ORIGINAL_ARTICLE Ab initio study of mechanical and thermal properties of GaN nanotubes by phonon calculations In this work, we calculated the phonon dispersion of GaNNTs (4,0) and (4,4) by quantum ESPRESSO package using Density Functional Theory (DFT), pseudo potentials, and plane wave self-consistent field (PWscf) method. For the purpose of lattice-dynamical calculation and phononic properties, we used PWscf and Phonon codes. The former produces the self-consistent electronic and all related computations (forces, stresses, structural optimization). The latter solves the DFPT equations and calculates dynamical matrices for a single wave-vector or for a uniform grid of wave-vectors. The stability of these nanotubes was studied by phonon curves. According to the calculations, the breathing mode was distinguished for both nanotubes. The mechanical properties of these nanotubes were characterized by the results obtained for phonon dispersion curves. Finally, a quantitative comparison was made between the values of stiffness of GaNNTs (4,0) and (4,4). https://ijpr.iut.ac.ir/article_1097_daa3b435f201412f7498a5ec07cf6014.pdf 2019-11-26 221 224 quantum ESPRESSO single wall GaNNTs phonon properties mechanical properties thermal properties H Tashakori tashakori@qom-iau.ac.ir 1 . دانشکده فیزیک، دانشگاه کاشان، کاشانآزمایشگاه فیزیک محاسباتی، گروه فیزیک، دانشکده علوم، دانشگاه‌آزاد اسلامی، واحد قم، قم LEAD_AUTHOR F Kanjouri 2 گروه فیزیک، دانشکده علوم، دانشگاه خوارزمی، کرج AUTHOR A Nejati 3 آزمایشگاه فیزیک محاسباتی، گروه فیزیک، دانشکده علوم، دانشگاه‌آزاد اسلامی، واحد قم، قم AUTHOR 1. P M Ajayan and T W Ebbesen, Rep. Prog. Phys. 60 (1997) 1025. 1 2. Z L Wang, P Poncharal, and W A De Heer, J. Phys. Chem. Solids 61 (2000) 1025. 2 3. S S Xie, W Z Li, Z W Pan, B H Chang, and L F Sun, J. Phys. Chem. Solids 61 (2000) 1153. 3 4. Y Wu, H Yan, M Huang, B Messer, J Song, and P Yang, Chem. Eur. 8 (2002) 1260. 4 5. P D Yang, et al., J. Adv. Funct. Mater. 12 (2002) 323. 5 6. N G Chopra, et al., Science 269 (1995) 966. 6 7. A Gali, Phys. Rev. B 73 (2006) 245415. 7 8. S Meng, E Kaxiras, and Z Zhang, Nano Lett. 7 (2007) 663. 8 9. S M Lee, Y H Lee, Y G Hwang, J Elsner, D Porezag, and Th Frauenheim, Phys. Rev. B 60 (1999) 7788. 9 10. J Golgberger, R He, Y Zhang, S Lee, H Yan, H-J Choi, and P Yang, Nature 422 (2003) 599. 10 11. H Morkoç, et al., Appl. Phys. 76, 3 (1994) 1363. 11 12. S M Lee, Y G Hwang, J Elsner, D Porezag, and T Frauenheim, Phys. Rev. B 60 (1999) 7788. 12 13. M Zhang, Z M Su, L K Yan, Y Q Qiu, G H Chen, and R S Wang, Chem. Phys. Lett. 408 (2005) 145. 13 14. Y H Guo, M X Chen, Z H Guo, and X H Yan, Phys. Lett. A 372 (2008) 2688. 14 15. Q Sun, A Selloni, T H Myers, and W A Doolittle, Phys. Rev. B 73 (2006) 155337. 15 16. Q Sun, A Selloni, T H Myers, and W Alan Doolittle, Phys. Rev. B 74 (2006) 195317. 16 17. A L Rosa, J Neugebauer, Phys. Rev. B 73 (2006) 205314. 17 18. G X Cen, Y Zhang, D D Wang, J M Zhang, and K W Xu, Computational and Theoretical Chemistry 963 (2011) 18. 18 19. L C Ma, Y Zhang, J M Zhang, and K W Xu, Physica B 406 (2011) 3502 19
ORIGINAL_ARTICLE Effect of deposition time on structure of silver nanoparticles embedded in diamond-like carbon matrix made by RF-PECVD method Silver nanoparticles embedded in DLC matrix, were prepared by co-deposition of RF-Sputtering and RF-PECVD method from acetylene gas and sliver target. The RF power and initial pressure of chamber were fixed. Variations of morphology, optical and electrical properties of these films over time were investigated https://ijpr.iut.ac.ir/article_1098_c774734fe20dc3e6e3b3ce3c2cf82d8d.pdf 2019-11-26 225 229 silver nanoparticles RF-PECVD optical and electrical properties S Abdolghaderi s.abdolghaderi@gmail.com 1 آزمایشگاه کربن، گروه فیزیک، دانشگاه الزهرا، تهران LEAD_AUTHOR A Shafiekhani ashafie@ipm.ir 2 آزمایشگاه کربن، گروه فیزیک، دانشگاه الزهرا، تهران آزمایشگاه کربن، پژوهشکده فیزیک، پژوهشگاه دانش‌های بنیادی، تهران AUTHOR 1. S Hussain, R K Roy, and A K Pal, Materials Chemistry and Physics 99 (2006) 375. 1 2. J Robertson, Materials Science and Engineering R 37 (2002) 129. 2 3. T Ghodselahi, M A Vesaghi, A Shafiekhani, A Baradaran, A Karimi, and Z Mobini, Surface and Coating Technology 202 (2008) 2731. 3 4. M F Al-Kulhaili, J. Phys. D: App. Phys. 40 (2007) 2847. 4 5. F Qi, Y X Leng, H Sun, and N Huang, IEEE Trans. Plasma Sci. 37 (2009) 1136. 5 6. Z Zhang and C Noguez, Plasmonics 3 (2008)127. 6 7. K Lance Kelly, E Coronado, L Zhao, and G C Schatz, J. Phys. Chem. B 107 (2003) 668. 7 8. F Hong-Liang, G Xiao-Yong, Z Zeng-Yuan, and M Jiao-Min, J. Korean Phys. Soc. 56 (2010) 1176 8
ORIGINAL_ARTICLE Electro-optical evaluation of tungsten oxide and vanadium pentoxide thin films for modeling an electrochromic device In this study, tungsten oxide and vanadium oxide electrochromic thin films were placed in vacuum and in a thickness of 200 nm on a transparent conductive substrate of SnO2:F using the physical method of thermal evaporation. Then they were studied for the optical characteristics in the wavelength range from 400 to 700 nm and for their electrical potentials in the range form +1.5 to -1.5 volts. The films were post heated in order to assess changes in energy gap with temperature, at temperatures120 , 300 and 500°C. Refractive and extinction coefficients and the transition type of films in the visible light range and in the thickness of 200 nm were determined and measured. X-ray diffraction pattern and SEM images and cyclic Voltammetry of layers were also studied. The results of this study due to the deposition of layers, the layer thickness selected, the type of substrate, the range of annealing temperatures and selected electrolyte were in full compliance with the works of other researchers [1,2,3]. Therefore, these layers with features such as crystal structure, refractive and even extinction coefficients in the range of visible light, the appropriate response of chromic switch in the replication potential, good adhesion to the substrate, and the high amount of optical transmition and so on, prove useful to be used in an electrochromic device https://ijpr.iut.ac.ir/article_1099_437412c96744557cc87e9988f598a490.pdf 2019-11-26 231 240 thin film electrochromic tungsten oxide vanadium oxide H Najafi Ashtiani hamednajafi59@yahoo.com 1 گروه فیزیک، دانشگاه ولایت، ایرانشهر LEAD_AUTHOR M Hadavi 2 گروه فیزیک، دانشگاه سیستان و بلوچستان، زاهدان AUTHOR 1. H Yang, F Shang, L Gao, and H Han, Applied Surface Science 253 (2007) 5553. 1 2. R Solarska, B D Alexander, and J Augustynski, Comptes Rendus Chimie 9 (2006) 301. 2 3. G J Fang, K-L Yao, and Z-L Liu, Thin Solid Films 394 (2001) 63. 3 4. J Livage, D Ganguli, Solar Energy Materials & Solar Cells 60 (2000) 201. 4 5. C M Lampert, C G Granqvist (Eds), “Large-area Chromogenics: Materials and Devices for Trancmittance Control”, SPIE Optical Engineering Press, Washington (1988). 5 6. O Schilling and K Colbow, Sens. Actuators B 21 (1994) 151. 6 7. D Wruck, S Ramamurthi and M Rubin, Thin Solid Films 182 (1989) 79. 7 8. M U Qadria, M Cinta Pujola, J Ferré-Borrullb, E Llobet, M Aguilóa, and F Díaz; Procedia Engineering 25 (2011) 260. 8 9. H Hirashima, M Ide, and T Yoshida, J. Non-Cryst. Solids 86 (1986) 327. 9 10. F Nava, O Bisi, P Psaras, H Takai, and K N Tu, Thin Solid Films 140 (1986) 167 . 10 11. Wen-Jing Li and Z-W Fu, Applied Surface Science 256, 8 (2010) 2447. 11 12. C Navonea, S Tintignaca, J P Pereira-Ramosa, R Baddour-Hadjeana, and R Salot; Solid State Ionics 192, 1 (2011) 343. 12 13. R Sivakumar, A Moses Ezhil Raj, B Subramanian, M Jayachandran, D C Trivedi, and C Sanjeeviraja, Materials Research Bulletin 39 (2004) 1479. 13 14. A Subrahmanyam, and A Karuppasamy, Solar Energy Materials and Solar Cells 91, 4 (2007) 266. 14 15. c, C Mathieu; Catalysis Today 113, 3– 4 (2006) 230. 15 16. C G Granquist, “Handbook of Electrochromic Materials”, Elsevier, Amsterdam (1995). 16 17. S M A Durrnia, E E Khawaja, M A Salimb, M F Al-Kuhailib, and Al Shukri, Solar Energy Materials & Solar Cells 71 (2002) 313. 17 18. L Ottaviano, A Pennisi, F Simone, and A M Salvi, Optical Materials 27 (2004) 307. 18 19. P S Patil, S B Nikam, and L D Kadam, Materials Chemistry and Physics 69 (2001) 77. 19 20. T Nishide and F Mizukami, Thin Solid Films 259 (1995) 212. 20 21. E E Khawaja, S M A Durrani, and M A Daus, Journal of Physics: Condensed Matter 9 (1997) 9381. 21 22. Y B Saddeek and K A Aly, Materials Chemistry and Physics, In Press. 22 23. A Kumar, P Singh, N Kulkarni, and D Kaur, Thin Solid Films 516 (2008) 912 23 25. A D McNaught, A Wilkinson, IUPAC, “Compendium of Chemical Terminology”, Blackwell Scientific Publication, Oxford, UK (1997). 24 26. B D Cullity, “Elements of X-Ray Diffraction”, Addison-Wesley Publishing (1978). 25 27. K J Patela, C J Panchala, M S Desaia, and P K Mehta; Materials Chemistry and Physics 124, 1 (2010) 884. 26 28. S S Kalagia, S S Malib, D S Dalavib, A I Inamdarc, H Imc, and P S Patil, Electrochimica Acta 85 (2012) 501. 27 29. I Quinzeni, S Ferrari, E Quartarone, and P Mustarelli, Journal of Power Sources 196, 23 (2011) 10228. 28 30. C G Granqvist, Sol. Energy Mater. Sol. Cells 60 (2000) 201. 29 31. S R Bathe, and P S Patil, Sol. Energy Mater. Sol. Cells 91 (2007) 1097. 30 32. J Arakaki, R Reyes, M Horn, and W Estrada, Sol. Energy Mater. Sol. Cells 37 (1995) 33. 31 33. R Deshpande et al., Solid State Ionics 178 (2007) 895. 32 34. F L Souza, M A Aegerter, and E R Leite, Electrochimica Acta 53, 4 (2007) 1635 33
ORIGINAL_ARTICLE Correlation between porosity and roughness as obtained by porous silicon nano surface scattering spectrum Reflection spectra of four porous silicon samples under etching times of 2, 6, 10, and 14 min with current density of 10 mA/cm2 were measured. Reflection spectra behaviors for all samples were the same, but their intensities were different and decreased by increasing the etching time. The similar behavior of reflection spectra could be attributed to the electrolyte solution concentration which was the same during fabrication and reduction of reflection spectrum due to the reduction of particle size. Also, the region for the lowest intensity at reflection spectra was related to porous silicon energy gap which shows blue shift for porous silicon energy gap. Roughness study of porous silicon samples was done by scattering spectra measurements, Rayleigh criteria, and Davis-Bennet equation. Scattering spectra of the samples were measured at 10, 15, and 20 degrees by using spectrophotometer. Reflected light intensity reduced by increasing the scattering angle except for the normal scattering which agreed with Rayleigh criteria. Also, our results showed that by increasing the etching time, porosity (sizes and numbers of pores) increases and therefore light absorption increases and scattering from surface reduces. But since scattering varies with the observation scale (wavelength), the relationship between scattering and porosity differs by varying the observation scale (wavelength) https://ijpr.iut.ac.ir/article_1100_cf305baefda3457eeb946e03e22e6045.pdf 2019-11-26 242 248 morphology scattering roughness porous silicon R Dariani dariani@alzahra.ac.ir 1 گروه فیزیک، دانشگاه الزهرا (س)، تهران LEAD_AUTHOR S Ebrahimnasab 2 گروه فیزیک، دانشگاه الزهرا (س)، تهران AUTHOR 1. S Motamen, M Vahabi, and G R Jafari, Int. Journal of Modern Physics C 23 (2012) 10. 1 2. J A Ogilvy, “Theory of Wave Scattering from Random Rough Surfaces”, Taylor & Francis (1991). 2 3. M Paillet, P Poncharal, and A Zahab, Phys. Rev. Lett. 94 (2005) 186801. 3 4. L T Canham, Appl. Phys. Lett. 57 (1990) 333. 4 5. H E Bennet and J O Porteus, J. Opt. Socam. 51, 2 (1960) 123. 5 6. A Mortezaali, R S Dariani, S Asghari, and Z Bayindir, Applied Optics 46 (2007) 495. 6 7. L Vina, S Logothetidis, and M Cardona, Phys. Rev. B 30 (1984) 1979. 7 8. S D Milani, R S Dariani, A Mortezaali, V Daadmehr, and K Robee, J Optoelectronics and Advanced Materials 8 (2006) 1216. 8 9. G R Jafari, P Kaghazchi, R S Dariani, A Iraji Zad, S M Mahdavi, M R Rahimi Tabar, and N Taghavinia, Journal of Statistical Mechanics 2005 (2005) P04013. 9 10. S K Srivastava, D Kumar, P K Singh, M Kar, V Kumar, and M Husain, Solar Energy Material & Solar Cells 94, 9 (2010) 1506. 10 11. J Dian, A Macek, D Niznansky, I Nemec, V Vrkoslav, T Chvojka, and I Jelinek, Applied Surface Science 238 (2004) 169. 11 12. Z Fekih, F Z Otmani, N Ghellai, and N E Chabanne-Sari, Moroccan Journal of Condensed Matter 7, 1 (2006) 35 12
ORIGINAL_ARTICLE Ab initio study of the structural, magnetic, and electronic properties of copper and silver clusters and their alloys with one palladium atom In this paper, the structural, magnetic, and electronic properties of two- to nine-atom copper and silver clusters and their alloys with one palladium atom are investigated by using full-potential all-electron density functional computations. After calculating minimized energy of several structural isomers of every nanocluster, it is argued that the small size nanoclusters (up to size of 6), ‎ prefer planar structures, while by increasing size a 2D-3D structural transformation is observed. The structural transformation of pure and copper-palladium clusters occurs in the size of seven and that of silver-palladium cluster in happens at the size of six. The calculated second difference and dissociation energies confirm that the two- and eight- atom pure clusters and three- and seven- atom alloyed clusters are magic clusters. The electronic and magnetic properties of stable isomers are calculated and considered after applying many body based GW correction. https://ijpr.iut.ac.ir/article_1101_4587626acaf7e41b615f9b1baa95dab6.pdf 2019-11-26 249 260 density-functional study numerical atom centred orbitals copper nanoclusters silver nanoclusters S. J Hashemifar hashemifar@cc.iut.ac.ir 1 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان LEAD_AUTHOR H Najafvandzadeh 2 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان AUTHOR H Kahnouji 3 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان AUTHOR H Akbarzadeh 4 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان AUTHOR 1. E M Fernández, J M Soler, I L Garzón, and L C Balbás. Phys. Rev. B 70 (2004) 165403. 1 2. M Neergat, A K Shukla, and K S Gandhi, J. Appl. Electrochem. 31 (2001) 373.‎‎ 2 3. W Li, W Zhou, H Li, Z Zhou, B Zhou, G Sun, and Q Xin, Electrochim. Acta 49 (2004) 1045. 3 4. C Sousa, V Bertin, and F Illas, J. Phys. Chem. B 105 (2001) 1817.‎‎ 4 5. V Blum, R Gehrke, F Hanke, P Havu, V Havu, X Ren, K Reuter, and M ‎Scheffler,‎‎‎‎ Comp. Comm. Phys. 180 (2009) 2175‎. 5 6. Ch ‎‎Friedrich and ‎A ‎‎Schindlmayr‎‎, ‎‎‎‎‎John von Neumann Institute for Computing Ulich‎, ‎NIC Series‎ ‎‎‎31 ‎(‎200‎6‎)‎‎‎ 335‎. 6 25. J Ho, K M Ervin, and W C Lineberger, J. Chem. Phys. 93 (1990) 6987. 7 26. M B Knickelbein, Chem. Phys. Lett. 192 (1992) 129. 8 27. C Jackschath, I Rabin, and W Schulze. Zeitschrift fur Physik D: Atoms, Molecules and Clusters 22 (1992) 517 9 7. M Afshar and M Sargolzaei. AIP Advances 3 (2013) 112122. 10 8. M J Piotrowski, P Piquini, and J L F Da Silva, Phys. Rev. B 81, (2010) 155446. 11 9. J P Perdew, K Burke, and M Ernzerhof, Phys. Rev. Lett. 77 (1996)‎ 3865 . 12 10. Y Zhang and W Yang, Phys. Rev. Lett. 80 (1998) 890. 13 11. C Lee, W Yang, and R G Parr, Phys. Rev. B 37 (1988‎)‎‎ 785. 14 12. S Zhao‎, Z ‎H Li, W-‎N ‎Wang, ‎Z ‎P Liu, and K N Fan‎, J. Chem. Phys. 124 (2006) 184102. 15 13. E A Rohlfing and J J Valentini, Chem. Phy. 84 (1986) 6560. 16 14. D E Powers, S G Hansen, M E Geusic, D L Michalopoulos, and R E Smalley, J. Chem. Phys. 78 (1982) 2866. 17 15. K P Huber and G Herzberg, “Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules”, Van Nostrand Reinhold Company, New York (1979) 716. 18 16. V A Spasov, T H Lee, Maberry, J P Ervin, and K M Ervin, J. Chem. Phys. 110 (1999) 5208. 19 17. K Kobayashi, N Kurita, H Kumaharo, and K Tago. Phys. Rev. A 43 (1991) 5810. 20 18. L Weidong, J Pennycook Stephen, and Sokrates, Nano Lett. 7 (2007) 3134. 21 19. D A Kilimis and D G Papageorgiou, Journal of Molecular Structure: THEOCHEM. 939 (2010) 112. 22 20. I Efremenko, M Sheintuch, Chemical Physics Letters. 401 ( 2005) 232. 23 21. C Kittel, 8th Ed. “Introduction to Solid State Physics”, Wiley, New ‎York ‎‎(2005). 24 22. W de Heer, Rev. Mod. Phys. 65 (1993) 611. 25 23. M Brack, Rev. Mod. Phys. 65 (‎ 1993‎) 677 26
ORIGINAL_ARTICLE Measuring thermal diffusivity of Au nano-fluid prepared by gamma radiation Thermal diffusivity of Au nanofluid was measured by using a dual beam mode-mismatched thermal lens method. The samples were prepared in various sizes by utilizing the gamma radiation method. In the dual beam mode-mismatched thermal lens, a diode laser (532 nm) was used as an excitation beam and a He-Ne laser with the beam output at 632.8 nm was used as a probe beam. Thermal diffusivity of gold nano-fluid increased with the increasing particle sizes ranging from 12.4 to 33 nm https://ijpr.iut.ac.ir/article_1102_93446fbb152674beb36a80d2da2782ee.pdf 2019-11-26 261 266 thermal diffusivity thermal lens nanoparticle M Raeisi raeisi.morteza@sci.sku.ac.ir 1 گروه فیزیک، دانشکده علوم، دانشگاه شهرکرد، شهرکرد LEAD_AUTHOR E Shahriari 2 گروه فیزیک، دانشکده علوم، دانشگاه شهرکرد، شهرکرد AUTHOR 1. D Compton, L Cornish, and E van der Lingen, Gold Bull. 36 (2003) 51. 1 2. P N Prasad, “Nanophotonics”, Wiley, New York (2004). 2 3. S E Maiga, C T Nguyen, and N Galanis, Int. J. Numer. Methods H 16 (2006) 275. 3 4. Q Xue, and W M Xu, Mat. Chem. Phys. 90 (2005) 298. 4 5. C V Bindhu, S S Harilal, V P N Nampoori, and C P G Vallabhan, Mod. Phys. Lett. B 13 (1999) 563. 5 6. E Shahriari, W M M Yunus, K Naghavi, and Z A Talib, Opt. Commun. 283 (2010) 1929. 6 7. J Shen, M L Baesso, and R D Snook, J. Appl. Phys. 75 (1994) 37388. 7 8. J M Harris and N J Dovichi, Anal. Chem. 52 (1980) 695. 8 9. N J Dovichiand and J M Harris, Anal. Chem. 53 (1981) 106. 9 10. J Shen, A J Soroka, and R D Snook, J. Appl. Phys. 78 (1995) 700. 10 11. J Turkevich, Gold Bull. 18 (1985)125. 11 12. D G Cahill, W K Ford, and K E Goodson, J. Appl. Phys. 93 (2003) 793. 12 13. C W Nan, R Birringer, and D R Clarke, J. Appl. Phys. 81 (1997) 6692 13
ORIGINAL_ARTICLE Study of shear thickening behavior in colloidal suspensions We studied the shear thickening behavior of the nano silica suspension (silica nanoparticles 12 nm in size suspended in ethylene glycol) under steady shear. The critical shear rate for transition into shear thickening phase was determined at different concentrations and temperatures. The effect of temperature and concentration was studied on the shear thickening behavior. In silica suspension, it was observed that all the samples had a transition into shear thickening phase and also by increasing the temperature, critical shear rate increased and viscosity decreased. Our observations showed that movement in silica suspension was Brownian and temperature could cause a delay in transition into shear thickening phase. Yet, we observed that increasing the concentration would decrease critical shear rate and increase viscosity. Increasing temperature increased Brownian forces and increasing concentration increased hydrodynamic forces, confirming the contrast between these two forces for transition into shear thickening phase for the suspensions containing nano particles https://ijpr.iut.ac.ir/article_1103_425247f117b481c245fe1c370150152c.pdf 2019-11-26 267 275 shear thickning shear thinning colloidal suspension critical shear rate N Maleki Jirsaraee maleki@alzahra.ac.ir 1 آزمایشگاه سیستم‌های پیچیده، گروه فیزیک، دانشکده علوم پایه، دانشگاه الزهرا، تهران LEAD_AUTHOR H Parnak 2 آزمایشگاه سیستم‌های پیچیده، گروه فیزیک، دانشکده علوم پایه، دانشگاه الزهرا، تهران AUTHOR A Bigdeli 3 آزمایشگاه سیستم‌های پیچیده، گروه فیزیک، دانشکده علوم پایه، دانشگاه الزهرا، تهران AUTHOR SH Rouhani 4 دانشکده فیزیک، دانشگاه صنعتی شریف، تهران AUTHOR 1. S S Shenoy, N J Wagner, and J W Bender, J. Rheol, Acta 42 (2003) 282. 1 2. M R Jolly, and J W Bender, US patent application (2006) 0231357. 2 3. J Persello, A Magnin, J Chang, J M Piau, and B Cabane, Journal of Rheology 38 (1994) 1845. 3 4. J C van der Werff and C G de Kruif, Journal of Rheology 33 (1989( 421. 4 5. Y S Lee and N J Wagner, Rheol Acta 42 (2003(199. 5 6. J D Lee, J H So, and S M Yang, Journal of Rheology 43 (1999) 1117. - 6 25. S Zhang, Y Zhao, X Cheng, G Chen, and Q Dai, J. Alloys and Compounds 470 (2009) 168. 7 26. C Sauter, M A Emin, H P Schuchmann and S Tavman, J. Ultrason Sonochem. 15 (2008)517-523 . 8 27. T A Hassan, V K Rangari, and S Jeelani, J. Ultrason Sonochem. 17 (2010) 947. 9 28. T A Hassan, V K Rangari, and S Jeelani; J. Mat. Sci. Engin. A 527 (2010) 2892. 10 7. R L Hoffman, Advances in Colloid and Interface Sci. 17 (1982) 161. 11 8. R L Hoffman, J Colloid Interface Sci. 46 (1974) 491. 12 9. J Brady and G Bossis, J. Fluid Mech. 155 (1985) 105. 13 10. B J MaranZano and N J Wagner, J. Chem. Phys. 114, 23 (2001) 10514. 14 11. B J Maranzano and N J Wagner, J. Rheol. 45, 5 (2001) 1205. 15 12. Y S Lee and N J Wagner; J. Rheol. Acta 42, 199 (2003). 16 13. R L Hoffman, Trans. Soc. J. Rheology 16 (1972) 155. 17 14. J Bender and N Wagner, J. Rheology 40 (1996) 899. 18 15. W H Boersma; J Laven, H N Stein; J. American Institute of Chemical Engineers 36 (1990), 321. 19 16. G Bossis and J F Brady, J. Chem. Phys. 87 (1987) 5437. 20 17. D R Foss and J F Brady, J. Fluid Mech. 407 (2000) 167. 21 18. G Bossis and J F Brady, J. Chem. Phys. 80 (1984) 5141. 22 19. D P Kalman and N J Wagner, J. Rheol. Acta. 48 (2009) 897. 23 20. A J Shah, “Rheology of Shear Thickening Mineral Slurries”, MSc. Thesis, School of Civil, Environmental and Chemical Engineering Science, University (2007); Zupancic, R Lapasin, and M Zumer, J. Progress in Organic Coatings 30 (1997) 67. 24 21. J R Melrose, J H Vliet, and R C Ball, J. Phys. Rev. Lett. 77 (1996) 4660. 25 22. S R Raghavan and S Khan, Journal of Colloid and Interface Sci. 185 (1997) 57. 26 23. J G Ramirez; “Characterization of Shear-Thickening Fluid-Filled Foam Systems”, Massachusetts Institute of Technology (2004) 27
ORIGINAL_ARTICLE The effect of precursor aging on optical and electrochromic properties of WO3 thin films for making smart windows This paper proposes a suitable method for increasing effective surface area of electrodeposited WO3 thin films. This is done because effective surface area improves optical and electrochromic properties in smart windows. Therefore, we investigated precursor aging atperoxytungstate precursor (0, 24, 48 and 72 h). Experiments showed by increasing aging time of the precursor solution, larger aggregates were formed. Their morphology, optical and cyclic voltammogram characterization showed that increasing aging time improves optical and electrochromic properties of WO3 thin films in 1M LiClO4-PC electrolyte. The WO3 films with aging time of 72 h exhibited a noticeable EC performance with variation of transmittance up to 72% at 633nm. The result indicated that using two electrochromic materials with complementary properties could improve the function of the device https://ijpr.iut.ac.ir/article_1104_f4feab675863f0b700b85dfcae2a039c.pdf 2019-11-26 277 286 tungsten oxide cyclic voltommogram electrodeposition electrochromism A Abareshi abareshi.a66@gmail.com 1 گروه فیزیک، دانشگاه صنعتی شاهرود، شاهرود LEAD_AUTHOR H Haratizadeh 2 گروه فیزیک، دانشگاه صنعتی شاهرود، شاهرود AUTHOR 1. C M Lampert, Materials Today 7 (2004) 28. 1 2. S K Deb, “Handbook of Inorganic Electrochromic Materials”, Appl. Opt. Suppl. 3 (1969) 192. 2 3. P M S Monk, S P Akhtar, J Boutevin, and J R Duffield, Electrochima Acta 46 (2001) 2091. 3 4. C G Granqvist, P C Lansaker, N R Mlyuka, G A Niklasson, and E Avendano, Solar Energy Materials and Solar Cells 93 ( 2009) 2032. 4 5. J N Yao, P Chen, and A Fujishima, J. Electroanal. Chem. 406 (1996) 223. 5 6. J Vondrák, M Sedlaríková, and T Hodal, Electrochimica Acta 44 (1999) 3067. 6 7. F F Ferreira, M H Tabacniks, M C A Fantini, I C Faria, and A Gorenstein, Solid State Ionics 86–88 (1996) 971. 7 8. J Scarminio, A Urbano, and B J Gardes, and Gorenstein, J. Mater. Sci. Letters 562 (1992) 11. 8 9. S K Deb, Solar Energy Materials and Solar Cells 92 ( 2008) 245. 9 10. http://www.sage4ec.com (Date accessed: 10 Feb 2012). 10 11. H Eshghi, A Z Biaram, and M Adelifard, Modern Physics Letters B 25 (2011) 1473. 11 12. M Giannouli and G Leftheriotis, Solar Energy Materials and Solar Cell 95 (2011) 1932. 12 13. G. Leftheriotis and P Yianoulis, Solid State Ionics 179 (2008) 2192. 13 14. X H Xia, J P Tu, J Zhang, X L Wang, W K Zhang, and H Huang, Solar Energy Material and Solar Cells 92 (2008) 628. 14 15. H Huang, J Tian, W K Zhang, Y P Gan, X Y Tao, X H Xia, and J P Tu, Electrochimica Acta 56 (2011) 4281. 15 16. C G Granqvist, “Handbook of Inorganic Electrochromic Materials”, Amsterdam, Elsevier (2002). 16 17. A Georg and A Georg, Solar Energy Materials and Solar Cells 93 ( 2009) 1329. 17 18. J Nagai, T Kamimori, and M Mizuhashi, “Transmissive Electrochromic Device”, Proc. SPIE, 502 (1984) 59. 18 19. A Nemetz, A Temmink, K Bange, S C De Torresi, C Gabrielli, R Torresi, and A Hugot-Le Goff, Solar Energy Mterials and Solar Cells 25 (1992) 93. 19 20. D S Dalavi, M J Suryavanshi, D S Patil, S S Mali, A V Moholkar, S S Kalagi, S A Vanalkar, S R Kang, J H Kim, and P S Patil, Applied Surfaced Science 257 (2011) 2647. 20 21. D Calloway, Chemical Education 74, 7 (1997) 744. 21 22. J H Choy, Y I Kim, B W Kim, N G Park, G Campet, and J D Grenier, Chemistry of Materials 12 (2000) 2950. 22 23. P V Ashrit, Thin Solid Films 385 (2001) 81. 23 24. T Pauporte, Electrochemical Society 149 (2002) C539. 24 25. T Brezesinki, D F Rohlfing, S Sallard, M Antonietti, and B M Smarsly, Small 2, 10 (2006) 1203. 25 26. W Cheng and E Baudrin, B Dunn, and J I Zink, Materials Chemistry 11 (2001) 92. 26 27. S Badilescu, P V Ashrit, Solid State Ionics 158 (2003) 187. 27
ORIGINAL_ARTICLE Tunable M-channel filter based on Thue-Morse heterostructures containing meta materials In this paper the tunable M-channel filters based on Thue-Morse heterostructures consisting of single -negative materials has been studied. The results showed that the number of resonance modes inside the zero- gap increases as the number of heterogenous interface, M, increases. The number of resonance modes inside the zero- gap is equal to that of heterogenous interface M, and it can be used as M channels filter. This result provides a feasible method to adjust the channel number of multiple-channel filters. When losses are involved, the results showed that the electric fields of the resonance modes decay largely with the increase of the number of heterogenous interface and damping factors. Besides, the relationship between the quality factor of multiple-channel filters and the number of heterogenous interface M is linear, and the quality factor of multiple-channel filters decreases with the increase of the damping factor. These results provide feasible methods to adjust the quality factor of multiple-channel filters https://ijpr.iut.ac.ir/article_1105_49bde0b0750f7695c16eec08a814cd14.pdf 2019-11-26 288 292 heterostructures M-channel filters quality factors H Pashaei Adl hamid.pashaei@gmail.com 1 دانشکده فیزیک، دانشگاه تبریز، تبریز LEAD_AUTHOR S Roshan Entezar s-roshan@tabrizu.ac.ir 2 دانشکده فیزیک، دانشگاه تبریز، تبریز AUTHOR 1. D X Hua, L N Hua, and A L Ping, Chinese Science Bulletin 54 (2009) 1002. 1 2. X Hu, Z Liu, and Q Gong, J. Opt. A: Pure Appl. Opt. 9 (2007) 877. 2 3. H T Jiang, H Chen, and H Q Li, Phys. Rev. E 69 (2004) 066607. 3 4. S M wang and L Gao, Opt. Comm. 267 (2006) 197. 4 5. K Y Kim, Opt. Lett. 30 (2005) 430. 5 6. L G Wang, H Chen, and S Y Zhu, Phys. Lett. A 350 (2006) 410. 6 7. X H Deng and N H Liu, Chin. Phys. Lett. 24 (2007) 3168. 7 8. X H Deng and N H Liu, Chin. Sci. Bull. 53 (2008) 529. 8 9. X H Deng and N H Liu, Appl. Phys. 42 (2009) 045420. 9 10. Y H Chen, Appl. Phys. Lett. 92 (2008) 011925. 10 11. J A Monsoriu, R A Dwpine, and E Silvestre, Eur. Opt. Soci. 2 (2007) 07002. 11 12. N H Liu, S Y Zhu, and H Chen, et al., Phys. Rev. E 65 (2002) 046607. 12 13. S M Wang and L Gao, Opt. Commun. 267 (2006) 197 13
ORIGINAL_ARTICLE Investigating the little rip and other future singularities of the universe, and validity of the second law of thermodynamics in F(R) theory The future singularities are possible in a universe that is described by F(R) theory. In previous studies the occurrence of the singularities in F(R) theory have been considered by using a special function for the Hubble parameter and calculating the F(R) function for each of the singularities. Using the specified Hubble parameter causes some difficulties in the study of the second law of thermodynamics. In this paper by using the scale factor, the behavior of F(R) function near each type of the singularities is considered. We can check the validity of the second law of thermodynamics near the singularities. At first we study the Little Rip and then the other types of singularities are considered. The results show that the second law of thermodynamics is satisfied near the singularity type (I) with some special conditions and is violated with some other conditions. it is satisfied near the Little Rip, type (II), (III) and (IV) singularities https://ijpr.iut.ac.ir/article_1106_20c2c6ce074d8be5b9db4e7737d1e490.pdf 2019-11-26 293 303 neutron F(R) gravitational theory future singularities of the universe M Aghaei Abchouyeh m.aghaei@ph.iut.ac.ir 1 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان LEAD_AUTHOR B Mirza b_mirza@cc.iut.ac.ir 2 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان AUTHOR B Mirza b.mirza@cc.iut.ac.ir 3 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان AUTHOR H Nadi 4 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان AUTHOR 1. S Nojiri, S D Otintsov, and S Tsujikawa, Phys. Rev. D 71 (2005) 06304. 1 2. S J M Houndjo, Europhys. Lett. 92 (2010) 10004. 2 3. G F Hinshaw et al., Astrophy. J. Supl. Ser. 208 (2013) 19. 3 4. M Chevallier and D Polarski, Int. J. Mod. Phys. D 10 (2001) 213. 4 5. E V Linder, Phys. Rev. Lett. 90 (2003) 091301. 5 6. E Komatsu et al. Astrophys. J .Suppl. 192 (2011) 18. 6 7. T P Sotoriou, and V Faraoni, Rev. Mod. Phy. 82 (2010), 451. 7 8. S J M Houndjo, Europhys. Lett. 92 (2010) 10004. 8 9. I Brevik and O Grobunova, Eur. Phys. J. C 56 (2008) 425. 9 10. D A Easson, P H Frampton, and G F Smoot, Phys. Lett. B 696 (2011) 273. 10 11. M Aghaei Abchouyeh and B Mirza, Iran. J. Phys. Res. 11, 4 (2012), 339. 11 12. K Bamba, “The Casimir Effect and Cosmology”, Tomsk State Pedagogical University (2008) 142. 12 13. K Bamba, C Geng, Phys. Lett. B 679, (2009) 13 14. K Bamba, S Nojiri, and S D Odintsov, JCAP 10 (2008) 045. 14 15. A V Astashenok, S Nojiri, S D Odintsov, and A V Yurov, Phys. Lett. B 709 (2012) 396. 15 16. S F Wu, B Wang, G H Yang, and P M Zhang, Class. Quant. Grav. 25 (2008) 235018. 16 17. J D Barrow, Class. Quantum Grav. 21 (2004) L79. 17 18. L Fernández-Jambrina, Journal of Physics: Conference Series 314 (2011) 012061. 18
ORIGINAL_ARTICLE Effect of calcination temperature and time on the structural and electrical properties of SrFe12O19 nanoparticles In this paper, nanoparticles of strontium hexaferrite (SrFe12O19) were synthesized via sol–gel technique. For preparation of the SrFe12O19 nanoparticles, the nitrates of the metal with a specified ratio of molar and citric acid were used. By using the thermogravimetric analysis (DTA/TGA) the final product was studied. On the basis of this analysis, the samples at different temperatures from 600°C to 1100 °C and calcination time from 0.5 h to 3 h were synthesized. The effect of calcination temperature with different times on the structural and electrical properties was studied. The structural and morphology of the samples were investigated by the X- ray diffraction (XRD), Fourier transform infrared spectroscopy (FT- IR) and scanning electron microscopy (SEM). Also, the DC resistivity of the samples was measured by four-probe method. The results of XRD revealed that the optimum temperature and calcination time of the single-phase SrFe12O19 nanoparticles were 1000°C and 2h, respectively. The results of the electrical properties at room temperature showed that the DC resistivity of the samples decreased by increasing the calcination temperature https://ijpr.iut.ac.ir/article_1107_b05f0a349f1d9aa503cf5a00dc2e9d95.pdf 2019-11-26 305 316 Strontium hexaferrite nanoparticles electrical and structural properties sol–gel M Zargar Shoushtari zargar@scu.ac.ir 1 فیزیک، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز LEAD_AUTHOR F Ranjbar 2 فیزیک، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز AUTHOR S.E Mousavi Ghahfarokhi 3 فیزیک، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز AUTHOR 1. C M Fang, F Kools, R Metselaar, G de With, and R A de Groot, Physics: Condensed Matter 15 (2003) 6229. 1 2. S Hussain, N A Shah, Maqsood, A A Ali, M Naeem, and W Ahmad Adil Syed, Superconductivity and Novel Magnetism 24 ( 2011) 1245. 2 3. M N Ashiq, M J Iqbal, and I H Gul, Alloys and Compounds 487 (2009) 341. 3 4. A Sharbati, S Choopani, A M Azar and M Senna, Solid State Communications 150 (2010) 2218. 4 5. M J Iqbal, M N Ashiq, and P H Gomez, Alloys and Compounds 478 (2009) 736. 5 6. T Kikuchi, T Nakamura, T Yamasaki, M Nakanishi, T Fujii, J Takada, and Y Ikeda, Magnetism and Magnetic Materials 322 (2010) 2381 6 8. M M Hessien, M M Rashad, and K El-Barawy, Magnetism and Magnetic Materials 320 (2008) 336. 7 9. M Jean, V Nachbaur, J Bran, and J L Breton, Alloys and Compounds 496 (2010) 306. 8 10. P E Kazin, L A Trusov, D D Zaitsev, and Y D Tret’yakov, Inorganic Chemistry 54 (2009) 2081. 9 11. I Perelshtein, N Perkas, Sh Magdassi, T Zioni, M Royz, Z Maor, and A Gedanken, Nanopart. Res. 10 (2008 (191. 10 12. G B Teh, Y Ch Wong, and R D Tilley, Magnetism and Magnetic Materials 323 (2011) 2318. 11 13. W Yongfei, L. Qiaoling, Z Cunrui, and J Hongxia, Alloys and Compounds 467 (2009) 284. 12 14. M J Iqbal, M N Ashiq, and I H Gul, Magnetism and Magnetic Materials 322 (2010) 1720. 13 15. S Hussain and A Maqsood, Alloys and Compounds 466 (2008) 293. 14 16. S Tyagi, H B Baskey, R C Agarwala, T C Shami, Journal of Electronuc Materials 40 (2011) 2004. 15 17. L A Garcia-Cerda, O S Rodriguez-Fernandez, and P J Resendiz-Hernandez, Alloys and Compounds 369 (2004) 182. 16 18. H F Lu, R Y Hong, and H Z Li, Alloys and Compounds, 509 (2011) 10127. 17 19. M J Iqbal, and S Farooq, Materials Chemistry and Physics 118 (2009) 308. 18 20. Q Fang, H Cheng, K Huang, J Wang, R Li, and Y Jiao, Magnetism and Magnetic Materials 294 (2005) 281. 19 21. X Shen, M Liu, F Song, and X Meng, Sol-gel Science Technology 53 (2010) 448. 20 22. M V Bukhtiyarova, A S Ivanova, E M Slavinskaya, L M Plyasova, V V Kaichev, and P A Kuznetsov, Applied Catalysis A: General 384 (2010) 230. 21 23. S Singhal, T Namgyal, J Singh, K Chandra, and S Bansal, Ceramics International 37 (2011) 1833. 22 24. M Anis-ur-Rehman, and G Asghar, Alloys and Compounds 509 (2011) 435. 23
ORIGINAL_ARTICLE Studying the effects of dynamical parameters on reactor core temperature In order to increase productivity, reduce depreciation, and avoid possible accidents in a system such as fuel rods' melting and overpressure, control of temperature changes in the reactor core is an important factor. There are several methods for solving and analysing the stability of point kinetics equations. In most previous analyses, the effects of various factors on the temperature of the reactor core have been ignored. In this work, the effects of various dynamical parameters on the temperature of the reactor core and stability of the system in the presence of temperature feedback reactivity with external reactivity step, ramp and sinusoidal for six groups of delayed neutrons were studied using the method of Lyapunov exponent. The results proved to be in good agreement with other works https://ijpr.iut.ac.ir/article_1108_d9e663908e2c8918607a22dede8a1022.pdf 2019-11-26 317 326 Lyapunov exponent temperature feedback neutron point kinetics delayed neutrons R Khodabakhsh khodabakhsh@urmia.ac.ir 1 گروه فیزیک، دانشکده علوم، دانشگاه ارومیه، ارومیه LEAD_AUTHOR S Behnia 2 گروه فیزیک، دانشگاه صنعتی ارومیه، ارومیه AUTHOR M Seidi 3 گروه فیزیک، دانشکده علوم، دانشگاه ارومیه، ارومیه AUTHOR 1. A A Nahla, Nuclear Engineering and Design 240 (2010) 1622. 1 2. S Tashakor, G Jahanfarnia, and M Hashemi-Tilehnoee, Annals of Nuclear Energy 37 (2010) 265. 2 3. A A Nahla, Annals of Nuclear Energy 38 (2011) 2810. 3 4. A A Nahla, Nuclear Engineering and Design 241 (2011) 1592. 4 5. S Yamoah, E H K Akaho, and B J B Nyarko, Annals of Nuclear Energy 54 (2013) 104. 5 6. M R Eskandari and M Shayesteh, Iranian Journal Physics Research 1 (1996) 29. 6 7. A Shirani, H Shamoradi, and I Shahabi, Iranian Journal Physics Research 10 (2010) 55. 7 8. T Sathiyasheela, Annals of Nuclear Energy 36 (2009) 246. 8 9. D L Hetrick, “Dynamics of Nuclear Reactor”, American Nuclear Society, Jbc, Illinois, USA (1993). 9 10. J R Lamarsh, “Introduction to Nuclear Reactor Theory”, Addison Wesley (1966). 10 11. D G Cacuci, “Handbook of Nuclear Engineering”, Springer (2010). 11 12. A Shirani, L Ranjbar, and I Shahabi, Iranian Journal of Physics Research 10 (2010) 273. 12 13. A E Aboanber and Y M Hamada, Annals of Nuclear Energy 30 ( 2003) 1111. 13 14. J C Allerd and D S Carter, Nucl. Sci. Eng. 3 ( 1958) 482. 14 15. L R Blue and M Hoffman, “Generalized program for the numerical solution of space independent reactor kinetics equations”, NAA - SR -Memo - 9197, North American Aviation (1963). 15 16. J Sanchez, Nuclear Science and Engineering 103 (1989) 10394. 16 17. J A W Da No´ rbrega, Nuclear Science and Engineering 46 (1971) 366. 17 18. A E Aboanber, Progress in Nuclear Energy, 44 (2004) 347. 18 19. J P Hennart, Nucl. Sci. Eng. 64 (1977) 875. 19 20. D Suescún Díaz, J F Flórez Ospina, and J A Rodríguez Sarasty, Annals of Nuclear Energy 42 (2012) 47. 20 21. F B Zhang, “Operating Physics of Nuclear Reactor”. Atomic Energy Press, Beijing (2000). 21 22. G Samuel, and S Alexander, “ Nuclear Reactor Engineering”, Chapman & Hall, Inc. (1994). 22 23. W Z Chen, B Kuang, L F Guo, Z Y Chen, and B Zhu, Nuclear Engineering and Design 236 (2006) 1326. 23 24. A A Nahla, Progress in Nuclear Energy 51 (2009) 124. 24 25. S D Hamieh, and M Saidinezhad, Annals of Nuclear Energy 42 (2012) 148. 25 26. R Della, E Alhassan, N A Adoo, C Y Bansah, B J B Nyarko, and E H K Akaho, Energy Conversion and Management 74 (2013) 587. 26 27. D E Seborg, T F Edgar, and D A Mellichamp, “Process Dynamics and Control”, John Wiley and Sons, Inc. (2004). 27 28. W K Ergen, H J Lipkin, and J A Nohel, Journal of Mathematics and Physics 36 (1957) 36. 28 29. E Jean-Jacques Slotine, and Weiping Li, “Applied Nonlinear Control”, Prentice Hall Englewood Cliffs, New Jersey (1991). 29 30. S T Strogatz, “Nonlinear Dynamics and Chaos”, Perseus Books Publishing (1994). 30 31. J J Duderstadt and L J Hamilton, “Nuclear Reactor Analysis”, John Wiley & Sons (1976). 31 32. E Ott, “Chaos in Dynamical System”, Cambridge University Press, Canada (1993). 32 33. B J West, A L Goldberger, G Rouner, and V Bhar-gava, Physica D 17 (1985) 198. 33 34. A Wolf, J B Swift, H L Swinney, and J A Vastano, Physica D 16 (1985) 285. 34 35. J R Dorfman, “An Introduction to Chaos in Nonequilibrium Statistical Mechanics”, Cambridge University Press, Cambridge (1999). 35 36. H Shibata, Physica A 292 (2001) 175. 36 37. H Shibata, Physica A 284 (2000) 124. 37 38. H Shibata, Physica A 285 (2000) 325. 38
ORIGINAL_ARTICLE Investigation of Isfahan miniature neutron source reactor (MNSR) for boron neutron capture therapy by MCNP simulation One of the important neutron sources for Boron Neutron Capture Therapy (BNCT) is a nuclear reactor. It needs a high flux of epithermal neutrons. The optimum conditions of the neutron spectra for BNCT are provided by the International Atomic Energy Agency (IAEA). In this paper, Miniature Neutron Source Reactor (MNSR) as a neutron source for BNCT was investigated. For this purpose, we designed a Beam Shaping Assembly (BSA) for the reactor and the neutron transport from the core of the reactor to the output windows of BSA was simulated by MCNPX code. To optimize the BSA performance, two sets of parameters should be evaluated, in-air and in-phantom parameters. For evaluating in-phantom parameters, a Snyder head phantom was used and biological dose rate and dose-depth curve were calculated in brain normal and tumor tissues. Our calculations showed that the neutron flux of the MNSR reactor can be used for BNCT, and the designed BSA in optimum conditions had a good therapeutic characteristic for BNCT. https://ijpr.iut.ac.ir/article_1109_098626473cafc2229f1f53c265798f2f.pdf 2019-11-26 327 339 neutron therapy BNCT Isfahan MNSR beam shaping assembly MCNPX S.Z Kalantari zafar@cc.iut.ac.ir 1 دانشکده فیزیک، دا‌‏نشگاه صنعتی اصفهان، اصفهان LEAD_AUTHOR H Tavakoli 2 دانشکده فیزیک، دا‌‏نشگاه صنعتی اصفهان، اصفهان AUTHOR M Nami 3 دانشکده فیزیک، دا‌‏نشگاه صنعتی اصفهان، اصفهان AUTHOR 1. G L Locher, Am. J. Roentgenol. 36 (1936) 1. 1 2. I Auterinen, Applied Radiation and Isotopes 61 (2004) 799. 2 3. RL Moss et al., Journal of Neuro-Oncology 33 (1997 27-40. 3 4. K W Burn et al., J. Phys.: Conference Series 41 (2006) 187. 4 5. M Marek, Radiation Protection Dosimetry 44 (1992) 453. 5 6. C J Tung, et al., Applied Radiation and Isotopes 61 (2004) 861. 6 7. H Ottok, Applied Radiation and Isotopes 67 (2009) 7. 7 8. IAEA “Current Status of Neutron Capture Therapy”, IAEA-TECDOC-1223 (2001). 8 9. C Salt, A J Lennox, M Takagaki, J A Maguire, and N S Hosmane, Biochemistry 53 (2004) 1871. 9 11. F Rahmani and M Shahriari, Annals of Nuclear Energy 38 (2011) 404. 10 12. O Harling, K Roberts, D Moulin, and R Rogus, Med. Phys. 22 (1995) 579. 11
ORIGINAL_ARTICLE Preparation and investigation of structural, magnetic and microwave absorption properties of cerium doped barium hexaferrite In this study the structure, magnetic and microwave absorption properties of cerium (Ce) doped barium hexaferrite with general formulae BaCexFe12-xO19 (x=0.0, 0.05, 0.1, 0.15, 0.2) have been investigated. These samples have been prepared by sol- gel method. Influence of replacing Fe+3 ion by rare- earth Ce+3 ion on the structural, magnetic and microwave absorption properties have been investigated by X- ray diffraction (XRD), Fourier transform infrared (FT-IR), Vibrating sample magnetometer (VSM) and vector network analyzer (VNA). X-ray diffraction analysis indicated that the samples are of single phase with space group p63/mmc. The magnetic properties of samples indicated that with the Ce doping the saturation magnetization show no regular behavior. Moreover, coercivity (Hc) first decreased and reached to the minimum value for x=0.1 sample and then increased with Ce content increasing. Also, measurement of electromagnetic wave absorption in X and Ku frequency bands indicated that the maximum of reflection loss obtained for x=0.15 sample. Moreover, result indicated that absorption peak shifted toward a lower frequency when thickness was increased. https://ijpr.iut.ac.ir/article_1110_bf85eb8f498d7c096c614d683b7da7ae.pdf 2019-11-26 341 349 Barium hexaferrite Ce substitution magnetic properties microwave absorption P Kameli kameli@iut.ac.ir 1 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان LEAD_AUTHOR Z Mosleh 2 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان AUTHOR M Ranjbar ranjbar@cc.iut.ac.ir 3 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان AUTHOR H Salamati 4 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان AUTHOR Martirosyan, E Galstyan, S Hossain, Y-J Wang, and D Litvinov, Materials Science and Engineering: B, 176 (2011) 8. 1 3. M Radwan, M Rashad, and M Hessien, Journal of Materials Processing Technology 181 (2007) 106. 2 4. D Mishra, S Anand, R Panda, and R Das, Materials Chemistry and Physics 86 (2004) 132. 3 5. T Yamauchi, Y Tsukahara, T Sakata, H Mori, T Chikata, S Katoh, and Y Wada, Journal of Magnetism and Magnetic Materials 321 (2009) 8. 4 6. X C Zuo, L Chen, C Jin, and Y Lv, Journal of Magnetism and Magnetic Materials 332 (2013) 186. 5 7. M Rashad and I Ibrahim, Journal of Magnetism and Magnetic Materials 323 (2011) 2158. 6 8. G Xu, H Ma, M Zhong, J Zhou, Y Yue, and Z He, Journal of Magnetism and Magnetic Materials 301 (2006) 383. 7 9. Z Haijun, L Zhichao, M Chengliang, Y Xi, Z Liangying, and W Mingzhong, Materials Science and Engineering: B 96 (2002) 289. 8 10. Z Ullah, S Atiq, and S Naseem, Journal of Alloys and Compounds 513 (2012) 420. 9 11. S Ounnunkad, P Winotai, and S Phanichphant, Journal of Electroceramics 16 (2006) 357. 10 12. Y Ebrahimi et al., Ceramics International 38 (2012) 3885. 11 13. N Koga et al., Journal of Magnetism and Magnetic Materials 313 (2007) 168. 12 14. M N Ashiq, M J Iqbal, and I H Gul, Journal of Alloys and Compounds 487 (2009) 341. 13 15. M J Iqbal, M N Ashiq, P Hernández-Gómez, J M M Muñoz, and C T Cabrera, Journal of Alloys and Compounds 500 (2010) 113. 14 16. Y Li, Q Wang, and H Yang, Synthesis, Current Applied Physics 9 (2009) 1375. 15 17. X Huang, J Zhang, L Wang, and Q Zhang, Journal of Alloys and Compounds 540 (2012) 137. 16 18. H Shang, J Wang, and Q Liu, Materials Science and Engineering: A 456 (2007) 130. 17 19. X Meng, J Gao, and Y Lu, Journal of Sol-Gel Science and Technology 64 (2012) 86. 18 20. F Khademi, A Poorbafrani, P Kameli, and H Salamati, Journal of Superconductivity and Novel Magnetism 25 (2012) 525. 19 21. S Singhal, T Namgyal, J Singh, K Chandra, and S Bansal, Ceramics International 37 (2011) 1833. 20 22. C Sun and K Sun, Journal of Materials Science 42 (2007) 5676. 21 23. C-J Li, B Wang, and J-N Wang, Journal of Magnetism and Magnetic Materials 324 (2012) 1305. 22 24. S Chang, S Kangning, and C Pengfei, Journal of Magnetism and Magnetic Materials 324 (2012) 802. 23 25. M Ahmad, R Grössinger, M Kriegisch, F Kubel, and M Rana, Journal of Magnetism and Magnetic Materials 332 (2013) 137. 24 26. S Ozah and N Bhattacharyya, Journal of Magnetism and Magnetic Materials 342 (2013) 92. 25 27. Q Li, J Pang, B Wang, D Tao, X Xu, L Sun, and J Zhai, Advanced Powder Technology 24 (2012) 288. 26 28. M K Tehrani, A Ghasemi, and R S Alam, Journal of Alloys and Compounds 509 (2011) 8398 27
ORIGINAL_ARTICLE Aging effect of quantum dots on solar cells sensitized with nano-crystals of CdS and PbS In this research, solar cells sensitized with CdS and PbS Nanocrystalline metal sulfides, chemically grown by SILAR, were fabricated and characterized. PV experiments including I-V test in the presence of light and dark,Vocdecay, and Electrochemical impedance spectroscopy were performed on the Cells made through this method in the presence of light and dark and in the time period of 2, 3, 6 and 10 days. From these experiments, the changes in indicators including fill factor, efficiency, open-circuit voltage, short-circuit current, lifetime of electrons in nanostructured anode electrode, recombination resistance and capacitance of the anode electrode-electrolyte interface were observed. Also, mechanisms for some existing evidences within photovoltaic experiments such as the increase and decrease of recombination resistance were proposed. https://ijpr.iut.ac.ir/article_1111_a7b1dec29280459bc4a3b47a979f3fc4.pdf 2019-11-26 351 360 nanocrystalline metal sulfides impedance spectroscopy lifetime of electrons recombination resistance V Borhanifar parsa1505@yahoo.com 1 دانشکده فیزیک، دانشگاه صنعتی شریف، تهران LEAD_AUTHOR A Irjizad 2 دانشکده فیزیک، دانشگاه صنعتی شریف، تهران AUTHOR M Samadpoor 3 دانشکده علوم، دانشگاه صنعتی خواجه نصیر طوسی، تهران AUTHOR 1. O I Zaban, B A Micic, B A Gregg, and A J Nozik, Langmuir 14 (1998) 3153. 1 2. S Soedergren, A Hagfeldt, J Olsson, and S E Lindquist, J. Phys. Chem. 98 (1994) 5552. 2 3. S Dor, T Dittrich, A Ofir, L Grinis, and A Zaban, J. Mater. Res. 23 (2008) 975. 3 4. G Hodes, J Phys. Chem. C 112 (2008) 17778. 4 5. G Hodes, I D J Howell, and L M Peter, J. Electrochem. Soc. 139 (1992) 3136. 5 6. Y Golan, L Margulis, I Rubinstein, and G Hodes, Langmuir 8 (1992) 749. 6 7. H Gerischer, Electrochim. Acta 34 (1989) 1005. 7 8. M Samadpour, “Dye and Cadmium based Quantum Dot Sensitized Solar Cells Based on TiO2 Nanostructures” Ph. D. Thesis, Sharif University of Technology (2011). 8 9. M Shawn, and M S Rosson, “Development and Improvement of Quantum Dot Sensitized Solar Cell” Architectures Nashville, Tennessee (2010). 9 10. K Vinodgopal, I Bedja, and PV Kamat, Chem. Mater. 8 (1996) 2180. 10 11. K Vinodgopal, I Bedja, and P V Kamat, Chem. Mater. 8 (1996) 2180. 11 12. K Vinodgopal and P V Kamat, Sci. Technol. 29 (1995) 841. 12 13. H Gerischer, Electrochim. Acta 34 (1989) 1005. 13 14. Z S Wang, and G Zhou, J. Phys. Chem. C 113 (2009) 15417. 14 15. A Kongkanand, K Tvrdy, K Takechi, M Kuno, and P V Kamat, J. Am. Chem. Soc. 130 (2008) 4007. 15 16. J E Evans, K W Springer, and J Z Zhang, J. Chem. Phys. 101 (1994) 6222. 16 17. L J Diguna, Q. Shen, J Kobayashi and T Toyada, Appl. Phys. Lett. 91 (2007) 023116. 17 18. R Vogel, P Hoyer, and H Weller, J. Phys. Chem. 98 (1994) 3183. 18 19. Zusing Yang, C Y Chen, C W Liu, C L Li, and H T Chang, Adv. Energy Mater. 1 (2011) 59. 19 20. A Braga, S Gimenez, I Consina, Al Vomiero, and Mora-Sero. J. Phys. Chem. Lett. 2 (2011) 454. 20 21. A Zaban, M Greenshtein, J Bisquert, Chem. Phys. Chem. 4 (2003) 859. 21 22. Y Tachibana, H Y Akiyama, Y Ohtsuka, T Torimoto, and S Kuwabata, Chem. Lett. 36 (2007) 88, D C Grahame, Chem. Rev. 41 (1947) 441. 22
ORIGINAL_ARTICLE Study of the effect of Titanium dioxide nano particle size on efficiency of the dye-sensitized Solar cell using natural Pomegranate juice Dye-sensitized solar cell (DSSC) using natural Pomegranate juice as dye-sensitizeris fabricated and characterized. DSSCS consist of a working electrode, a redox electrolyte containing iodide and tri-iodide ions and a counter electrode. A nanocrystalline TiO2 semiconductor with a wide band-gap coated with a monolayer dye-sensitizer is used as working electrode. The effect of titanium dioxide (TiO2) nanoparticle size on efficiency of the DSSC based Pomegranate juice as a sensitizer is studied. For monolayer structure, we used two sizes of TiO2 nanoparticle (25 nm and 100 nm) and a mixture of these two sizes. The highest efficiency of 0.61% was obtained with mixture of 25 and 100 nm TiO2 nano-particles in working electrode. For double-layer structure, we used 100 and 400 nm size TiO2 particles as light-scattering. The best efficiency was obtained using 400 nm TiO2 as light-scattering particles. https://ijpr.iut.ac.ir/article_1112_5f7bd5ca599a2e5541975c6d814462ea.pdf 2019-11-26 361 367 dye-sensitized solar cell Pomegranate natural dye titanium dioxide nano-particles A Behjat abehjat@yazd.ac.ir 1 .گروه پژوهشی فوتونیک، مرکز تحقیقات مهندسی، دانشگاه یزد، یزد . گروه اتمی مولکولی، دانشکده فیزیک، دانشگاه یزد، یزد LEAD_AUTHOR F Jafari Nodoushan 2 .گروه پژوهشی فوتونیک، مرکز تحقیقات مهندسی، دانشگاه یزد، یزد . گروه اتمی مولکولی، دانشکده فیزیک، دانشگاه یزد، یزد AUTHOR A Khoshroo 3 گروه تجزیه، دانشکده شیمی، دانشگاه یزد، یزد AUTHOR M Ghoshani 4 .گروه پژوهشی فوتونیک، مرکز تحقیقات مهندسی، دانشگاه یزد، یزد . گروه اتمی مولکولی، دانشکده فیزیک، دانشگاه یزد، یزد. گروه اتمی مولکولی، دانشکده فیزیک، دانشگاه یزد، یزد AUTHOR 1. B O’Regan and M Gratzel, Nature 353 (1991) 737. 1 2. S K Dhungel, and J G Park, Renewable Energy 35 (2010) 2776. 2 3. N Fuke, A Fukui, A Islam, R Komiya, R Yamanaka, H Harima, and L Han, Solar Energy Materials & Solar Cells 93 (2009) 720. 3 4. H Zhou, L Wu, Y Gao, and T Ma, Journal of Photochemistry and Photobiology A: Chemistry 219 (2011) 188. 4 5. M R Narayan, Renewable and Sustainable Energy Reviews 16 (2012) 208. 5 6. G Calogero, J H Yum, A Sinopoli, G D Marco, M Gratzel, and M K Nazeeruddin, Solar Energy 86 (2012) 1563. 6 7. P Balraju, M Kumar, M S Roy, and G D Sharma, Synthetic Metals 159 (2009) 1325. 7 8. W Maiaugree, S Pimanpang, M Towannang, S Saekow, W Jarernboon, and V Amornkitbamrung, Journal of Non-Crystalline Solids 358 (2012) 2489. 8 9. Y Zhang, L Wu, E Xie, H Duan, W Han, and J Zhao, Journal of Power Sources 189 (2009) 1256. 9 10. Z S Wang, H Kawauchi, T Kashima, and H Arakawa, Coordination Chemistry Reviews 248 (2004) 1381. 10 11. J Jiang, J Zhang, F Gu, W Shao, C Li, and M Lu, Particuology 9 (2011) 222. 11 12. L Du, A Furube, K Hara, P Katoh, and M Tachiya, J. Phys. Chem. C 114 (2010) 8135. 12 13. T P Chou, Q Zhang, B Russo, G E Fryxell, and G Cao, J. Phys. Chem .111 (2007) 6296. 13 14. H J Koo, J Park, B Yoo, K Yoo, K Kim, and N G Park, Inorganica Chimica Acta 361 (2008) 677. 14
ORIGINAL_ARTICLE Assessment of natural radioactivity in soil samples of Dez river sides – Khouzestan province Geographical features of each region of the world affect the activity concentration of natural radionuclides such as uranium, thorium and potassium. In this study, 26 soil samples were randomly collected from sides of the Dez River and transferred to the Laboratory for preparation. Activity concentration of natural radioactive materials was measured using p-type HPGe detector with a 38% relative efficiency. The results indicated that radioactivity concentration of 226Ra, 232Th and 40K in soil samples varied over a range of 15.97 - 32.87Bqkg-1, 8.04 - 33. 85 Bqkg-1 and 106.82 - 471.35 Bqkg-1, respectively while their mean values were 25.21, 19.71 and 289.57Bqkg-1 in that order. Statistical results at 5% internal error showed that the mean values of radionuclides' activity concentrations were lower than their defined ones--the average values of the world and Iran. The results of radiological parameters predicted no radioactivity danger in the region. https://ijpr.iut.ac.ir/article_1113_97589efa86a42f8dfbd1b51673fdca23.pdf 2019-11-26 369 374 Dez river Khuzestan gamma-ray spectroscopy natural radioactive materials specific activity soil مهدی Nasri Nasrabadi mnnasrabadi@ast.ui.ac.ir 1 دانشکده علوم و فناوری‌های نوین، دانشگاه اصفهان، اصفهان LEAD_AUTHOR گلزاده Hajialiani 2 دانشکده علوم و فناوری‌های نوین، دانشگاه اصفهان، اصفهان AUTHOR ، سید مجتبی Mostajaboddavati 3 دانشکده علوم و فناوری‌های نوین، دانشگاه اصفهان، اصفهان AUTHOR R C Ramola et al., Radiol Prot. 28 (2008) 379. 1 2. N Damla, U Cevik, A I Kobya, B Ataksor, and U Isik, Environ. Monit. Assess. 160 (2010) 401. 2 3. V Ramasamy, S Senthil, V Meenakshisundaram, and V Gajendran, Appl. Sci. 20 (2009) 54. 3 4. X Lu, X Zhang, and F wang, Environ. Geol. 53 (2008) 1475. 4 5. I Bikit et al., Radiat. Measur. 41 (2006) 477. 5 6. N Cukrov, M Mlakar, V Cuculic, and D Barisic, Environ. Radioact. 100 (2009) 497. 6 7. M Degerlier, G Karahan, and G Ozger, Environ. Radioact. 99 (2008) 1018. 7 8. M R Abdi, S Hassanzadeh, M Kamali, and H R Raji, Mar. Pollut. Bull. 58 (2009) 658. 8 9. H Faghihian, D Rahi, and M Mostajaboddavati, Radioanal. Nucl. Chem. 32 (2011) 1. 9 10. S Khoshbinfar and M Vahabi Moghaddam, Radiat. Prot. Dosim. 142 (2010) 332. 10 11. M R Abdi, M Kamali, and S Vaezifar, Mar. Pollut. Bull. 56 (2008)751. 11 12. M R Abdi et al., Iran J. Sci. Tec. 30 (2006) 259. 12 13. F Saghatchi et al., Radiat. Prot. Dosim. 141 (2010) 86. 13 14. J Pourahmad et al., Environ Toxicology 23 (2008) 583. 14 15. S Hafezi, J Amidi, and A Attarilar, Iran. Radiat. Res. 3 (2005) 85. 15 16. M R Abdi, H Faghihian, A hasanzadeh, M kamali, Radioanal and Nucl. Chem. 270 (2006) 319. 16 17. M Abbaspour et al., Radiat. Prot. Dosim. 142 (2010) 187. 17 18. R Faghihi, S Mehdizadeh, and S Sina, Radiat. Prot. Dosim. 145 (2011) 66. 18 19. H Yucel, M Cetiner, and H Demirel, Nucl. Inst. Meth. Phys. Research Sect. 413 (1998) 74. 19 20. W Strasse, IAEA-TECDOC-1415 375 (2004) 1. 20 21. H Al-Sulaiti, N Alkhomashi, N AL-Dahan, M Al-Dosari, D A Bradley, Nucl. Inst. Meth. Phys. Research 652 (2011) 915. 21 22. M Hasan et al., Water Air Soil Pollut. 219 (2010)129. 22 23. R Mehra et al., Environ. Earth. Sci. 59 (2009) 1159 23
ORIGINAL_ARTICLE Study of biosensor properties of Ag-Au nanocomposite in the vicinity of DNA Ag, Au nanoparticles and Ag-Au nanocomposite were prepared by co-deposition of RF-sputtering and RF-PECVD from acetylene gas and Ag, Au targets. Atomic structure and topography were investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. UV-Visible spectra samples indicated that the activity of Ag and Au nanoparticles in the vicinity of each other increased as the time passed. This result indicated that Ag-Au nanocomposite films demonstrate a higher activity in comparison to Au or Ag nanoparticles thin films. Furthermore, these nanocomposites showed a higher sensitivity in the vicinity of DNA with low concentrations of fM in comparison to Au nanoparticles thin films https://ijpr.iut.ac.ir/article_1114_5eab5d1cac3db21922449e6e54fb6602.pdf 2019-11-26 375 379 Ag-Au nanoparticles SPR XRD AFM DNA biosensor S Arsalani s.arsalanijj@gmail.com 1 دانشکده پزشکی٬ دانشگاه علوم پزشکی٬ واحد بم٬ بم LEAD_AUTHOR T Ghodselahi 2 .پژوهشکده فیزیک٬ پژوهشگاه دانش‌های بنیادی٬ تهران AUTHOR T Neishaboory 3 دانشکده علوم پایه٬ دانشگاه آزاد اسلامی٬ واحد تهران مرکز٬ تهران AUTHOR M.A Vesaghi 4 دانشکده فیزیک٬ دانشگاه صنعتی شریف٬ تهران AUTHOR . M Rycenga, K K Hou, C M Cobley, A G Schwartz, P H C Camargo, and Y Xia, Phys. Chem. Chem. Phys. 11 (2009) 5903. 1 2. C W Yen, M L Lin, A Q Wang, S A Chen, J M Chen, and C Y Mo. Phys. Chem. C 113 (2009) 17831. 2 3. J M Wessels, H Nothofer, W E Ford, F Voneorochem, F Scholtz, T Vossmeyer, A Schroedter, H Weller, and A Yasuda. J. Am. Chem. Soc. 126 (2004) 3349. 3 4. G Suyal, M Mennig, and H Schmidt, Journal of Materials Science 38 (2003) 1645. 4 5. K Tamada, F Nakamura, M Ito, X Li, and A Baba, Plasmonics 2 (2007) 185. 5 6. S Zhu and Y Fu. Biomed Microdevices 11 (2009) 579. 6 8. X Huang, P K Jain, I H El-Sayed, and M A El-Sayed, Nanomedicine 2 (2007( 681. 7 9. T Ghodselahi, M A Vesaghi, A Shafiekhani, A Baradaran, A Karimi, and Z Mobini. Surface and Coatings Technology 202 (2008) 2731. 8
ORIGINAL_ARTICLE The study of entanglement and teleportation of the harmonic oscillator bipartite coherent states In this paper, we reproduce the harmonic oscillator bipartite coherent states with imperfect cloning of coherent states. We show that if these entangled coherent states are embedded in a vacuum environment, their entanglement is degraded but not totally lost . Also, the optimal fidelity of these states is worked out for investigating their teleportation https://ijpr.iut.ac.ir/article_1115_0a79cd06f4f982fd2320a31ba95bd1ea.pdf 2019-11-26 381 386 coherent states quantum entanglement quantum teleportation A Rabeie and rabeie@razi.ac.ir 1 دانشکده علوم، دانشگاه رازی، باغ ابریشم، کرمانشاه LEAD_AUTHOR A Fatahizadeh ardalan_fatahizadeh@yahoo.com 2 دانشکده علوم، دانشگاه رازی، باغ ابریشم، کرمانشاه AUTHOR 1. D Popov, I Zahari, Vjeckoslav Sajfert, I Luminosu, and D Popov, Int. J. Theor. Phys. 47 (2008) 1441. 1 2. E Andersson, M Curty, and I Jex, Physical Review A 74 (2006) 022304 2 3. M Le Ballac, “A Short Introduction to Quantum Information and Quantum Computation”, Cambridge University press (2006). 3 4. C H Bennett, G Brassard, C Crépeau, R Jozsa, A Peres, and W K Wootters, Phys. Rev. Lett. 70 (1993) 1895. 4 5. A Barenco, D Dutch, A Ekert, and R Jozsa, Phys. Rev. Lett. 74 (1995) 4085. 5 6. BC Sanders, Journal of Physics A: Mathematical and Theoretical 45 (24) 244002. 6 7. K Fujii, “Coherent States and some Topics in Quantum Information Theory”, quant-ph/0207178 7 8. S J D Phoenix, Phys. Rev. A 41 (1990) 5132. 8 9. H Jeong, M S Kim, and J Lee1, Physical Review A 64 (2001) 052308 9 10. J Lee and M S Kim, Phys. Rev. Lett. 84 (2000) 4236; J Lee, M S Kim, Y –J Park, and S Lee, J. Mod. Opt. 47 (2000) 2151 10 11. R Horodecki, P Horodecki, and M Horodecki, Phys. Rev. A 60 (1999) 1888. 11 12. S Bose and V Vedral, Phys. Rev. A 61 (2000) 040101. 12