نمایگردی امواج کشسان در زنجیره هارمونیک به نظم با ثابت فشردیدگی و همبستگی بلندبرد

محمد رحمی و فرهاد شهرنیازی
دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان

چکیده
در این مقاله به مطالعه جایگزینی امواج اکوستیک در محیط‌های بین ماده‌ها، به این منظور ما یک شبکه جرم و فشردگی در نظر می‌گیریم که دارای جرم ثابت باشد و ثابت فشرده کننده را برای یک سری اعداد کانونهای با نام همبستگی \(c^2 \sim \gamma^2\) و در راستای یک قرار می‌دهیم. با استفاده از روش‌های نسبت عکس مشترک و اختلالات حالت‌ها، خالهای جایگزینی در سیستم را مشخص می‌کنیم و به مطالعه تاثیر نام همبستگی بین صوت می‌پردازیم.

واژه‌های کلیدی: جایگزینی، بین ماده‌ها، افزایش آمماد

1. مقدمه

خواص مختلف امواج سالنهایی که مورد تحقیق قرار گرفته است. این خواص برگزی که انتشار امواج در محیط‌های ناهماهنگ یک دیدگاه بهینه است که مطالعات زیادی بر روی آن انجام شده است. این دیدگاه در مطالعات معمول مانند انالیز اطلاعات زیست‌شناسی، پیشگی کنار آن در انیمیشن، شناسایی ماگیک برگ نفت و گاز و غیره کاربرد دارد [1 و 2]. یکی از رفتارهای که امواج در هنگام انتشار در محیط‌های ناهماهنگ ممکن است خود برگزنده دهه، پدیده جایگزینی است. به این معنی است که همان سیستم با در یک مور (\(\psi(\tau)\) در فاصله‌های دور \(\gamma^2 \sim \gamma^2\) دارای ممکنهای زیادی است. سیستم با بر خلاف تئوری می‌خواهیم با این مور باز شده است. مثلاً زمان دیگر به اندازه‌ها در DNA و نشان داده است که در مسیح‌های با همبستگی بلندبرد بی‌خارتهای مور در یک بعد نیز گزارش‌های موجود در دارد [8]. با استفاده از این

\[1\text{. Anderson}\]
2.1. روش فیلتر کردن فوریه

یک سری اعداد احتمالی \( u_i \) را در نظر گرفته و با استفاده از تابع همبستگی عوارض این سری، عبارت \( (u_iu_{i+1}) \) به کمک دلایل کردن استفاده می‌شود.

\[
C(l) = \langle \eta_i \eta_{i+l} \rangle \propto l^{-\gamma} \quad (l \to \infty)
\]

که \( \gamma \) معادله نامه همبستگی است و \( \gamma > 0 \) می‌باشد. به عنوان مثال، می‌توانیم اطلاعات مهمی در مورد ساختار شبکه‌های کارتی و سایر سازگاری‌ها را در فاصله‌ای از مرکز انفجار قرار داده نشان دهیم که با استفاده از فیلتر کردن، توانایی این نوع تجزیه بین همبستگی برقرار می‌شود.

\[
\eta_q = [S(q)]^{1/\gamma} u_q
\]

که (1) که \( \eta \) ضرایب تبدیلات فوریه \( \{u_i\} \) هستند. برای کمک به مشاهده مستقل از فرمولی \( S(q) = \frac{\langle \eta_i \eta_{i+l} \rangle}{l^n} \) در فاصله‌ای که \( q \) را در رابطه زیر صدق کند.

\[
E_k = \sum_{i} \langle u_i u_{i+l} \rangle
\]

که \( E_k \) مقدار معادله حرکت است که در هر فرمولی \( \{u_i\} \) هستند. [12]

سیستمی به جای همبستگی، فقط یک بندی جرم و فنر با تابع فنر کاربردی و همبستگی بالادسته است. این استفاده از روش عکس نسبت مشابهت و استفاده از چگالی جهرامی که در بخش اولویت وضعیت خاص‌ها داشته و نیازهای کردن را بر روی یک‌جا گردید. مورد مطالعه قرار می‌گیرد.

2.2. روش‌های تولید همبستگی بالادسته برای سیستم‌های یوزر

یکی از روش‌هایی که برای این وظیفه می‌توانیم به دومین مورد مطالعه قرار دهیم. فیلتر کردن فوریه (FFM) است. این روش شامل یک روش خاصیست که با استفاده از مدل‌سازی احتمالی با فیلتر تولید می‌توان مناسب به نظر برسد.

کردن همبستگی بین متغیرها می‌باشد.

1. Fourier Filtering Method
که در آن

\[ K = k \]

می‌توان با محاسبه ویژه مقادیر \( K \) مقادیر \( \omega \) را به دست آورد

\[ \omega_i = \left[ 2 - 2 \cos \left( \frac{\pi}{N} \right) \right] \frac{k}{m} \]

و ویژه توابع نظری برای است \( \frac{(N - 1) \pi}{N} \)

\[ z_i = \left\{ \sin \left( \frac{\pi}{N} \right), \sin \left( \frac{2\pi}{N} \right), …, \sin \left( \frac{(N - 1)\pi}{N} \right) \right\} \]

می‌توان تابع کردن \( \omega \) را به دست می‌آید و یا مدرج با

\[ \omega > \sqrt{\frac{k}{m}} \]

لی نمود. در سیستم گسترده یا یافته تابع به دست آورده این است که اگر ویژه توابع نظری ویژه \( \omega \) را در نظر بگیریم می‌پیشنهد که با افزایش \( I \) تعداد صفرهای تابع موج سیستم افزایش می‌یابد تا در نهایت به مقدار \( I \) رسید.

سیستمی که ما به حل آن علاقه‌مند هستیم است با

۳. معادله حرکت

در اینجا ما یک سیستم ساده که شامل \( N \) ذره است و به وسیله یک تنفس نیروی به هم متصل شده‌اند را در نظر می‌گیریم. چنانچه چرخش هر ذره \( k_i \) و تناسق فنر \( m_i \) را در نظر بگیریم ابتدا

جنبشی سیستم برای \( t \) نمودار (c) \( N \) را با

\[ \sum_{i=1}^{N} m_i \frac{dx_i}{dt} = \sum_{i=1}^{N} k_i (x_i - x_i) \]

با

\[ m_i \frac{d^2 x_i}{dt^2} + k_i (x_i - x_i) - k_i (x_i - x_i) = 0 \]

(۱)

با فرض اینکه مکان ذره \( z \) برای رابطه \( x \) باید باشد. \( t \) و تابع این نتیجه جه افزایش موج سیستم افزایش تابع نمودار می‌شود و می‌توان آن را به شکل ماتریسی زیر نوشت.

\[ (K + \omega^2 M) Z = 0 \]

به طوری که \( M \) یک ماتریس قطری است و عناصر روز عقران \( K \) برای همستر و ماتریس \( K \) یک ماتریس سه قطری است که

\[ K(l, l) = -(l_{l-1} + k_l) \]

(3)

\[ K(l, l+1) = k_{l+1} \]

\[ K(l, l-1) = k_l \]

در صورتی که تمام جرها را برای \( m \) و تمام ناحیه فنر را برای \( k \) در نظر بگیریم، معادله به شکل \( (K + \omega^2 m) Z = 0 \)
شکل ۲. چاپگری‌گذاری موج $\psi$ در یک سیستم کوانتومی یباً با پاسی اتفاقی

\[ (9) \]

\[
\frac{\sum_{n=0}^{N} u_n}{\sum_{n=0}^{N} u_n}
\]

که در آن $u_n$ ویژه توابع نظیر $0$ هستند و با قطری کردن ماتریس $K$ به دست می‌آیند. با محاسبه $\psi$ به ایز اتفاقی $0$ ها می‌توان به‌طور همزمان به عنوان چه مقادیری از $0$ موج چاپگری‌گذاری است. برای حالت $\xi$ به معنی یک عدد ثابت می‌باشد

ولی برای حالت چاپگری‌گذاری $\psi$ به سمت صفر می‌کند.

نکته قابل ذکر، مقایسه طول چاپگری‌گذاری $\lambda$ است. همان طور که در شکل ۲ برای یک سیستم کوانتومی مشاهده می‌شود طول چاپگری‌گذاری برای است با طولی که دامنه تابع موج در سیستم به $\frac{1}{\psi}$ مقدار کاهش می‌یابد ولی $\psi$ برای طول است که تابع موج در آن طول گستردگی است. اگر چه برای یک سیستم گستردگی با طول پهنایی هر دری این مقدار به‌طور نهایی است. ولی از نظر فیزیکی دارای معنی مختلفی هستند که با بدتن کرده [6 و 15]. برای یک سیستم کلاسیک یک نیز یک تفاوت بی‌قرار است.

در شکل ۳ مقدار $\frac{1}{\psi}$ برای یک سیستم با طول $0$ محاسبه شده است. می‌توان نقص پارامتری همبستگی را در چاپگری‌گذاری ناب‌موج مشاهده کرد با طوری که چنین مقدار باید حالت کاملاً کانون‌دار باشد، $\frac{1}{\psi}$ نبوده حالت‌های گستردگی بسیار کمتر از حالت‌های چاپگری‌گذاری است و پارامتر $\beta$ به
شکل 5. در شکل بالا از موج جامائیکا نشان داده شده است. همان طور که مشخص است این از موج کامل متصل از هم هستند و در نتیجه فرکانس آن‌ها نیز متصل است. در مقیاس در شکل پایین دو موج گستره نشان داده شده است که کاملاً به هم وابسته هستند. اینکه به هم وابسته باشد از آن جملات در نتیجه فرکانس‌های آن‌ها نیز متصل از هم هستند، عنوان همگستری نامیده‌اند. این مسئله در شکل 5 نمایش داده است.

از مکانیک آماری می‌دانیم که توزیع اختلاف رویدادهای تصادفی با شکل پواسونی است. بنابراین اگر وزه مقادیر $K$ را محاسبه کنیم (فرکانس‌های سیستم) و سپس اختلاف نزدیک‌ترین وزه مقادیر را به دست آوریم از روز چگالی توزیع به دست آمده می‌توان فهمید که آیا سیستم جایگزینه است یا گستره. چنانچه توزیع یک توزیع پواسون باشد، عنوان:

$$P_p(s) = e^{-\alpha},$$

اموای در سیستم جایگزینه‌دان و از فیزیک آشوب می‌دانیم اگر توزیع به صورت ویگن– دایسون باشد

$$P_w(s) = a_s \pi^{\frac{3}{2}} e^{-\alpha s},$$

اماوا در سیستم گستره‌دان. مقادیر ضرایب به وسیله به‌هم‌جمع کردن معادله به دست می‌آید.

$$a_1 = \frac{\pi}{2}, \quad a_2 = \frac{\pi}{\sqrt{3}}, \quad a_3 = \frac{\pi^2}{3}, \quad a_4 = \frac{\pi^3}{9},$$

$$c_1 = \frac{\pi}{4}, \quad c_2 = \frac{\pi}{4}, \quad c_3 = \frac{\pi}{4}.$$  

شکل 4. نمودار تابع موج برای یک سیستم به طول $\beta$ و فرکانس آنها را در برنامه‌های فورتمن و C فراوانی کرد از مراحل این توابع می‌توان به استاندارد بودن و سرعت بالای آنها در مقایسه با دیگر روشهای اشکار کرد. توابعِ که ما استفاده کردیم بر پایه الگوریتم QR است. در الگوریتم QR که هر ماتریس مربوط به می‌توان به صورت ضرب دو ماتریس معادم و مثلثی نوشته براساس این می‌توان مورد نظر را به صورت یک ماتریس مثلثی نوشته چک که وزه مقادیر آن همان عنصری روی قطر آن است.

2.4 آمار ترازها

یکی از روش‌های تنش خاص حالت‌های جایگزینه در یک سیستم استفاده از آمار ترازها است. به توجه به اینکه در حالت‌های جایگزینه‌فرکانس‌ها بر روی یکدیگر تاثیر نمی‌گذارند فرکانس‌های حالت‌های جایگزینه بعد هم‌سنتی هستند. این مسئله را می‌توان به صورت ساده این طور توجیه کرد که چنانچه در موج گستره‌ها در نظر بگیریم چنین باید این موج معادل باشد در نتیجه به هم وابسته هستند و نمی‌توانند هر فرکانسی را اختیار کنند. از طرف دیگر چنانچه هر کدام از امواج‌ها در ناحیه گستره‌ها شده باشد فقط تمام قدر را بدست آور

1. Poissonian
2. Wigner-Dyson
3. Level Statistics
مشاهده می‌شود، برای سیستم کاملاً تصادفی توزیع بی‌سیار نزدیک به توزیع یواسوینی است ولی با افزایش همبستگی تبعیض توزیع ترکیبی از در توزیع است که می‌تواند تحت شرایطی همان طور که در روش بیلی دیده شد برای بعضی از ویژه مقادیر تابع گستره و برای بعضی دیگر جایگزین نامیده و دسته دوم را حالت‌های جایگزین نامید و برای سیستم‌های با پارامتر همبستگی 1/6 انجام شده است. در این سیستم حدود نیمی از حالات جایگزین و نیمی دیگر گستره است. با استفاده از همین روش می‌توانند مقادیر فاکتور بحرانی را به دست آورند. در جدول 1 فاکتور بحرانی به ازای تعدادی نمای همبستگی که به این روش محاسبه شده اورده شده است.

همان‌طور که در روش سیستم مکانیسم مشابه به دش برای حالت‌های β<1/4 < اثر حالت‌های جایگزین، هستند. در این روش نیز فاکتور بحرانی برای حالت‌های با β<1/4 پیشبینی کرده است و برای حالت‌های با نمای همبستگی افزایش شده که با تغییر قابل ملاحظه‌ای ایجاد دارد.

شکل 6. نتایج توزیع اختلاف و روی حالت‌های برای یک سیستم با طول 10 و نمای همبستگی مختلف.

شکل 7. جداسازی حالت‌های برای یک سیستم با طول 10 و نمای همبستگی 1/6 صوت‌های اول. تقریباً تعداد حالت‌های جایگزین و گستره برای بیده و فرکانس بحرانی برای 25/10 است. نتایج توزیع دو حالت بیساب نزدیک توزیع‌های پواسون و بیگنر–دایسون است.
سیستم جرم و فنر با چرم ثابت و ثابت فنر تصادفی ویژه حالتها به دو دسته حالت‌های جداگانه و حالت‌های گستردگی تقسیم می‌شوند. این حالت‌ها با یک فرکانس بحرانی از یکدیگر تفکیک می‌شوند. جفت‌های همبستگی دو این حالت‌ها فنر را افزایش می‌دهد. حالت‌های گستردگی نسبت به فنر جسمانی تغییرات زیادی نخواهد کرد. ولی این حالت با افزایش یافته که معنی آن افزایش حالت‌های گستردگی است. این فرکانس بحرانی برای تمامی همبستگی مختلف محاسبه شده است. در نهایت می‌توان نتیجه گرفت با افزایش همبستگی، نظم سیستم بیشتر شده و حالت‌های گستردگی در سیستم افزایش می‌یابد.

جدول ۱ فرکانس بحرانی بر حسب نمای

<table>
<thead>
<tr>
<th>فرکانس بحرانی (Hz)</th>
<th>نمای</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/21 ± 0/01</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>6/75 ± 0/01</td>
<td>1/5</td>
<td></td>
</tr>
<tr>
<td>2/5 ± 0/1</td>
<td>1/6</td>
<td></td>
</tr>
<tr>
<td>3/0 ± 0/1</td>
<td>1/7</td>
<td></td>
</tr>
<tr>
<td>3/2 ± 0/1</td>
<td>1/8</td>
<td></td>
</tr>
<tr>
<td>3/7 ± 0/1</td>
<td>2/8</td>
<td></td>
</tr>
</tbody>
</table>

5. نتیجه‌گیری
به طور خلاصه با به کارگیری دو روش نسبت عکس مشترک و ثابت توسعه اختلاف ویژه حالتا دیده شد.

مراجع