ORIGINAL_ARTICLE Magnetocrystalline properties of Iron-Platinum (L10-FePt) nanoparticles through phase transition High magneto- crystalline anisotropy (ku=7×106j/m3) of L10-FePt nanoparticles are an excellent candidate for ultra high-density magnetic recording. The 4 nm FePt nanocrystals were prepared by superhydride reduction of FeCl2·4H2O and Pt(acac)2 precursors in the phenyl ether by reduction of the 1, 2-hexadecanediol and LiBEt3H superhydride. The crystal and magnetic structures were studied by XRD and VSM analysis. By TEM and EDS analyses the size distribution and molar concentration of Fe/Pt of the nanoparticles were determined. The results showed that the particles are first superparamagnetic before heat treatment and then a phase transition accrue from disorder fcc to order fct structure after annealing. Finally, the phase transition leads the magnetic anisotropy of hard FePt nanoparticles to increase to 7 kOe. https://ijpr.iut.ac.ir/article_1170_3ccf1259f63776403bf04fed548295ba.pdf 2019-11-26 1 5 10.18869/acadpub.ijpr.16.1.1 anisotropy L10-FePt magneto- crystalline nanocrystals phase transition superparamagnetic M Farahmandjou farahmandjou@iauvaramin.ac.ir 1 گروه فیزیک، دانشگاه آزاد اسلامی، واحد ورامین LEAD_AUTHOR 1. S Wang and A Taratorin, “Magnetic Information Storage Technology”, Academic Press (1999) 177. 1 2. D Sellmyer and R Skomski, “Advanced Magnetic Nanostructures”, Springer (2006( 239. 2 3. S Sun, E Fullerton, D Weller, and C B Murray, IEEE Transactions on Magnetics 37 (2002) 1239. 3 4. S Sun, Advanced Materials 18 (2006) 393. 4 5. H Zeng, J Li, J P Liu, Z L Wang, and S Sun, Nature 420 (2002) 395. 5 6. M Ghidini, G Asti, R Pellicelli, C Pernechele, and M Solzi, J. Magn. Magn. Mater. 316 (2007) 159. 6 7. Y Ding, S A Majetich, J Kim, K Barmak, H Rollins, and P Sides, J. Magn. Magn. Mater. 284 (2004) 336. 7 8. J P Liu, K Elkins, D Li, V. Nandwana, and N Poudyal, IEEE Trans. Magn. 42 (2006) 3036. 8
ORIGINAL_ARTICLE Gauged Hamiltonians for free particle on surfaces in configuration and phase spaces We present a method to gauge second class systems consisted of two constraints in the chain structure. In this method we added a momentum counterpart of Wess Zumino coordinate to primary constraint and used the first class condition to find a new and gauged Hamiltonian. Primary constraints were assumed as identities in configuration and phase space and we tried to find general Hamiltonians https://ijpr.iut.ac.ir/article_1171_8054f6421d20b15ef64f7b8174aa9fc4.pdf 2019-11-26 7 12 10.18869/acadpub.ijpr.16.1.7 gauge symmetry phase space extension second class constraints Stueckelberg shifting M Dehghani dehghani@sci.sku.ac.ir 1 گروه فیزیک، دانشکده علوم، دانشگاه شهرکرد، شهرکرد LEAD_AUTHOR 1. J C Ward, Phys. Rev. 78 (1950) 182. 1 2. Y Takahashi, Nuovo Cim. 6 (1957) 370. 2 3. M Veltman, Nucl. Phys. B 21 (1970) 288. 3 4. G ’t Hooft, Nucl. Phys. B 35 (1971) 167. 4 5. G ’t Hooft, and M Veltman, Nucl. Phys. B 44 (1972) 189. 5 6. I A Batalin, E S Fradkin and T E Fradkina, Nucl. Phys. B 279 (1987) 514. 6 7. S Hong, Mod. Phys. Lett. A 20 (2005) 2455. 7 8. E C G Stueckelberg, Helv. Phys. Acta 30 (1957) 209. 8 9. H Ruegg, and M Ruiz-Altaba, Int. J. Mod. Phys. A 19 (2004) 3265. 9 10. J A Neto, Phys. Lett. B 571 (2003) 105. 10
ORIGINAL_ARTICLE Ultra- cold neutron sources: UCN production rate in solid deuterium converter A new model is presented herein to calculate optimal value for ultra-cold neutron (UCN) production rate of a UCN source. The cold neutron (CN) converter is the main component of UCN source. In this paper, we study the UCN source which contains the D2O neutron moderator, the sD2 converter, 590 Mev proton beam, and the spallation target (a mixture of Pb, D2O and Zr). In order to determine the quantities, the neutron transport equation, written in MATLAB, has been combined with the MCNPX simulation code. The neutron transport equation in cylindrical coordinate has been solved everywhere in sD2 by using simulated CN flux as boundary value. By loading a cylindrical shell with different materials, surrounding the converter, different values for UCN production rate and density were obtained. The results of the UCN production rate and density and their comparison with previous results show that the present method has a good capability for optimization of UCN source parameters. https://ijpr.iut.ac.ir/article_1172_8bb2fb5423bf3449d3c941acf047d0b6.pdf 2019-11-26 13 18 10.18869/acadpub.ijpr.16.1.13 converter length cylindrical shell MCNPX simulation code neutron transport ultra-cold neutron production rate R Gheisari gheisari@pgu.ac.ir 1 1. گروه فیزیک، دانشگاه خلیج فارس، بوشهر 2. مرکز پژوهشی انرژی هسته‌ای، دانشگاه خلیج فارس، بوشهر AUTHOR 1. V K Igantovich, “The Physics of Ultracold Neutrons”, Clarendon Press, Oxford (1990). 1 2. R Golub, D J Richardson, and S K Lamoreaux, “Ultracold Neutrons”, Higer, Bristol (1991). 2 3. A Steyerl et al, Phys. Lett. A 116 (1986) 347. 3 4. V V Nesvizhevsky et al., Nature 415 (2002) 297. 4 5. T Jenke, P Geltenbort, H Lemmel, and H Abele, Nature Phys. 7 (2011) 468. 5 6. R Golub and J M Pendlebury, Phys. Lett. A 62 (1977) 337. 6 7. C R Brome, et al., Phys. Rev. C 63 (2001) 055502. 7 8. Y Masuda, et al., Phys. Rev. Lett. 89 (2002) 284801. 8 9. O Zimmer, et al., Phys. Rev. Lett. 99 (2007) 104801. 9 10. A P Serebrov, Nucl. Instrum. Meth. Phys. Res. A 440 (2000) 653. 10 11. A Saunders et al., Phys. Lett. B 593 (2004) 55. 11 12. F Atchsion, B Blau, K Bodek, B van den Brandt, T Brys, and P Fierlinger, Phys. Rev. Lett. 99 (2007) 262502. 12 13. R Gheisari, M M Firoozabadi, H Mohammadi, American Institute of Physics Advances 4 (2014) 017105. 13 14. R E MacFarlane, D W Muir, “The NJOY Nuclear Data Processing System, Version 91”, Los Alamos National Laboratory report LA-12740-M, Los Alamos (1994). 14 15. H Sekimoto, “Nuclear Reactor Theory”, Tokyo Institute of Technology Press, Tokyo (2007). 15 16. PSI UCN, http://ucn.web.psi.ch. 16
ORIGINAL_ARTICLE Wettability modification of graphene oxide thin film through the photocatalytic reduction In this paper, the effect of photocatalytic reduction on hydrophilicity of graphene oxide nanosheets is presented. The graphene oxide nanosheets were prepared by oxidation and exfoliation of natural graphite. The prepared samples were exposed to UV irradiation in presence of TiO2 nanoparticles. Raman spectroscopy and atomic force microscopy show that roughness of the surface is increased due to increasing irradiation. Also, the hydrophilicity of samples by measuring the contact angle of micro-liter droplets of deionized water, showed that by increasing exposure time up to 8 hours the contact angle of samples in crease from about 27 degrees to about 89 degrees. https://ijpr.iut.ac.ir/article_1173_0b843e1418f5b2cc030b451ff6caf241.pdf 2019-11-26 19 25 10.18869/acadpub.ijpr.16.1.19 contact angle graphene oxide photocatalytic reduction TiO2 nanoparticles R Aram r_rasuli@znu.ac.ir 1 گروه فیزیک، دانشکده علوم، دانشگاه زنجان، زنجان AUTHOR S Wang et al., Nano Letters, 10 (2009) 92. 1 2. S C O’Hern et al., American Chemical Society Nano 6 (2012) 10130. 2 3. Y Zhu et al., Science 332 (2011) 1537. 3 4. S Ghosh et al., J. Phys. Chem. C 116 (2012) 20688. 4 5. Y J Shin et al., Langmuir 26 (2010) 3798. 5 6. K S Kim et al., American Chemical Society Nano 5 (2011) 5107. 6 7. J Rafiee et al., Nature Materials 11 (2012) 217. 7 8. I K Moon et al., Nature communications 1 (2010) 73. 8 9. J Rafiee et al., Advanced Materials 22 (2010) 2151. 9 10. A Shanmugharaj et al., Journal of Colloid Science 401 (2013) 148. 10 11. S Gilje et al., Nano Letters 7 (2007) 3394. 11 12. D Li et al., Nature Nanotechnology 3 (2008) 101. 12 13. R Y N Gengler et al., Nature Communications 4 (2013) 2560. 13 14. J Zhang et al., Chemical Communications 46 (2010) 1112. 14 15. Y Guo et al. Carbon 50 (2012) 2513. 15 16. A C Ferrari, Solid State Communications 143 (2007) 47. 16 17. A Ferrari, and J Robertson, Physical Review B, 61 (2000) 14095. 17 18. Z Ni et al., Nano Research 1 (2008) 273. 18 19. D Graf et al., Nano Letters 7 (2007) 238. 19 20. A Das et al., Nature Nanotechnology 3 (2008) 210. 20 21. O Akhavan et al., Journal of Materials Chemistry 22 (2012) 23260. 21 22. O Akhavan et al., Journal of Physical Chemistry C 116 (2012) 9653. 22 23. D P Yang et al., Journal of Physical Chemistry C 118 (2013) 725. 23 24. C Chen et al., The Royal Society of Chemistry Advances 4 (2014) 17393. 24 25. J Miller et al., Polymer Engineering & Science 36 (1996) 1849. 25 26. R N Wenzel, Industrial and Engineering Chemistry 28 (1936) 988. 26 27. D Bonn et al., Review of Modern Physics 81 (2009) 739. 27 28. B Bouali et al., Journal of Colloid Science 208 (1998) 81. 28
ORIGINAL_ARTICLE The order parameter symmetry in CeIrIn5 To understand the mechanism of superconductivity in unconventional super onductors is one of the big challenges in the field of superconductivity. Based on the BCS theory, there is a direct relation between the pairing mechanism and the symmetry of the order parameter. Therefore, identification of the structure of the superconducting gap or the order parameter provides key information on the pairing mechanism. The s-wave conventional superconductors have full point symmetry of the crystal lattice, thus they have full gap symmetry around the Fermi surface. This leads to the exponential temperature dependence of many physical properties in the superconducting state at low temperature. However, the presence of nodes imposed by symmetry in the gap function of unconventional superconductors implies a different order parameter other than conventional s-wave, which may lead to a different pairing mechanism. Here, we show how thermal conductivity measurements in CeIrIn5 at very low temperatures detect the superconducting gap structure. https://ijpr.iut.ac.ir/article_1174_f48a03b634741f4749e19011b91b1c88.pdf 2019-11-26 27 33 10.18869/acadpub.ijpr.16.1.27 CeIrIn5 heat transport order parameter unconventional superconductivity H Shakeripour hshakeri@cc.iut.ac.ir 1 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان LEAD_AUTHOR 1. N D Mathur, F Grosche, G Lonzarich et al., Nature 394 (1998) 39. 1 2. L Taillefer, Annu. Rev. Condens. Matt. Phys. 1 (2010) 51 2 3. P G Pagliuso et al., Physica B 312-313 (2002) 129. 3 4. J-Ph Reid, A Juneau-Fecteau, R T Gordon, S R de Cotret, N Doiron-Leyraud, X G Luo, H Shakeripour et al., Supercond. Sci. Technol. 25 (2012) 084013. 4 5. J Annett, “Superconductivity, Superfluity and Condensation”, Oxford University Press (2005). 5 6. M J Graf, Phys. Rev. B 53 (1996) 15147. 6 7. M R Norman and P J Hirschfeld, Phys. Rev. B 53 (1996) 5706. 7 8. V P Mineev and K V Samokhin, “Introduction to Unconventional Superconductivity”, London: Gordon and Breach (1999). 8 9. N Ashcroft and N Mermin, “Solid State Physics”, W.B. Saunders Company (1976). 9 10. R Joynt and L Taillefer, Rev. Mod. Phys. 74, 1 (2002) 235. 10 11. C Petrovic, P Pagliuso, et al., J. Phys: Condens. Matter 13 (2001) L337. 11 12. C Petrovic, R Movshovic et al., Europhys. Lett. 53 (2001) 354. 12 13. M A Tanatar et al., Phys. Rev. Lett. 95, 6 (2005) 067002. 13 14. H Shakeripour et al., Phys. Rev. Lett. 99 (2007) 187004. 14 15. K Izawa et al., Phys. Rev. Lett. 87, 5 (2001) 057002. 15 16. H Aoki et al., J. Phys: Condensed Matter 16 (2004) L13. 16 17. T Maehira, T Hotta, K Ueda, and A Hasegawa, J. Phys. Soc. Jpn. 72 (2003) 854. 17 18. Y Haga et al., Phys. Rev. B 63 (2001) 060503. 18 19. H Shakeripour, C Petrovic, and L Taillefer, New J. Phys. 11 (2009) 055065. 19 20. H Shakeripour, M A Tanatar, C Petrovic, and L Taillefer, Phys. Rev. B 82 (2010) 184531. 20 21. C Tsuei and J Kirtley, Rev. Mod. Phys. 72, 4 (2000) 969. 21
ORIGINAL_ARTICLE Magnetic properties of zigzag (0,9) GaAs nanotube doped with 3d transition metals of 3d transition metals (Sc, Ti, Cr, Mn , Fe, Co, Ni) in both far and close situations were studied based on spin polarised density functional theory using the generalized gradient approximation (LDA) with SIESTA code. The electronic structures show that zigzag (0,9) GaAs nanotubes are non-magnetic semiconductors with direct band gap. It was revealed that doping of 11.11 % Fe and Mn concentrations substituted in Ga sites in ferromagnetic phase in far situation and Cr sites in ferromagnetic phase in near situation introduces half metallic behavior with %100 spin polarization. The unique structure of spin polarised energy levels is primarily attributed to strong hybridization of 3d transition metal and its nearest-neighbor As-4p orbitals. The results of this study can be useful for empirical studies on diluted magnetic semiconductors (DMSs) and systemic investigation in 3d transitional metals. We suggest that GaAs nanotubes doped by transition metals would have a potential application as a spin polarised electron source for spintronic devices in the future. https://ijpr.iut.ac.ir/article_1175_3485cd250dd24e3e90bd0f43116b1580.pdf 2019-11-26 35 44 10.18869/acadpub.ijpr.16.1.35 DFT DMS GaAsn anotube spintronic transition metals R Fathi rfathi@mail.uk.ac.ir 1 دانشکده فیزیک، دانشگاه صنعتی شاهرود، شاهرود LEAD_AUTHOR T Movlarooy 2 دانشکده فیزیک، دانشگاه صنعتی شاهرود، شاهرود AUTHOR 1. P M Krstajić, V A Ivanov, F M. Peeters, V Fleurov and K Kikoin, Europhys. Lett. 61, 2 )2003( 235. 1 2. L Loureiro da Silva, M A Boselli, X F Wang, J Weberszpil, S S Makler, and I C da Cunha Lima, Braz. J. Phys. 32, 2 (2002). 2 3. J Hellsvik, B Skubic, L Nordström, B Sanyal, O Eriksson, P Nordblad, and P Svedlindh, Phys. Rev. B 78 (2008) 144419. 3 4. H Li, et al, J. Phys. Chem, 114 (2010) 11390. 4 5. Y P Song, P W Wang, X H Zhang, and D P Yu, Physica B 368 (2005) 16. 5 6. Q Wang, Q Sun, and P Jena, Nano Lett. 5 (2005) 1587. 6 7. Q Wang, Q Sun, and P Jena, Phys. Rev. Lett. 95 (2005) 167202. 7 8. H Ohno, J. Vac. Sci. Technol. B 18 (2000) 2039. 8 9. H Ohno, F Matsukura, and Y Ohno, JSAP International 5 (2002) 4. 9 10. N Akdogan, “Origin of Ferromagnetisimin Oxide-Based Diluted Magnetic Semiconductors”, PhD. thesis Ruhr-University Bochum, Germany (2008). 10 11. H C Kandpal, G H Fecher and C Felser, J. Phys. D: Appl. Phys. 40 (2007) 1507. 11 12. M Getzla, “Fundamentals of Magnetism”, Springer, Berlin Heidelberg (2008). 12 13. C Liu, F Yun, H Morkoc, J. Mat. Sci: Materials in Electronics. 16 (2005) 555. 13 14. J M. Soler, E Artacho, J D Gale, A Garcia, J Junquera, P Ordejon, and D Sanchez-Portal, J. Phys: Condens. Matter 14 (2002) 2745. 14 15. J P Perdew, K Burke, and M Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. 15 16. N Troullier and J Martins, Phys. Rev. B 43, 3 (1991-2) 1993. 16 17. N Troullier and J Martins, Phys. Rev. B 43 (1991) 8861. 17 18. Y Guo, X Yan and Y Yang, “First-principles Study of Narrow Single-walled GaN Nanotubes”, College of Science, Nanjing University of Aeronautics and Astronautics, Jiangsu 210016, China (2000). 18 19. C Zener, Phys. Rev. 81 (1951) 440. 19 20. T Dietl, H Ohno, F Matsukura, J Cibert, and D Ferrand, Science 287 (2000) 1019. 20 21. P W Anderson, Phys. Rev., 79 (1950) 350. 21 22. N. Akdogan; “Origin of Ferromagnetism in Oxide-based Diluted Magnetic semiconductors”, Ruhr-Universitat Bochum, Germany (2008). 22
ORIGINAL_ARTICLE Design and simulation of pressuresensor and accelerometer based on integrated optical circuits using photoelastic effect of LiNbO3 In this paper a novel optical pressure and acceleration sensor based on micro electro mechanical systems (MEOMS) has been designed. For this purpose an integrated Mach- Zander interferometer has been used in LiNbO3 diaphragm. In this sensor, the strain caused by applied pressure or acceleration leads to a change in refractive index of the wave guide in the diaphragm due to the photoelastic effect. The refractive index change leads to a phase change in the light wave that propagates in the waveguide. This phase change is converted to intensity change using the Mach- Zander interferometer. The software ANSYS 14.5 was used for calculation of the strain in the diaphragm. The pressure and acceleration sensitivity of the designed sensor have been obtained 2.33×10-4 (rad /Pa) and 2.16×10-5 (rad.s2/m), respectively.  https://ijpr.iut.ac.ir/article_1176_516dd400e1b1258fc5c8e61f9dca0ffb.pdf 2019-11-26 45 53 10.18869/acadpub.ijpr.16.1.45 Micro-Opto-Electro-Mechanical systems )MOEMS) optics photo-elastic pressure sensor N Joudi 1 . مجتمع برق و الکترونیک، دانشگاه صنعتی مالک اشتر، تهران AUTHOR R Asadi 2 . مجتمع برق و الکترونیک، دانشگاه صنعتی مالک اشتر، تهران LEAD_AUTHOR P Heydari 3 . دانشکده مکانیک، دانشگاه آزاد اسلامی، واحد رودهن AUTHOR M Ganji 4 . مجتمع برق و الکترونیک، دانشگاه صنعتی مالک اشتر، تهران AUTHOR 1. K Zandi et al., J. MEMS Sys. 21 (2012) 1464. 1 2. N Maluf, K Williams, “An Introduction to Microelectromechanical Systems Engineering”, Artech House Inc, Boston London (2004). 2 3. N Di, “Photoelastic and Electro-Optic Effects: Study of PMN-29%PT Single Crystals”, Rochester, New York (2009). 3 4. C P Fernandes, P O J Glantz, S A Svensson, A Bergmark, Dental Materials 19 (2003) 106. 4 5. W B Spillman, Opt. Lett. 7 (1982) 388. 5 6. A Wang, S He, X Fang, X Jin, and J Lin, J. Lightwave Tech. 10 (1992) 1466. 6 7. H Porte, V Gorel, S Kiryenko, J P Goedgebuer, W Daniau, and P Blind, J. Lightwave Technol. 17 (1999) 229. 7 8. R Ambrosio, G Lara, A Jimenez, J Mireles, J Ibarra, and A Heredia, “IEEE, International confernce on Simulation oF Semicunductor Processes and Devices”, (2012) 324. 8 9. P K Pattnaik, A Selvarajan, T Badrinarayana and T Srinivas, “Guided Wave Optical MEMS Pressure Sensors”, Proc. of ISA/IEEE Conference on Sensors for Industry (2005) 122. 9 10. J Noda, Opt. Comm. 1 (1980) 64. 10 11. M Valli, A Floretti, and M N Armenise, J. Modern Optics 35 (1988) 885. 11 12. B E A Saleh and M C Teich, “Fundamentals of Photonics”, John Willey (2006). 12 13. M Jazbinšek and M Zgonik, Appl. Phys. B 74 (2002) 407. 13 14. K Iizuka, “Elements of Photonics”, Wiley (2002). 14 16. R Riveria, G Garcia, J Olivares, M L Crespillo, Journal of Physics Applied Physics D 44 (2011) 11. 15 17. M Domenjoud, M Lematre, M Gratton, M Lethiecq, and L P Tran-Huu-Hue, IEEE Trans. Ultr. Ferr. Contr. 60 (2013) 2219. 16 18. K K Wong, “Properties of Lithium Niobate”, INSPEC/Institution of Electrical Engineers (2002). 17 19. T Dong-Lin, D Bing, H Shan, X Kun-Qing, Z LIANG, and W PENG, Optica Applicata 42 (2012) 121. 18
ORIGINAL_ARTICLE Electromagnetic wave transmission of over-dense plasma with parabolic electric permittivity profile In this paper, a theoretical study of electromagnetic wave passing through inhomogeneous over-dense plasma was performed. It was supposed that the plasma layer is immersed in vacuum and the plasma density has aparabolic profileform. In this way, the electric permittivity profile decreases gradually, acquires negative values, and then again becomes positive on the other side of the slab. It has been shown that how this structure is suitable for the transmission of electromagnetic waves in a wide range of the incident angle.To this end, the normal mode and the oblique incident was considered. Then the amplitude of the electromagnetic waves and the reflection coefficient were analytically and exactly calculated and discussed. Dependence of the coefficient of the entire structure to the parameters influencing the problem was evaluated.  https://ijpr.iut.ac.ir/article_1177_0f471f39a2b0947717c7a132284c07ad.pdf 2019-11-26 55 61 10.18869/acadpub.ijpr.16.1.55 anomalous electromagnetic wave transmission over-dense plasma parabolic density plasma with varying density S Mir Aboutalebi 1 گروه فیزیک، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد تهران شمال، تهران AUTHOR M.K Khadivi Boroujeni mkkhbb@gmail.com 2 گروه فیزیک، دانشگاه پیام نور، تهران LEAD_AUTHOR M Hashemi Hossain Abadi 3 گروه فیزیک، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد تهران شمال، تهران AUTHOR 1. Yu K Bliokh and Yu P Bliokh., Physics Uspekhi. 47 (2004) 393. 1 2. L Rajaei, S Mir Aboutalebi, and B Shokri, Physica Scripta, 84, 1 (2011) 8949. 2 3. S Miraboutalebi, L Rajaei, and M K Khadivi Borogeni, J. Theor. Appl. Phys. 7, 1 (2013) 1. 3 4. S Miraboutalebi, L Rajaee, and L Farhang Matin, J. Theor. Appl. Phys. 6, 1 (2012)1. 4 5. J A Bittencourt, “Fundamentals of Plasma Physics,” Springer-Verlag New York, (2004). 5 6. L Rajaei, S Miraboutalebi and M Nejati, accepted for publication in: Contributions to Plasma Physics 55, 7 (2015) 513. 6 7. L Rajaei, S Miraboutalebi, “The profile of Temperature in the Dissipativeover-dense Plasma Layer”, Chaotic Modeling and Simulation (CMSIM) 2 (2014). 7
ORIGINAL_ARTICLE Determining the neutron spectrum of 241Am-Be and 252Cf sources using bonner sphere spectrometer Bonner spheres system is one of the ways of measuring neutron energy distribution which is often applied in spectrometry and neutron dosimetry. This system includes a thermal neutron detector, being located in the center of several polyethylene spheres, and it is still workable due to the isotropic response of the system which in turn is derived from the spherical symmetry of moderators and the broad measurable range of the energy. In order to practically use this spectrometer, it is necessary to calibrate this system using standard neutron sources. This research aimed to determine the calibration factor of Bonner spheres spectrometry system and energy spectrum of two standard 241Am-Be and 252Cf sources in the atomic energy organization. Calibration and experimental measurement were done via the two standard sources. The response vector of each detector was derived by using MCNPX simulation code, based on the Monte Carlo method. The spectra unfolding of this system was performed through iterative method using the SPUNIT code done in software NSDUAZ6LiI and BUMS.  https://ijpr.iut.ac.ir/article_1178_35ded96938f75f4ded1591f868843038.pdf 2019-11-26 63 74 10.18869/acadpub.ijpr.16.1.63 bonner sphere spectrometer calibration detection neutorn source unfolding of spectrum M.A Varshabi m-varshabi@arshad.araku.ac.ir 1 گروه فیزیک ، دانشکده علوم پایه، دانشگاه اراک، اراک LEAD_AUTHOR 1. M Winter, P Beck and P Kindl, St Kerschbaumer, “Characterization of Radiation Detectors in Photon and High Energy Particle Fields”, IRPA Regional Symposium on Radiation Protection in Neighbouring Countries of Central Europe, Prague (1997). 1 3. G E Knoll, “Radiation Detection and Measurement”, John Wiley & Sons Inc, New York, (1999). 2 4. R Bedogni, “Neutron Spectrometry and Dosimetry for Radiation Protection Around a High Energy Electron/Positron Collider”, Unidad Académica de Estudios Nucleares Universidad Autónoma de Zacatecas Ph. D. Thesis (2006). 3 5. P Goldhagen, “Bonner-Sphere Neutron Spectrometry”, Environmental Measurements 4 6. Laboratory, US Department of Energy, 28th Edition (1997). 5 7. L Dresner, “Principles of Radiation Protection Engineering”, Oak Ridge National Laboratory, McGraw-Hill (1965). 6 8. S Mukhopadhyay, and H R McHugh., “Portable Gamma and Thermal Neutron Detector using 6LiI (Eu) Crystals”, Optical Science and Technology, 7 9. SPIE\'s 48th Annual Meeting, International Society for Optics and Photonics (2004) 73. 8 10. http://www.ludlums.com/component/virtuemart/neutron-detector-140-detail?activetab=specifications 9 11. ISO 8529-2 (2000). 10 12. ISO 8529-1 (2001). 11 13. J Sweezy, N Hertel, and K Veinot, “BUMS-Bonner sphere Unfolding Made Simple: an HTML Based Multisphere Neutron Spectrometer Unfolding Package”, Nuclear Instruments and Methods in Physics Research Section A: Accelerator Accelerators, Spectrometers, Detectors and Associated Equipment 476, 1 (2002) 263. 12 14. J J Doroshenko, S N Kraitor, T V Kuznetsova, K K Kushnereva and E S Leonov, Nuclear Technology 33, 4 (1977) 296. 13 14. MCNP Visual Editor Version X_22S Software. 14 15. H R Vega-Carrillo, J M Ortiz-Rodriguez, and M R Martinez-Blanco, Applied Radiation and Isotopes 71 (2012) 87. 15 16. http://nukeisit.gatech.edu. 16 17. International Atomic Energy Agency, “Compendium of Neutron Spectra and Detector Responses for Radiation Protection Purposes: Supplement to Technical Reports Series No. 318”, Technical Reports Series 403, IAEA, Vienna (2001). 17
ORIGINAL_ARTICLE Study of the Lambda-proton mass peak in Kaon-Deutron reaction at 1.45 and 1.65 GeV energies In this paper, we investigated the produced cusp in the Λ0 p  invariant mass spectrum from the Κ-d→ Λ0 pπ- reaction at kenergies of 1.45 and 1.65 GeV. According to these calculations the peak of spectrum was around MΛp < /sub>=2130 MeV /c2 and the width was Γ=13MeV. To interpret this cusp we applied a coupled-channel treatment for the two decay processes Λp→Λp and ΣN→Λp. The results of the inelastic channel (ΣN→Λp) showed more consistency to the experimental data. https://ijpr.iut.ac.ir/article_1179_a474c8df5d95cd6238184e9860de1762.pdf 2019-11-26 75 81 10.18869/acadpub.ijpr.16.1.75 coupled-channel treatments H (2129) di-baryon separable potential fitting M Hassanvand hassanvand@cc.iut.ac.ir 1 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان LEAD_AUTHOR 1. H Hotch et al., Physical Review C 64 (2001) 044302. 1 2. P K Saha et al., Physical Review C 70 (2001) 044613. 2 3. O Braun et al., Nuclear Physics B 124 (1977) 45-60. 3 4. T Tan, Physical Review Letters 23, 7 (1969) 395. 4 5. O Dahl et al., Physical Review Letters 6, 3 (1961) 142. 5 6. D Cline et al., Physical Review Letters 20, 25 (1968) 1452. 6 7. G Alexander et al., Physical Review 173, 5 (1968) 1452. 7 8. D Eastwood et al., Physical Review D 3, 11 (1971) 2603. 8 9. COSY-Julish collaboration, The European Physical Journal A 49 (2013) 157. 9 10. J A McNeil et al., Physical Review Letters 50, 19 (1983) 1439. 10 11. G F Chew and G C Wick, Physical Review 85, 4 (1951) 636. 11 12. W Brucker, Physics Letters B 62 (1976) 48. 12 13. B Povh, Rep. Prog. Phys. 39 (1976) 823. 13 14. Y Akaishi et al., Proceedings of Japan Academy Series B 84 (2008) 264-273. 14 15. M Hassanvand et al., Physical Review C 87 (2013) 055202. 15 16. M. Hassanvand et al., Iranian Journal of Physics Research, 12, 4 (2013)337. 16 . J. Esmaili et al., Iranian Journal of Physics Research, 12, 2 (2012)137. 17 R Siebert et al., Nuclear Physics A 567 (1994) 819 18
ORIGINAL_ARTICLE Fabrication of Ni50Mn34In16 ferromagnetic shape memory alloy using mechanical alloying method and study of annealing effect on its structural and magnetic properties In this research, Ni50Mn34In16 ferromagnetic shape memory alloy has been prepared by mechanical alloying method. XRD patterns of the samples showed that after 10 hours of ball milling, the alloy structure was completely formed and continuing of the milling process led to more fine particle size. Also the role of annealing on improvement of the alloy properties was studied. It was found that the sample annealing at 900ºC followed by quenching improves the crystal structure and helps to reach L21 structure. Ac susceptibility measurements showed that for the occurrence of magnetic transition, annealing and quenching process on the ball milled powder is necessary. https://ijpr.iut.ac.ir/article_1180_fd42a62729b51d4f68f10ad3d4598801.pdf 2019-11-26 83 89 10.18869/acadpub.ijpr.16.1.83 annealing ferromagnetic shape memory mechanical alloying quenching V.R Zahedi kameli@iut.ac.ir 1 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان AUTHOR 1. T Graf, S S P Parkin, and C Felser, Advances in Magnetics 47, 2 (2011) 367. 1 2. T Graf, C Felser, and S S P Parkin, Progress in Solid State Chemistry 39, 1 (2011) 1. 2 3. I Dubenko et al., J. Magn. Magn. Mater. 321 (2009) 754. 3 4. O Otsuka and C M Wayman, “Shape Memory Materials”, Cambridge University Press (1999). 4 5. M Hakimi and M Khajeh Aminian, 14, 1 (2014) 31. 5 6. A Planes, L Manosa, and M Acet, J. Phys. Condens. Matter 21, 23 (2009) 233201. 6 7. X Zhang et al., Journal of Alloys and Compounds 656 (2016) 154. 7 8. T Paramanik and I Das, Journal of Alloys and Compounds 654 (2016) 399. 8 9. A Ghotbi Varzaneha et al., Journal of Alloys and Compounds 598 (2014) 6. 9 10. Wu, Y, Wang, J Jiang, C, and Xu, H, Materials Science and Engineering A 646 (2015) 288. 10 11. L Zhou, A Mehta, A Giri, K Cho, and Y Sohn Materials Science and Engineering A 646 (2015) 57. 11 12. C Suryanarayana, E Ivanov, and V V Boldyrev, Materials Science and Engineering A 304-306 (2001) 151. 12 13. K V Peruman, R Chockkalingam, and M Mahendran, Phase Transition 83, 7 (2010) 509. 13 14. A Planes et al., J. Magn. Magn. Mater 310 (2007) 2767. 14 15. J L Sánchez Llamazares, B Hernando, C García, J González, L Escoda, and J J Suñol, J. Phys. D: Appl. Phys., 42 (2009) 045002. 15 16. A K Pathak et al., Journal of Applied Physics 103 (2008) 07F315. 16 17. B Tian et al., Intermetallics 16 (2008) 1279. 17 18. T Krenke et al., Phys. Rev. B 73 (2006) 174413. 18
ORIGINAL_ARTICLE Isotropy dependence of spiral order in triangular lattice Hubbard model Investigation of broken symmetry phases with long range order in strongly correlated electron systems is among subjects that have always been of interest to condensed matter scientists. In this paper we tried to study the existence of the 120 degrees magnetic spiral order, based on anisotropy in geometrically frustrated triangular lattices, using variational cluster approximation. We observed that by increasing the anisotropy in the system, the spiral order can be found for U≥7.5t and for t&#39;<1.35; however, it is limited by decreasing t&#39; since antiferromagnetism is dominant for t&#39;<0.85t. Studying the Mott transition shows that a paramagnetic insulating phase, called quantum spin liquid, happens in the neighborhood of the spiral ordered phase https://ijpr.iut.ac.ir/article_1181_2a19847218b589839482fb9916b351d8.pdf 2019-11-26 91 99 10.18869/acadpub.ijpr.16.1.91 strongly correlated electron system Hubbard model magnetic spiral order quantum spin liquid anisotropy P Sahebsara sahebsara@cc.iut.ac.ir 1 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان LEAD_AUTHOR 1. A M Kini et al., Inorg. Chem. 29 (1990) 2555. 1 2. N D Kusuch, M A Tanatar, E B Yagubskii, and T Ishiguro, JETP Lett. 7 (2001) 429. 2 3. H Urayama et al., J. Chem. Lett. 55 (1988). 3 4. U Geiser et al., Inorg. Chem. 30 (1991) 2586. 4 5. J Hubbard, Proc. Roy.l Soc. London A 1365 (1963), 238. 5 6. P W Anderson, Science 235, 4793 (1987) 1196. 6 7. P Sahebsara and D Sénéchal, Phys. Rev. Lett. 97, 25 (2006) 257004. 7 8. P Sahebsara and D Sénéchal, Iranian Journal of Physics Research 6, 3 (2006) 179. 8 9. P Sahebsara and D Sénéchal, Phys. Rev. Lett. 100, 13 (2006) 136402. 9 10. Y Shimizu et al., Phys. Rev. Lett. 91, 10 (2003) 107001; ibid. Phys. Rev. B 73, 14 (2006) 140407. 10 11. L Capriotti et al., Phys. Rev. Lett. 82, 19 (1999) 3899. 11 12. R Côté and A-M Tremblay, Europhys. Lett. 29 (1995) 37. 12 13. A Singh, Phys. Rev. B 71, 21 (2005) 214406. 13 14. M Capone, L Capriotti, F Becca, and S Caprara, Phys. Rev. B 63, 8 (2001) 085104. 14 15. B Kyung, A Georges, and A-M Tremblay, Phys. Rev. B 74, 2 (2006) 024501. 15 16. H Morita, S Watanabe, and M Imada, J. Phys. Soc. Jpn. 71 (2002) 2109. 16 17. D Sénéchal, “Cluster Perturbation Theory”, Book Chapter in “Strongly Correlated Systems: Theoretical Methods”, Eds. A Avella and F Mancini, Springer Series in Solid-State Sciences (2012). 17 18. D Sénéchal, D Perez, and M Pioro-Ladrière. Phys. Rev. Lett. 84, 3 (2000) 522; D Sénéchal, D Perez, and D Plouffe, Phys. Rev. B 66, 7 (2002) 075129. 18 19. A Damascelli, Physica Scripta T 109 (2004) 61. 19 20. M Potthoff, The European Physical Journal B 32 (2003) 429; M Potthoff, Condens. Mat. Phys. 9 (2006) 557. 20 21. J M Luttinger and J C Ward, Phys. Rev. 118, 5 (1960) 1417. 21 22. P Sahebsara, Iranian Journal of Physics Research 8, 2 (2008) 131. 22
ORIGINAL_ARTICLE Measurements of the three-body break-up channel observables for a part of the phase space of deuteron-deuteron scattering at 65 MeV/nucleon Information obtained from nucleus as a bound system of nucleons and from nucleon-nucleon scattering experiments is a strong tool for studying various aspects of nuclear forces. Deuteron-deuteron scattering as a four-nucleon system can provide useful information. So, scattering experiment of a polarized beam of deuteron with kinetic energy of65 MeV/nucleon from a liquid-deuterium target was done at Kernfysisch Versneller Instituut (KVI) and the Big Instrument for Nuclear-polarization Analysis (BINA) was utilized. The obtained data from this experiment were analyzed and presented in this paper. Some results for vector and tensor analyzing powers for a part of the phase space of the Three-Body Break-up channel in d-d scattering are discussed herein. This dataset will be used to test the upcoming theoretical calculations for a four nucleon system, especially for studying the three-nucleon force effects. https://ijpr.iut.ac.ir/article_1182_9a479cc4dfe445ffe4134aebc6fa3548.pdf 2019-11-26 101 110 10.18869/acadpub.ijpr.16.1.101 analyzing power three-nucleon force three-body break-up channel A Ramazani Moghaddam Arani ramezamo@kashanu.ac.ir 1 دانشکده فیزیک، دانشگاه کاشان، کاشان AUTHOR 1. V G J Stoks, R A M Klomp, C P F Terheggen, and J J Swart, Phys. Rev. C 49 (1994) 2950. 1 2. R Machleidt et al., Phys. Rev. C 63 (2001) 024001. 2 3. R B Wiringa, V G J Stoks, and R Schiarilla, Phys. Rev. C 51 (1995) 38. 3 4. S C Pieper, V R Pandharipande, R B Wiringa, and J Carlson, Phys. Rev. C 64 (2001) 014001. 4 5. K Ermisch et al., Phys. Rev. Lett. 86 (2001) 5862. 5 6. K Ermisch et al., Phys. Rev. C 68 (2003) 051001. 6 7. K Ermisch et al., Phys. Rev. C 71 (2005) 064004. 7 8. N Kalantar-Nayestanaki et al., Rep. Prog. Phys. 75 (2012) 016301. 8 9. H Primakoff and T Holstein, Phys. Rev. 55 (1939) 1218. 9 10. T Allison, W Glockle, H Witala, D Huber, H Kamada, and J Golak, Physics Reports 274 (1996) 107. 10 11. H Witala, W Glöckle, D Hüber, J Golak, and H Kamada, Phys. Rev. Lett. 81 (1998) 1183. 11 12. F Ciesielcki, J Carbonell, and C Gignoux, Phys. Lett. B 447 (1999) 199. 12 13. A C Fonseca, Phys. Rev. Lett. 83 (1999) 4021. 13 14. M Viviani, A Kievsky, S Rosati, E A George, and L D Knutson, Phys. Rev. Lett. 86 (2001) 3739. 14 15. P Lazauskas, J Carbonell, A C Fonseca, M Viviani, A Kievsky, and S Rosati, Phys. Rev. C 71 (2005) 034004. 15 16. A Ramazani Moghaddam Arani et al., Phys. Rev. C 83 (2011) 024002. 16 17. L Friedrich, E Huttel, R Kremers, and A G Drentje, “Polarized Beams and Polarized Gas Targets”, World Scientific, Singapore (1995) 198. 17 18. H R Kremers and A G Drentje, “Polarized Gas Targets and Polarized Beams,” 421, AIP Conf. Proc. (1997) 507. 18 19. S.Gales “AGOR, A Superconducting Cyclotron for Light and Heavy Ions”. Proc. 11th International Conference on Cyclotrons and their Applications, Ionics, Tokyo 184 (1987). 19 20. H R Kremers, J P M Beijers, N Kalantar-Nayestanaki, and T B Clegg, Nucl. Instrum. Meth. Phys. Res. A 516 (2004) 209. 20 21. R Bieber, et al., Nucl. Instr. Meth. Phys. Res. A 457 (2001) 12. 21 22. A Ramazani Moghaddam Arani, “Cross-Section and Analyzing-Power Measurements in Three and Four-Nucleon Scattering”, Ph.D. Thesis, University of Groningen (2009). 22 23. H Mardanpour-Mollalar, “Investigation of Nuclear Forces in d+p Elastic and p+d Break-up Reactions at Intermediate Energies”, Ph.D. Thesis, University of Groningen (2008). 23 24. G G Ohlsen, Rep. Prog. Phys. 35 (1972) 717. 24 25. G G Ohlsen, Nucl. Instr. Meth. 179 (1981) 283. 25
ORIGINAL_ARTICLE The effect of entanglement and non-inertial frame on four-qubit quantum game The effect of increasing quantum bits and Unruh effect on quantum Prisoners’ dilemma has been investigated for both entangled and unentangled initial states. The Nash equilibrium, as an important result of quantum game theory, was obtained through the different payoffs resulted from choosing various strategies. It has been shown that the non-inertial frame disturbs the symmetry of the game. Actually, selection of the basic quantum strategy by players and calculating the payoff of the game via the density matrix of 4-qubit quantum states can represent a scale of influence of entanglement in a quantum mechanical system https://ijpr.iut.ac.ir/article_1183_6845ed28591ddc8670606aa2452f824d.pdf 2019-11-26 111 121 10.18869/acadpub.ijpr.16.1.111 entanglement Nash equilibrium non-inertial frame Pareto optimal quantum game S.S Rashidi h.goudarzi@urmia.ac.ir 1 گروه فیزیک، دانشکده علوم، دانشگاه ارومیه، ارومیه AUTHOR 1. D A Meyer, Phys. Rev. Lett. 82 (1999) 1052. 1 2. J von Neumann, O Morgenstern, “The Theory of Games and Economic Behavior”, Princeton University Press (1944). 2 3. J Eisert, J Wilkens, and M Lewenstein, Phys. Rev. Lett. 83 (1999) 3077. 3 4. L Marinatto and T Weber, Phys. Lett. A 272 (2000) 291. 4 5. H Li, J Du, and S Massar, Phys. Lett. A 306 (2002) 73. 5 6. C F Lo and D Kiang, Phys. Lett. A 321 (2004) 94. 6 7. A P Flitney and D Abbott, Phys. Rev. A 65 (2002) 062318. 7 8. A Iqbal and A H Toor, Phys. Rev. A 65 (2002) 052328. 8 9. A P Flitney, J Ng and D Abbott, Physica A 314 (2002) 35. 9 10. L Goldenberg, L Vaidman, and S Wiesner, Phys. Rev. Lett. 82 (1999) 3356. 10 11. S Khan, M Ramzan, and M K Khan, Chin. Phys. Lett. 27 (2010) 080302. 11 12. L K Chen, H Ang, D Kiang, L C Kwek, and C F Lo, Phys. Lett. A 316 (2003) 317. 12 13. A P Flitney and D Abbott, J. Phys. A Math. Gen. 38 (2005) 449. 13 14. S Khan, M Ramzan, and M K. Khan Int. J. Theo Phys. 49 (2010) 31. 14 15. P M Alsing, I Fuentes-Schuller, R B Mann, and T E Tessier, Phys. Rev. A 74 (2006) 032326. 15 16. Y Ling, S He, W Qiu and H Zhang, J. Phys. A Math. Theor. 40 (2007) 9025. 16 17. R M Gingrich and C Adami, Phys. Rev. Lett. 89 (2002) 270402. 17 18. Q Pan and J Jing, Phys. Rev. A 77 (2008) 024302. 18 19. I Fuentes-Schuller and R B Mann, Phys. Rev. Lett. 95 (2005) 120404. 19 20. H Terashima and M Ueda, Int. J. Quantum Inf. 1 (2003) 93. 20 21. H Goudarzi and S Beyrami, J. Phys. A: Math. Theor. 45 (2012) 225301. 21 22. M Kh Salman khan, Quantum Inf. Process 12 (2013) 1351. 22 23. H Goudarzi and S Birami, Iranian Journal of Physics Research 12, 4 (2013) 387. 23 24. P C W Davies, J. Phys. A: Math. Gen. 8 (1975) 609. 24 25. S Takagi, Prog. Theor. Phys. Suppl. 88 (1986) 1. 25 26. W Unruh, and R Wald, Phys. Rev. D 29 (1984) 1047. 26
ORIGINAL_ARTICLE The effect of side quantum dots on conductance through four-quantum-dot combinations: study by non-equilibrium Greens function method Electronic transport has been investigated in four-quantum-dot combination coupled to metal electrodes using the non-equilibrium Green’s function method, and curves I-V and conductance (dI/dV) were analyzed for special combination. We have showed that the emergence of negative differential conductivity is due to asymmetric distribution of quantum dots in the central region, existence of non-coupled dots (side quantum dots), and the interference effect. We found that more side quantum dots lead to more negative differential conductance. https://ijpr.iut.ac.ir/article_1184_01c09fc02e68730f8405bc9d41e3ac53.pdf 2019-11-26 123 126 10.18869/acadpub.ijpr.16.1.123 negative conductance non-equilibrium Greens function quantum dots transport Z Darizin 1 گروه فیزیک، دانشکده علوم پایه، دانشگاه گیلان، رشت LEAD_AUTHOR M Bagheri 2 گروه فیزیک، دانشکده علوم پایه، دانشگاه گیلان، رشت AUTHOR H Rahimpoor Soleymani 3 گروه فیزیک، دانشکده علوم پایه، دانشگاه گیلان، رشت AUTHOR 1. E Taranko, M Wiertel, and R Taranko, J. Appl. Phys. 111 (2012) 023711. 1 2. Z L He, D Zhang, P Li, J Y Bai, and Y F Bai, Indian J. Phys. 88 (2014) 6. 2 3. B B Brogi, S Chand and P K Ahluwalia, Physica B: Condensed Matter 461 (2015) 110. 3 4. H Rabani, M Mardani, and M Talebi, Iranian Journal of Physics Research, 15, 1 (2015) 89. 4 5. J B Barner and S T Ruggiero, Phys. Rev. Lett. 59 (1987) 807. 5 6. M A. Reed, J N. Randall, R J Aggarwal, R J Matyi, T M Moore, and A Wetsel, Phys. Rev. Lett. 60 (1988) 535. 6 7. Y Q Feng, R Q Zhang, K S Chan, H F Cheung, and S T Lee, Phys. Rev. B 66 (2002) 045404. 7 8. C Shyam, R K Moudgil, and P K Ahluwalia, Physica B: Condensed Matter 405 (2010) 239. 8 9. D Weinmann, W H ausler, and B Kramer, Phys. Rev. Lett. 74 (1995) 984. 9 10. M Ciorga, M Pioro-Ladriere, P Zawadzki, P Hawrylak and A S Sachrajda, Appl. Phys. Lett. 80 (2002) 2177. 10 11. A Thielmann, M H Hettler, J K onig, and G Sch on, Phys. Rev. B 71 (2005) 045341. 11 12. M C Rogge, F Cavaliere, M Sassetti, R J Haug, and B Kramer, New J. Phys. 8 (2006) 298. 12 13. T C L G Sollner, P E Tannenwald, D D Peck, and W D Goodhue, Appl. Phys. Lett. 45 (1984) 1319. 13 14. Z Z Sun, R Q Zhang, W Fan, and X R Wang, J. Appl. Phys. 105 (2009) 043706. 14