ORIGINAL_ARTICLE Calculation of differential and total cross sections for Positrion-Hydrogen impact with second-order Born-Faddeev approximation in excitation channel In this paper, we have implemented a three-body formalism, where the interaction potential is replaced by the transition matrix, in the excitation channel for the collision of positron and atomic hydrogen. Differential and total cross sections are calculated while the first and second order terms of the FWL (Faddeev-Watson-Lovelace) series in the transition from ground state to the first excited state of atomic hydrogen are included. The impact energy range of to and the scattering angle of the scattered positron in the range of (1-180) degrees are selected. At last, the results are compared with the available theoretical data in the literature https://ijpr.iut.ac.ir/article_1073_c63c62ac30a9eb6d78fd85e8ea6fed22.pdf 2019-11-26 123 132 three-body impact differential cross Section positron excitation channel Faddeev R Fathi rfatahi@uk.ac.ir 1 دانشکده فیزیک، دانشگاه شهید باهنر کرمان، کرمان LEAD_AUTHOR M. Charlton and J. Humberston “Positron Physics” Cambridge university press (2001). 1 D. G. Seely and et al, Phys. Rev. A. 45 (1992) R1287-R1290. 2 I. Bray and A. T. Stelbovics, Phys. Rev. A 46 (1992) 6995-7011. 3 H. S. W. Massey and R. A. Smith, Proc. Roy. Soc. A142 (1933) 142-172. 4 R. Balian, P. Encrenaz and J. Lequeux “Atomic and molecular physics and the interstellar matter” North-Holland, Amsterdam (1974). 5 D. R. Bates and G. W. Griffing, Proc. Roy. Soc. London. Ser. 66 (1953) 961-971. 6 H. C. Brinkman and H. A. Kramers, Proc. Acad. Sci. 33 (1930) 973-984. 7 J. D. Jackson and H. Schiff, Phys. Rev. 89 (1953) 359-365. 8 D. F. Crothers and R. McCarrol, Proc. Roy. Soc. London. Ser. 86 (1965) 753-761. 9 R. McCarrol and A. Salin, Proc. Phys. Soc. 90 (1967) 63-72. 10 M. R. Flannery, J. Phys. B 2 (1969) 1044-1054. 11 S. Saxena, G. P. Gupta and K. C. Mathur, J. Phys. B 17 (1984) 3743-3762. 12 Dz. Belkic and R. K. Janev, J. Phys. B 6 (1973) 1020-1035. 13 D. Salzman, “Atomic physics in hot plasmas” Oxford university press (1998). 14 R. Fathi, M. A. Bolorizadeh, F. Shojaei Akbarabadi and M. J. Brunger, J. Phys. B 45 (2012) 205201(6pp). 15 L. Lugosi. B. Paripas. I. K. Gyemant and K. Tokesi, Radiation physics and chemistry journal. 68 (2003) 100-203. 16 J. Mitroy, Aust. J. Phys, 46 (1993) 751-771. 17 J. Fiol and R. E. Olson, J. Phys. B 35 (2002) 1173-1184. 18 S. Alston, Phys. Rev. A. 42 (1989) 331-350. 19 C. J. Joachain, “Quantum collision theory” North-holand,Amsterdam (1975). 20 H. R. Walters, J. Phys. B 21 (1988) 1893-1906. 21 K. Ratnavelu, J. Mitory and A. T. Stelbovics, J. Phys. B 29 (1996) 2775-2796. 22 R. Fathi, E. Ghanbari-Adivi, M. A. Bolorizadeh, F. Shojaei and M. G. Brunger, J. Phys. B 42 (2009) 125203(9pp). 23
ORIGINAL_ARTICLE Extraordinary high spectral sensitivity in surface plasmon resonance sensor by multi-mode sensing scheme formeasuring the thickness of an adsorbed layer of specific refractive index In this paper surface plasmon resonance sensor is studied by using gold and silver in its structure respectively, also the possibility of extraordinary high spectral sensitivity by using multimode sensing scheme is being investigated in this sensor. It is shown that due to the extraordinary high spectral sensitivity of surface plasmon resonance sensor measuring adsorbate layer thickness could be done effectively https://ijpr.iut.ac.ir/article_1074_878f4351e455c9b65d2b1ebd02c7bc3d.pdf 2019-11-26 133 138 spectral sensitivity surface plasmon resonance sensor multimode sensing scheme H Mohammadhosseini hakimeh.mohammadhosseini15@gmail.com 1 . دانشکده فیزیک، دانشگاه علم و صنعت ایران، تهران LEAD_AUTHOR A Ahmadkhan Kordbacheh 2 . دانشکده فیزیک، دانشگاه علم و صنعت ایران، تهران AUTHOR M Ghanaatshoar 3 . پژوهشکده لیزر و پلاسما، دانشگاه شهید بهشتی، تهران AUTHOR [1] I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors”OPTICS EXPRESS, Vol. 16, No. 2, pp. 1020-1028, 2008 1 [2] W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, Phys. Rev. B 54, 6227-6244 2 [3] R. T. Deck, D. Sarid, G. A. Olson, and J. M. Elson, Appl. Opt. 22, 3397-3405 3 [4] J. S. Yuk, D. G. Hong, J. W. Jung, S. H. Jung, H. S. Kim, J. A. Han, Y. M. Kim, and K. S. Ha, Eur, Biophys, J 35, 469-476 4 [5] Z. Yu and S. Fan, “Extraordinarily high spectral sensitivity in refractive index sensors using multiple optical modes” OPTICS EXPRESS, Vol. 19, No. 11, pp. 10029-1040, 2011 5 [6] A. V. Zayats and Igor I. Smolyaninov, “Nano-optics of surface plasmon polaritons” Physics Reports, 408, pp.131-314, 2005 6 [7] E. LeRu and P. Etchegoin, Principles of surface enhanced raman spectroscopy and related plasmonic effects. Elsevier, pp. 135-150, 2009 7 [8] ] P. G . Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold” J.chem. phys. 125, 164705, 2006 8
ORIGINAL_ARTICLE Engineering photonic band gap in 1D phonic crystals using fresnel coefficients and comparing with the results of transfer matrix meghod In this paper photonic band gaps of 1D photonic crystal are compared by using transfer matrix method and Fresnel coefficients method. In Fresnel coefficients method, the refractive indices of each layer and incidence light angle to the surface are used for calculating Fresnel coefficients, and then the necessary and sufficient condition for a 100% reflection from the surface of double layer dielectrics is applied in such a way that reflection coefficient tends to unity so that photonic band gaps are determined. But in transfer matrix method there are some complications needed for solving quadratic partial differential equations and applying continuity of tangent components of fields and Bloch’s condition, though the results are the same https://ijpr.iut.ac.ir/article_1075_1aff252d97e69b3e168353dc5c5f9bcd.pdf 2019-11-26 139 146 photonic crystals Fresnel coefficients reflection coefficient transfer matrix band gap A Rahmatnezamabad rahmatnezamabad@gmail.com 1 دانشکده فیزیک، دانشگاه تبریز، تبریز LEAD_AUTHOR S Roshanentezar s-roshan@tabrizu.ac.ir 2 دانشکده فیزیک، دانشگاه تبریز، تبریز AUTHOR H Afkhami 3 گروه فیزیک، دانشگاه شهید مدنی آذربایجان، تبریز AUTHOR B Rahmatnezamabad 4 گروه فیزیک، دانشگاه محقق اردبیلی، اردبیل AUTHOR
ORIGINAL_ARTICLE Optical and structural properties of ZnO hexagonal rods prepared by thermal chemical vapor deposition technique In this research, ZnO nanostructure hexagonal pyramid rods with high optical and structural quality were synthesized by the simple thermal chemical vapor deposition of Zn powder without a metal catalyst. Surface morphologies were characterized by scanning electron microscopy (SEM). XRD analyses demonstrated that ZnO hexagonal pyramid rods had a wurtzite structure with the orientation of (002). Investigation of optical properties of samples by photoluminescence spectrum exhibited a sharp UV emission peak at 380nm. The quality and composition of the ZnO pyramid rods were characterized using the Fourier transform infrared spectrum (FTIR) at room temperature. In addition, the growth mechanism of ZnO hexagonal rods is also briefly discussed. https://ijpr.iut.ac.ir/article_1076_5f7e621e992c71a340885be904a02388.pdf 2019-11-26 148 153 zinc oxide nanostructure hexagonal pyramid rods thermal chemical vapor deposition optical and structural properties A Reyhani reyhani@sci.ikiu.ac.ir 1 گروه فیزیک، دانشکده علوم پایه، دانشگاه بین‌المللی امام‌خمینی (ره)، قزوین LEAD_AUTHOR M. R Khanlary khanlary@yahoo.com 2 گروه فیزیک، دانشکده علوم پایه، دانشگاه بین‌المللی امام‌خمینی (ره)، قزوین AUTHOR V Vahedi 3 گروه فیزیک، دانشکده علوم پایه، دانشگاه بین‌المللی امام‌خمینی (ره)، قزوین AUTHOR 1. L. Chow, O. Lupan, H. Heinrich, and G. Chai, Appl. Phys. Lett. 94 (2009) 163105. 1 2. M.A. Zimmler, T. Voss, C. Ronning, and F. Capasso, Appl. Phys. Lett. 94 (2009) 241120. 2 3. M.H. Zhao, Z.Z. Ye, and S.X. Mao, Phys. Rev. Lett. 102 (2009) 045502. 3 4. S. Yun, J. Lee, J. Yang, and S. Lim, Physica B 405 (2010) 413. 4 5. A. Chiappini, C. armellini, A. Chiasera, M. Ferrari, R. Guider, Y. Jestin, L. Minati, E. Moser, G. Nunzi Conti, S. Pelli, R. Retoux, G.C. Righini, and G. Speranza, J. Non-Cryst. Solids, 355 (2009) 1132. 5 6. M. T. Htay, Y. Tani, Y. Hashimoto, and K. Ito, Journal of Materials Science: Materials in Electronics, 20 (2009) 341. 6 7. M.A. Hernández, R. Alvaro, S. Serrano, and J.L. Costa-Krämer, Nanoscale Res. Lett. 24 (2011) 437. 7 8. B.Q. Cao, M. Lorenz, A. Rahm, H. Wenckstem, C. Czekalla, J. Lenzner, G Benndorf, and M Grundmann, Nanotechnology, 18 (2007) 455707. 8 9. H. Jiang, J.Q. Hu, F. Gu, C.Z. Li, J. Alloys Compd.478, (2009) 550. 9 10. N. Zhang, R. Yi, R.R. Shi, G.H. Gao, G. Chen, X.H. Liu, Matter. Lett. 63 (2009) 496. 10 11. P.X. Gao, Y. Ding, and Z.L. Wang, Nano Lett. 3 (2003) 1315. 11 12. J.J. Wu, S.C. Liu, C.T. Wu, K.H. Chen, and L.C. Chen, Appl. Phys. Lett. 81 (2002) 1312. 12 13. Y.J. Zhang, N.L. Wang, S.P. Gao, R.R. He, S. Miao, J. Liu, J. Zhu, and X. Zhang, Chem. Mater. 14 (2002) 3564. 13 14. K.M.K. Srivatsa, D. Chhikara, and M.S. Kumar, J. Mater. Sci. Technol. 27 (2011) 701. 14 15. J. H. Zheng, Q. Jiang, and J.S. Lian, Applied Surface Science, 257, (2011) 5083. 15 16. J. Zheng J. Chew, Richard A. Brown, Thierry G.G. Maffeis, and Lijie Li, Materials Letters, 72 (2012) 60. 16 17. J. Singh, S.S. Patil, M.A. More, D.S. Joag, R.S. Tiwari, and O.N. Srivastava, Applied Surface Science 256 (2010) 6157. 17 18. M.R. Khanlary, V. Vahedi, and A. Reyhani, Molecules 17 (2012), 5021. 18 19. M. Girtan, G.G. Rusu, S. Dabos-Seignon, and M. Rusu, Applied surface science 254 (2008) 4179. 19 20. D. Raoufi, and T. Raoufi, Applied Surface Science 225 (2009) 5812. 20 21. L. Feng, A. Liu, M. Liu, Y. Ma, J. Wei, and B. Man, Journal of Alloys and Compounds 492 (2010) 427. 21 22. H. Tang, Z. Ye, L. Zhu, H. He, B. Zhao, Y. Zhang, M. Zhi, Z. Yang, Physica E 40 (2008) 507. 22 23. A. Umar, E. K. Suh, and Y. B. Hahn, Solid state communications, 139 (2006) 447. 23 24. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, and T. Goto, Appl. Phys. Lett. 73 (1998) 1038. 24 25. Y. Dai, Y. Zhang, Y.Q. Bai, and Z.L. Wang, Chem. Phys. Lett. 375 (2003) 96. 25 26. L. Wu, Y. Wu, and W. Lü, Physica E, 28 (2005) 76. 26 27. M. Chang, X.L. Cao, H.B. Zeng, and L.D. Zhang, Chem. Phys. Lett. 446 (2007) 370. 27 28. S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, H.W. Shim, E.K. Suh, Chem Phys Lett. 363 (2002) 134. 28 29. A. Umar, J.P Jeong, E.K. Suh, and Y.B. Hahn, Korean J.Chem. Eng. 23 (2006) 860. 29 30. P. Yang, and C.M. Lieber, J. Mater. Res.12 (1997) 2981. 30 31. S. Kim, A. Umar, and Y. B. Hahn, Korean J. Chem. Eng. 22 (2005) 489 31
ORIGINAL_ARTICLE Fabrication of polymer Schottky diode with Al-PANI/MWCNT-Au structure In this research, Schottky diode with Al-PANI/MWCNT-Au structure was fabricated using spin coating of composite polymer and physical vapor deposition of metals. For this purpose, a thin layer of gold was coated on glass and then composite of polyaniline/multi-walled carbon nanotube was synthesized and spin-coated on gold layer. Finally, a thin layer of aluminum was coated on polymer layer. The current-voltage characteristics of diode were studied and found that I-V curve is nonlinear and nonsymmetrical, showing rectifying behavior. I-V characteristics plotted on a logarithmic scale for Schottky diode showed two distinct power law regions. At lower voltages, the mechanism follows Ohm’s Law and at higher voltages, the mechanism is consistent with space charge limited conduction (SCLC) emission. The parameters extracted from I-V characteristics were also calculated. https://ijpr.iut.ac.ir/article_1077_a71c5a143df24982ac4ae5aa3595b17c.pdf 2019-11-26 154 160 Schottky diode polyaniline multi-walled carbon nanotube spin coat A Hajibadali asgar.haji@gmail.com 1 دانشکده مهندسی برق و کامپیوتر، دانشگاه حکیم سبزواری، سبزوار LEAD_AUTHOR M Baghaei nejhad 2 دانشکده مهندسی برق و کامپیوتر، دانشگاه حکیم سبزواری، سبزوار AUTHOR GH Farzi 3 گروه مهندسی مواد و پلیمر، دانشکده فنی و مهندسی، دانشگاه حکیم سبزواری، سبزوار AUTHOR W Lee, D Kim, Y Jang, J Cho, M Hwang, Y Park, Y Kim, J Han, and K Cho, Appl. Phys. Lett. 90 (2007) 132106-1. 1 2. S Jussila, M Puustinen, T Hassinen, J Olkkonen, H G O Sandberg, and K Solehmainen, Organic Electronics 13 (2012) 1308. 2 3. T Sekitani, H Nakajima, H Maeda, T Fukushima, T Aida, K Hata, and T Someya, Nat. Mater. 8 (2009) 494. 3 4. S F Tedde, J Kern, T Sterzl, J Frst, P Lugli, and O Hayden, Nano Lett. 9 (2009) 980. 4 5. R Bechara, J Petersen, V Gernigon, P Lévêque, T Heiser, V Toniazzo, D Ruch, and M Michel, Solar Energy Materials and Solar Cells 98 (2012) 482. 5 6. Y Chen, Z Jiang, M Gao, S E Watkins, P Lu, H Wang, and X Chen, Appl. Phys. Lett. 100 (2012) 203304. 6 7. K S Kang, Y Chen, H K Lim, K Y Cho, K J Han, J Kim, Thin Solid Films 517 (2009) 6096. 7 8. C Hyun Kim, O Yaghmazadeh, D Tondelier, Y B Jeong, Y Bonnassieux, and G Horowitz, J. Appl. Phys. 109 (2011) 083710. 8 9. V Saxena, and K S V Santhanam, Cur. Appl. Phys. 3 (2003) 227. 9 10. R K Gupta, and R A Singh, Mater. Sci. in Semicond. Proc. 7 (2004) 83. 10 11. A Hassanien, M Gao, M Tokumoto, and L Dai, Chem. Phys. Lett. 342 (2001) 479. 11 12. M Cochet, W K Maser, A M Benito, M A Callejas, M T Martinez, J M Benoit, J Schreiber, and O Chauvet, Chem. Commun. 1 (2001) 1450. 12 13. S A Curran, P M Ajayan, W J Blau, D L Carroll, J N Coleman, A B Dalton, A P Davey, A Drury, B McCarthy, S Maier, and A Strevens, Adv. Mater. 10 (1998) 1091. 13 14. P C Ramamurthy, W R Harrell, R V Gregory, B Sadanadan, and A M Rao, Synth. Metals 137 (2003) 1497. 14 15. S Bandyopadhyay, A Bhattacharyya, and S K Sen, J. Appl. Phys. 85 (1999) 3671. 15 16. S M Sze and K K Ng, “Physics of Semiconductor Devices”, 3rd ed., Wiley, New York (2007). 16 17. H Tomozawa, F Braun, S Phillps, A J Heeger, and H Kroemer, Synth. Metals 22 (1987) 63. 17 18. E H Rhoderick, R H Williams, “Metal Semiconductor Contacts”, second ed., Clarendon, Oxford, (1988). 18 19. K C Kao, W Hwang, “Electrical Transport in Solids”, Pergamon Press, Oxford (1981). 19 20. M A Lampert, P Mark, “Current injection in solids”, New York: Academic, (1970) 20
ORIGINAL_ARTICLE Investigation of SiO2 thin films dielectric constant using ellipsometry technique In this paper, we studied the optical behavior of SiO2 thin films prepared via sol-gel route using spin coating deposition from tetraethylorthosilicate (TEOS) as precursor. Thin films were annealed at different temperatures (400-600oC). Absorption edge and band gap of thin layers were measured using UV-Vis spectrophotometery. Optical refractive index and dielectric constant were measured by ellipsometry technique. Based on our atomic force microscopic (AFM) and ellipsometry results, thin layers prepared through this method showed high surface area, and high porosity ranging between 4.9 and 16.9, low density 2 g/cm, and low dielectric constant. The dielectric constant and porosity of layers increased by increasing the temperature due to the changes in surface roughness and particle size. https://ijpr.iut.ac.ir/article_1078_cbf59822817ea55f04d9681a97fea0bd.pdf 2019-11-26 161 166 ellipsometry sol - gel dielectric constant SiO2 thin film P Sangpour p.sangpour@gmail.com 1 پژوهشکده فناوری نانو و مواد پیشرفته، پژوهشگاه مواد و انرژی، کرج LEAD_AUTHOR K Khosravy 2 پژوهشکده فناوری نانو و مواد پیشرفته، پژوهشگاه مواد و انرژی، کرج AUTHOR M Kazemzad 3 پژوهشکده فناوری نانو و مواد پیشرفته، پژوهشگاه مواد و انرژی، کرج AUTHOR [1]. R.K. Iler, The Chemistry of Silica, Wiley, (1979). 1 [2]. L.W. Hrubesh, J. Non-Cryst. Solids 225 (1998) 335. 2 [3]. John Robertson, High dielectric constant gate oxides for metal oxide Si transistors, (2006) Rep. Prog. Phys. 69327. 3 [4]. R.S.List,CJinS.W. Russell, S. Yamanaka, L.Olsen, L.Le, L.M.Ting, R.H. Havemann, Symposium on VLSI technology, Dig. Tech. Pap. 77 .(1997). 4 [5]. Congmian Zhen,Z He Xiangfu Nie Yinyue Wang, Low dielectric constant nanoporous SiO2 films formed bytwice-modification processing.Materials Letters, (2005). 59: p.1470–1473. 5 [6]. CVD of Nonmetals, W. S. Rees Jr., Editor,VCH, Weinheim (1996). 6 [7]. Sol-gel processing an alternative wayto glasses for optoelectronics Hans Roggendorf and Helmut Schmidt[Fraunhofer-Institut fur Silicatforschung Neunerplatz 2, D-8700 Wurzburg, F.R.G.( 1989). 7 [8]. Woei Chang Ee, Kuan Yew Cheong. Effects of annealing temperature on ultra-low dielectric constant SiO2thin films derived from‌sol–gelspin-on-coatingPhysica B:Condensed Matter.(2008).p.611-615. 8 [9]. A.V. Rao, R.R. Kalesh, Sci. Technol. Adv. Mater. 4(2003) 509. 9 [10]. L.W. Hrubesh, L.E.K., V.R. Latorre, , J. Mater. Tes., (1993). 8: p. 1736. 10 [11]. FTIR analysis of silicon dioxide thin film deposited by Metal organic-based PECVD.auther: B. Shokri , M. Abbasi Firouzjah, S. I. Hosseini.ISPC19 - (2009), Bochum. 11 [12].Ömer Kesmez, Esin Burunkaya, Nadir Kiraz,H. Erdem Çamurlu, Effect of acid, water and alcohol ratios on sol-gel preparation of antireflective amorphous SiO2 coatings, Journal of Non-Crystalline Solids, August (2011), P. 3130–3135. 12
ORIGINAL_ARTICLE Synchronization of the Kuramoto model on the complex networks with bimodal intrinsic frequency distribution In this work, we study the Kuramoto model on scale-free, random and small-world networks with bimodal intrinsic frequency distributions. We consider two models: in one of them, the coupling constant of the ith oscillator is independent of the number of oscillators with which the oscillator interacts, and in the other one the coupling constant is renormalized with the number of oscillators with which the oscillator interacts. For the first model, the time which is required for reaching the stationary state is more than the time which is needed in the second one. Also, for both models the order parameter of the random and scale-free network decreases by increasing the intrinsic frequency with a bimodal distribution. Unlike scale-free and random networks, the order parameter of the small-world network increases by increasing the frequency at first. But later, it decreases and then starts to oscillate. https://ijpr.iut.ac.ir/article_1079_d255d7125673b5cf25981c7980fcc091.pdf 2019-11-26 167 177 synchronization the Kuramoto model complex networks scale-Free random and small-world N Khodadoostan n.khodadoostan@ph.iut.ac.ir 1 دانشکده فیزیک، دانشگاه صنعتی اصفهان LEAD_AUTHOR T Malakoutikhah t.malakoutikhah@ph.iut.ac.ir 2 دانشکده فیزیک، دانشگاه صنعتی اصفهان AUTHOR F Shahbazi 3 دانشکده فیزیک، دانشگاه صنعتی اصفهان AUTHOR ] Manrubia,S.C., Mikhailov, A.S., Zanette, D.H., Emergence of Dynamical Order: Synchronization Phenomena in Complex System, World Scientific, Singapore, 2004. 1 [2] Balanov, A., Jason, N., Postnov, D. and Sosnovseva, O., Synchronization: From Simple to Complex, Springer, Verlag Berlin Heidelberg, 2009. 2 [3] Acebrón, J.A., Bonilla, L. L., Vicente, C.J.P., Ritort, F. and Spigler, R., the Kuramoto model: A simple paradigm for synchronization phenomena, Reviews of Modern Physics, Vol. 77, 2005. 3 [4] Cooray, G., “the Kuramoto Model”, U.U.D.M. Project Report 2008:23, Uppsala University, 2008. 4 [5] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hawang, D.U., “Complex networks: Structure and dynamics”, Physics Reports, Vol. 424, pp. 175-308, 2006. 5 [6] Wu, W.C., Synchronization in Complex Networks of Nonlinear Dynamical Systems, World Scientific, Singapore, 2007. 6 [7] Szabó, G., Fáth, G., “Evolutionary games on graphs”, Physics Reports, Vol. 446, pp. 97 –216, 2007. 7 [8] Cohen, R., and Havlin, S., Complex Networks, Cambridge University Press, New York, 2010. 8 [9] Khoshbakht, H., Shahbazi, F., Aghababaei Samani, K., “Phase synchronization on scale-free and random networks in the presence of noise”, J. Stat. Mech, P10020 ,2008(Online at stacks.iop.org/JSTAT/2008/P10020). 9 [10] Kouhi, R., Shahbazi, F., Aghababaei Samani, K., “Noise-induced Synchronization in 10 Small World Network of Phase Oscillators”, Physical Review E, vol. 86,p. 036204 , 2012 11
ORIGINAL_ARTICLE Studying stimulated Raman scattering using relativistic Vlasov equation Backward stimulated Raman scattering using one-dimensional relativistic Vlasov code is investigated. For conditions similar to those of Single-Hot-Spot experiments, the growth and saturation of SRS are studied. Analysis of electron distribution function, longitudinal electrostatic fields, transverse electromagnetic fields, and electron density shows that kinetic effects play an important role in the saturation of this instability. SRS amplifies the longitudinal field amplitude and could trap, accelerate, and preheat the electrons. https://ijpr.iut.ac.ir/article_1080_1a9dc84dea74215500d74ce31b24c503.pdf 2019-11-26 179 186 stimulated Raman scattering Vlasov code electrostatic fields electromagnetic fields M Sharifi m.sharifi@ph.iut.ac.ir 1 دانشکده فیزیک، دانشگاه صنعتی اصفهان LEAD_AUTHOR A Parvazian parvazin@cc.iut.ac.ir 2 دانشکده فیزیک، دانشگاه صنعتی اصفهان AUTHOR [1] K. Niu; ''Nuclear Fusion'', (Tokyo Institute of Technology, 1989). 1 [2] D. J. Strozzi, E. A. Williams, and A. B. Langdon, Phys. Plasma 14(2007),13104. 2 [3] D. S. Montgomery, Phys. Plasma 9 (2002), 2311. 3 [4] D. S. Montgomery, Phys. Rev. Lett. 87 (2001), 15001. 4 [5] J. D. Lindl, Phys. Plasmas 2 (1995), 3933. 5 [6] C. Lihua, C. Tieqiang, Plasma Sci. Tech. Vol. 9, No. 4 (2007). 6 [7] F. Valentini, Phys. Plasmas 13 (2006), 052303. 7 [8] D. J. Strozzi, M. M. Shoucri, and A. Bers, Comput. Phys. Commun. 164,156 (2004). 8 [9] D. J. Strozzi, M. M. Shoucri, A. Bers, E. A. Williams, and A. B. Langdon,J. Plasma Phys. 72(2006), 1299. 9 [10] A. Ghizzo, P. Bertrand, M. Shoucri, et al., J. Comp. Phys., 90 (1990), 431. 10 [11] P. Bertrand et al., Phys. Fluids B 2(1990), 1028 11
ORIGINAL_ARTICLE A study on melting process of perylene using molecular dynamics simulation Melting process of perylene is investigated using molecular dynamics simulation. Some of thermodynamic properties such as potential energy and transition order parameter are calculated as a function of temperature in the range of 500 K-600 K. These calculations are performed by two different methods in NPT and NVT ensembles. The selected interaction potential is Re-squared and the simulations are performed by LAMMPS (a classic molecular dynamics code). The results show that NPT ensemble is more appropraite for the study of melting process than NVT ensemble and shows a good agreement with experimental melting temperature. https://ijpr.iut.ac.ir/article_1081_a1b838900456c72d83f0e4696206a030.pdf 2019-11-26 187 192 molecular dynamics melting order parameter re-squared potential phase transition perylene M Peyvasteh monaph7@yahoo.com 1 گروه فیزیک، دانشگاه صنعتی خواجه نصیرالدین طوسی LEAD_AUTHOR S Setayeshi 2 گروه فیزیک، دانشگاه صنعتی خواجه نصیرالدین طوسی AUTHOR M Vaez Zadeh 3 گروه فیزیک، دانشگاه صنعتی خواجه نصیرالدین طوسی AUTHOR R Afzal Zadeh 4 گروه فیزیک، دانشگاه صنعتی خواجه نصیرالدین طوسی AUTHOR . M. Babadi, M.R. Ejtehadi, R. Everaers, J. Comput. Phys., 209, (2006), 770 1 4. M. Babadi, R. Everaers, M.R. Ejtehadi, J. Chem. Phys.,124,(2006),174708 2 5. S. Chandrasekhar, (Liquid Crystal), Cambridge University Press, )1992( 3 6. E. Abrahamsson, S. S. Plotkin, J. Molecular Graphics and Modeling, 28, 2009, 140 4 7. Mark R. Wilson, J. Chem. Phys.,107,(1997),8654 5 8. W. H. Moon, H. J. Kim, Ch. H. Choi, Scripta Mater.,56,(2007), 345 6 9. Y. Qi, T. Cagin, W. L. Johnson, W. A. Goddard, J. Chem. Phys., 115,(2001), 385 7 10. Y. Hong, L. YongJun, Ch. Min, G. Z. Yuan, “A molecular dynamics study on melting point and specific heat of Ni3Al alloy”, Sci China-Phys Mech Astron,50, (2007),407 8 11. Y. Wena, Z. Zhua, R. Zhub, G. Shao, Physica E,25,(2004),47 9
ORIGINAL_ARTICLE Description of nuclear many-body interactions within the framework of quantum deformation theory A fermion realization of compact symplectic algebra provides a natural framework for studying pairing correlations of many-body interactions in nuclei. Here, we use quantum deformation concept in order to describe pairing correlations in atomic nuclei. While the nondeformed limit of the theory provides a reasonable and overall description of certain nuclear properties and fine structure effects, the results show that the q deformation plays a significant role in understanding higher-order effects in the many-body interactions. https://ijpr.iut.ac.ir/article_1082_ff3d96bbcfb99f2220e70de7a7860bfa.pdf 2019-11-26 193 199 quantum deformation theory many-body interactions quantum algebra and nucleonic pairing E Yaghoubiopour eyaghubi@yahoo.com 1 گروه فیزیک، دانشکده علوم، دانشگاه اصفهان LEAD_AUTHOR 1Z. Haghshenasfard, M. H. Naderi, and M. Soltanokotabi, "Subluminal to superluminal propagation an optical pulse in an f- deformed Bose- Einstein condensate," J. Phys. B: Atom. Molec.41, 14 (2008); 1 .2A. Mahdifar, W. Vogel, Th. Richter, R. Roknizadeh, and M. H. Naderi, "Coherent states of a harmonic oscillator on a sphere in the motion of a trapped ion," Phys. Rev. A 78, 63814 (2008); 2 .3A. Lavagno and P. Narayana Swamy, "Generalized thermodynamics of q-deformed bosons and fermions," Phys. Rev. E 65 (3), 036101 (2002); 3 .4Dennis Bonatsos, B. A. Kotsos, P. P. Raychev, and P. A. Terziev, "Rotationally invariant Hamiltonians for nuclear spectra based on quantum algebras," Phys .Rev. C 66 (5), 054306 (2002); 4 .5A. Ballesteros, O. Civitarese, F. J. Herranz, and M. Reboiro, "Fermion-boson interactions and quantum algebras," Phys. Rev. C 66 (6), 064317 (2002); 5 .6O. Civitarse A. Ballesteros, and M. Reborio, "Correspondence between the q- deformed harmonic oscillator and finite range potentials," Phys. Rev. C 68, 044307 (2003); 6 .7P. P. Raychev, R. P. Roussev, and Yu. F. Smirnov, "The quantum algebra suq(2) and rotational spectra of deformed nuclei," J. Phys. G: Nucl. Part. Phys. 16, L137 (1990); 7 .8S. Shelly Sharma, "q analogue realization of nucleon pairing," Phys.Rev.C 46 (3), 904 (1992); 8 .9D. Bonatsos, "ARE Q-BOSONS SUITABLE FOR THE DESCRIPTION OF CORRELATED FERMION PAIRS," J.Phys. a:Math.Gen.25 (3), L101-L108 (1992); 9 .10G. Racah, "Theory of Complex Spectra III " Phys. Rev. 63, 367 (1943); 10 .11B. H. Flowers, "Studies in jj- coupling I. classification of nuclear and atomic states," Proc. R. Soc. A 212, 248 (1952); 11 .12G. Rosensteel and D. J. Rowe, "Nuclear Sp(3,nbspR) Model," Phys. Rev.Lett.38 (1), 10 (1977); 12 .13K. D. Sviratcheva, J. P. Draayer, and A. I. Georgieva, "An algebraic pairing model with Sp(4) symmetry and its deformation," J. Phys. G: Nucl. Part. Phys. 29, 1281-1297 (2003); 13 .14K. D. Sviratcheva, A. I. Georgieva, and J. P. Draayer,, "Staggering behavior of 0+ state energies in the Sp(4) pairing model," Phys. Rev. C 69, 024313 (2004); 14 .15A. M. Scarfone and P. N. Swamy, "An interacting particles system revisited in the framework of the q-deformed algebra," J.Phys. a:Math.Theor.41 (27) (2008); 15 .16T. Hayashi, "Q-ANALOGS OF CLIFFORD AND WEYL ALGEBRAS - SPINOR AND OSCILLATOR REPRESENTATIONS OF QUANTUM ENVELOPING-ALGEBRAS," Commun.Math.Phys.127 (1), 129-144 (1990); 16 .17B. Abdesselam, D. Arnaudon, and A. Chakrabarti, "REPRESENTATIONS OF U-Q(SO(5)) AND NONMINIMAL Q-DEFORMATION," J. Phys.a:Math. Gen.28 (13), 3701-3708 (1995); 17 .18K. D. Sviratcheva, A. I. Georgieva, V. G. Gueorguiev, J. P. Draayer, and M. I. Ivanov, "Deformations of the fermion realization of the sp(4) algebra and its subalgebras," J.Phys. a:Math. Gen.34 (40), 8365-8382 (2001); 18 .20J. Engel, K. Langanke, and P. Vogel, "Pairing and isospin symmetry in proton-rich nuclei," Phys. Lett. B 389 (2), 211-216 (1996); 19 .21P. Navaratil, and B. R. Barrett, "Four- nucleon shell model calcualtion in a Faddev- like approch," Phys. Rev. C 59, 1906 (1999); 20 .22P. Navaratil, and W. E. Ormand, "Ab initio shell model a genuine three- nucleon force for the p- shell nuclei," Phys. Rev. C 68, 034305 (2003); 21 .23F. Pan, V. G. Gueorguiev, and J. P. Draayer, "Algebraic solution of an extended pairing model for wel deformed nuclei," Phys. Rev. Lett. 92, 112503 (2004); 22 .24K. D. Sviratcheva, C. Bahri, A. I. Georgieva, and J. P. Draayer,, "Physical significance of q deformation and many- body interactions in nuclei," Phys. Rev. Lett. 93, 152501 (2004). 23
ORIGINAL_ARTICLE A study of the electronic conductance in converting a polyacetylene into polystyrene oligomer In this paper, the electronic conductance of a polyacetylene polymer embedded between two simple chains is studied by using transfer matrix method within the tight-binding and first neighbor approach. Also, by adding benzene molecules to polyacetylene we obtain the system conductance in its conversion to polystyrene polymer. The results show that as the number of benzene molecules in the middle of center system increases the conductance in the tunneling area of polyacetylene improves and this area comes close to the resonance area. In contrast, a part of resonance area tends to transform into polystyrene tunneling zone. https://ijpr.iut.ac.ir/article_1083_484b5584db8a51d58bd998283079a5d7.pdf 2019-11-26 201 206 tight-binding transfer matrix electronic conductance polyacetylene polystyrene H Rabani rabani-h@sci.sku.ac.ir 1 گروه فیزیک، دانشکده علوم پایه، دانشگاه شهرکرد، شهرکرد LEAD_AUTHOR M Mardani mohammad-m@sci.sku.ac.ir 2 مرکز پژوهشی فناوری نانو، دانشگاه شهرکرد، شهرکرد AUTHOR M Mardani moh.mardaani@gmail.com 3 مرکز پژوهشی فناوری نانو، دانشگاه شهرکرد، شهرکرد AUTHOR Y Alipour 4 گروه فیزیک، دانشکده علوم پایه، دانشگاه شهرکرد، شهرکرد AUTHOR ] G. Cuniberti and G. Fagas, Introducing Molecular Electronics, edited by K. Richter (Springer, Berlin and heidelberg, 2005). 1 [2] N. Agrait, A. Levy-Yeyati and van J.M. Ruitenbeek, Phys. Rep., 377, 81 (2003). 2 [3] M. Paulsson and S. Stafstorm, J. Phys. Cond. Matt., 12 ,9433(2000). 3 [4] R. P. Andres, Science, 272, 1323 (1996). 4 [5] C. Joachim, J. K. Gimzewski, R. R. Schlitter and C. Chavy, Phys. Rev. Lett., 74, 2102 (1995). 5 [7] R. Landauer, Phys. Lett. A 85, 91 (1986). 6 [8] C. Pacher and E. Gornik, Physica E, 21, 783, (2004). 7 [9] S. Datta, Electronic Transport in Mesoscopic Systems, (Cambridge University Press, Cambridge, 1995). 8 [10] P.Harrison, Quantum wells, wires and dots, (John Wiley, New York, 2000). 9 [11] D. Qian, W. K. Liu and Q. Zheng, Comput. Methods Appl. Mech. Eng. 197, 3291 (2008). 10 [12] M. Mardaani, A.A. Shokri and K. Esfarjani, Physica E, 28, 150 (2005). 11 [13] M. Mardaani, H. Rabani and A. Esmaeili, Solid State Commun., 151, 928 (2011). 12 [14] D. Nozaki, H. M. Pastawski and G. Cuniberti, New Journal of Physics, 12, 063004 (2010). 13