p. 507−512 2345-3664 Vol.17/No.4 p. 513−522 2345-3664 Vol.17/No.4 p. 523−530 2345-3664 Vol.17/No.4 p. 531−540 2345-3664 Vol.17/No.4 p. 541−551 2345-3664 Vol.17/No.4 p. 553−560 2345-3664 Vol.17/No.4 p. 561−571 2345-3664 Vol.17/No.4 p. 573−583 2345-3664 Vol.17/No.4 p. 585−594 2345-3664 Vol.17/No.4 p. 595−601 2345-3664 Vol.17/No.4 0.2 GeV/c and rapidity |y| < 2, is 20.5 ± 0.3 (stat) ± 3.1 (syst) ± 0.8 (lumi) μb. The differential cross sections as a function of π+π- invariant mass, is compared to phenomenological predictions. ]]> p. 603−607 2345-3664 Vol.17/No.4 p. 609−613 2345-3664 Vol.17/No.4 p. 615−620 2345-3664 Vol.17/No.4 p. 621−628 2345-3664 Vol.17/No.4 p. 629−629 2345-3664 Vol.17/No.4 4O13 flux. 0.4-1 °C/h cooling rates were applied in the spontaneous nucleation process. The presence and amount of impurities has been determined by using XRF. The optical transmission spectra of impure KTP crystals in the UV–visible region are discussed. The transmission cut-off is clearly shown at the optical absorption edge, as well as the rapidly reduced absorption with increasing wavelength. It is shown that the presence of impurity shifts the absorption edge of KTP towards lower energy region. The wavelength dependence of absorption coefficient is determined in the UV–visible range, and the characteristics of the optical absorption edge are discussed. Results reveal that the absorption edge and the type of optical charge carrier transition can be attributed to indirect transition for these crystals. It is shown that presence of impurity decreases the indirect band gap (Eg) of KTP crystals, causing the indirect transition absorption edge to move towards lower energy.]]> p. 630−630 2345-3664 Vol.17/No.4 p. 631−631 2345-3664 Vol.17/No.4 p. 632−632 2345-3664 Vol.17/No.4 p. 633−633 2345-3664 Vol.17/No.4 p. 634−634 2345-3664 Vol.17/No.4