی معادلات (۱) و (۵) است نیز با کد بررسی شده است. بنابراین برای شرایط حاکم بر یک سیستم ولتاژی، $\varphi(x \rightarrow \pm \infty, t) = 0$.

ت. شبیه‌سازی

برای شبیه‌سازی معادلات (۱) و (۵) با شرایط اولیه (۶) و (۷) یک کد مناسب به شرح داده شده است. به طوری که سیستم معادلات ولتاژی - پیامون - شارایی به قطع حوض‌های جدید حاکم شده و در کد استفاده شده معادله و توابع مشخصه شده است [۳۳] حالت در این روش معادله ولتاژی با نابیندن کردن مسئله نقش ذرات قطع است که در قطع مشخصه شده است و در طول زمان در حالت حفظ و پایداری سیستم شده است.

شیب سیستم در طول جعبه شبیه‌سازی ۱۵۰ λ_{De} است. در شبیه‌سازی انگلیسی دقت متری دیگری برای دقت کد $\tau_{De}/\lambda_{De} = \varphi(x, t)$. نسبت به $\varphi(x, t)$ مقدار به همین دقت فاصله نقطه در نقاط قاطع است که در طول زمان در حالت حفظ و پایداری سیستم شده است. بنابراین تابع نقاط قاطع در اطلاعات تابع توزیع الکترونی می‌باشد.

این روش معادله ولتاژی با ویژگی‌های سیستم روندهای بین شیب‌های گذشته و نقطه شیب قطع شده است. این مقدار از دو تابع Q1 Q2 تابع نقطه قطع شیب برای حفظ در طول زمان تغییر می‌کند. این حالت معادلات مشخصه و شارایی از روش پریچارگانی استفاده

شده است. این روش در کنار ثبت روش در نمایه نقطه Q1 = (۰) و (۱) نیازمند است. مقدار نقطه λ_{De} در زمان Δt از روش اوال معادله می‌شود.

از آنجا که روش سیستم جهشی به دقت اطلاعات در گام $\Delta t/2$ بسیار حساس است برای تصویب خططی ناشی از

\[K_B T_p < mc^2 \]

با تابع توزیع ماکسیمیلیتی بی‌تری می‌شود.

\[\varphi(x \rightarrow \pm \infty, t) = 0, \quad \frac{d\varphi}{dx}(x \rightarrow \pm \infty, t) = 0 \]

است.
شريحة نسبية معادلة ولاسوف بر انسابت ملاسا به غلاص

شکل ۳. چاگالی بونه بر حسب موقعیت در زمان

\(\alpha_{\text{pl}} \Delta t = 8 \)

\[n_1 / n_0 \]

\[x / \lambda_{\text{De}} \]

شکل ۲. میدان الکتریکی در محل جهه بونه به صورت نابعی از زمان.

نحوه بونه در جهه بر حسب زمان برای

\(\alpha_{\text{pl}} \Delta t = 8 \)

\[E_{\text{ion front}} \]

\[\omega / \pi \]

\[t / 8 \]

\[\omega / \pi \]

شکل ۴. سرعت جهه بونه بر حسب زمان.

کلاسیکی است و یافته توزیع اولیه الکترون‌ها ماکسولی

می‌باشد مقایسه شدیاند. از شکل ۲ دیده می‌شود میدان الکتریکی در حالت نسبیتی فویت‌ای از میدان در حالت

\(\alpha_{\text{pl}} \Delta t = 8 \)

\[\omega / \pi \]

\[t / 8 \]

\[\omega / \pi \]

شکل ۱. چاگالی الکترون‌ها بر حسب موقعیت در زمان

\(\alpha_{\text{pl}} \Delta t = 8 \)

\[n_1 / n_0 \]

\[x / \lambda_{\text{De}} \]

در نتیجه سیستم بیشتری را معنای دارد. بنا براین چگالی الکترون‌ها به ازای یک موقعیت ثابت بايد از حالت نسبیتی

\[\omega / \pi \]

\[t / 8 \]

\[\omega / \pi \]

شکل ۳. چاگالی بونه بر حسب موقعیت در زمان

\(\alpha_{\text{pl}} \Delta t = 8 \)

\[n_1 / n_0 \]

\[x / \lambda_{\text{De}} \]

کلاسیکی است و یافته توزیع اولیه الکترون‌ها ماکسولی

می‌باشد مقایسه شدیاند. از شکل ۲ دیده می‌شود میدان الکتریکی در حالت نسبیتی فویت‌ای از میدان در حالت

\(\alpha_{\text{pl}} \Delta t = 8 \)

\[E_{\text{ion front}} \]

\[\omega / \pi \]

\[t / 8 \]

\[\omega / \pi \]

شکل ۴. سرعت جهه بونه بر حسب زمان.

کلاسیکی است و یافته توزیع اولیه الکترون‌ها ماکسولی

می‌باشد مقایسه شدیاند. از شکل ۲ دیده می‌شود میدان الکتریکی در حالت نسبیتی فویت‌ای از میدان در حالت

\(\alpha_{\text{pl}} \Delta t = 8 \)

\[E_{\text{ion front}} \]

\[\omega / \pi \]

\[t / 8 \]

\[\omega / \pi \]

شکل ۴. سرعت جهه بونه بر حسب زمان.

کلاسیکی است و یافته توزیع اولیه الکترون‌ها ماکسولی

می‌باشد مقایسه شدیاند. از شکل ۲ دیده می‌شود میدان الکتریکی در حالت نسبیتی فویت‌ای از میدان در حالت

\(\alpha_{\text{pl}} \Delta t = 8 \)

\[E_{\text{ion front}} \]

\[\omega / \pi \]

\[t / 8 \]

\[\omega / \pi \]
4. نتیجه‌گیری

در این مطالعه، با استفاده از یکی مدل الکترووستاتیک و یکی بعدی، تأثیر دمای نسبی و استحکام الکترودها در انبساط پلاسمای یی برعکس بخله بررسی شد. در این مدل الکترودها از معادله لانویسی نسبی تبدیل می‌کنند و پویای‌ساز سردر با معادلات شارهای توصیف می‌شوند. با انتخاب تابع توزیع ولتاژ اولیه الکترودی مناسب برای دماهای نسبی در حالت تعاونی، توزیع جاندار- سینگ، مشاهده شده که فشار اولیه الکترودها به اندازه‌ای زیاد است که یک میدان قوی شکل می‌گیرد به طوری که اندازه پلاسمای سریع تر افتاده و پویا تا سرعت‌های بالاتری شتاب می‌گیرد. بنابراین اگر دمای پلاسمای بالا کافی باشد، اثرات نسبی کاهش ملاحظه خواهند شد و در بررسی انبساط پلاسمای باید در نظر گرفته شود.

1. Pure electron cloud
2. Rarefaction wave

14. T Cecotti, A Lévy, H Popescu, F Reau, P D’Oliveira, P Monot, J P Geindre, E Lefebvre, and