ORIGINAL_ARTICLE Calculation of thermodynamic corrections from electronic exchange effects in Thomas–Fermi model employed for hot dense plasma In this paper, considering the plasma electronic exchange intraction effects, first, Thomas–Fermi equation has been solved numerically. Then, employing the results of these equations, the amount of exchange corrections for pressure and internal energy of the plasma (electron gas with specific atomic number) has been calculated based on variation of  plasma density and temperature. The results of the calculations can be used in both quantitative and qualitative description of changing the phase of matter in high temperature and density, encountered with in theoretical and experimental  studies of inertial fusion and astro physical phenomena as well. https://ijpr.iut.ac.ir/article_1185_6d66dcb81186f11cd6b91bca22cc8ade.pdf 2019-11-26 127 132 10.18869/acadpub.ijpr.16.2.127 hot dense plasma equations of state electronic exchange effects Thomas– Fermi model inertial confinement H Hosseinkhani hhosseinkhani@aeoi.org.ir 1 پژوهشکده پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، تهران LEAD_AUTHOR A H Esmailian Araghi 2 گروه فیزیک، دانشگاه آزاد اسلامی، واحد قم AUTHOR 1. S Eliezer, A Ghatak, and H Hora, “Fundamental of Equation of State”, World Scientific (2002). 1 2. S X Hu et al., Phys. Rev. Lett. 100 (2008) 185003. 2 3. T Guillot, Annu. Rev. Earth Planet Sci. 33 (2005) 493. 3 4. J J Fortney et al., Phys. Plasmas 16 (2009) 041003. 4 5. P Dufour et al., Nature 450 (2007) 522. 5 6. J D Lindl et al., Phys. Plasmas 11 (2004) 339. 6 7. S X Hu et al., Phys. Rev. Lett. 104 (2010) 235003. 7 9. R M More in, “Laser Plasma Interactions”, Proceedings of the 29th Scottish Universities Summer School in Physics, edited by M. B.Hooper, Camelot, Southampton (1986). 8 10. B Ya Zel’dovich and Yu P Raizer, “Physics of Shock Waves and High Temperature Hydrodynamics Phenomena”, Academic Press, New York (1966). 9 11. A F Nikiforov, V G Novikov, and V B Uvarov, “Quantum Statistical Models of Hot Dense Matter”, Birkhauser Verlag, Basel, Switzerland (2005). 10 12. B F Rozsnyai, Phys. Rev. A 53 (1972) 1137. 11 13. N N Kalitkin and L V Kuzmina, “Tables of Thermodynamic Functions of Matter at High Energy Densities”, Keldysh Institute of Applied Mathematics Russian Academy of Sciences, Moscow (1975). 12 14. D A.Kirzhnits, Soviet Journal of Experimental and Theoretical Physics 8, 6 (1959) 1081. 13 15. S K Godunov, and V S Ryabenkii, “The Theory of Difference Schemes – An Introduction to the Underlying Theory”, NorthHolland, Amsterdam (1987). 14 16. A A Samarskii, and A V Gulin, “Numerical Methods”, Nauka, Moscow (1989). 15
ORIGINAL_ARTICLE Design of surface plasmon resonance biosensor with one dimensional photonic crystal for detection of cancer In recent years, development of highly sensitive biosensors is the main purpose of researchers to diagnose and prevent diseases. Accordingly, in this paper, surface plasmon resonance (SPR) biosensor has been designed based on one dimensional layered structures. With regard to the fact that the quality of SPR sensors strongly depends on the reflectance amplitude and full width at half maximum (FWHM) of the SPR curves, a novel structure, , is presented using transfer matrix method (TMM), to satisfy these two condition. Besides, the sensitivity of this biosensor has been calculated and it has been employed to diagnose leukemia for Jurkat cells. https://ijpr.iut.ac.ir/article_1186_d5afbb17a6c1dda5a639cc18e19d8d21.pdf 2019-11-26 133 138 10.18869/acadpub.ijpr.16.2.133 one-dimensional photonic crystal surface plasmon resonance biosensor transfer matrix method M Sharifi m_sharifi66@yahoo.com 1 دانشکده علوم و فناوری‌های نوین، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته کرمان، کرمان LEAD_AUTHOR H Pashaei Adl hamid.pashaei@gmail.com 2 دانشکده فیزیک، دانشگاه تبریز، تبریز AUTHOR H Tajalli 3 دانشکده فیزیک، دانشگاه تبریز، تبریز قطب علمی فوتونیک، پژوهشکده فیزیک کاربردی و ستاره شناسی، دانشگاه تبریز، تبریز AUTHOR A Bahrampour 4 دانشکده فیزیک، دانشگاه صنعتی شریف، تهران AUTHOR 1. N Paras Prasad, “Introduction to Biophotonics”, John Wiley & Sons (2003). 1 2. W Su, G Zheng, and X Li, Optik 124, (2013) 5161. 2 3. S A Darmanyan, M neviere, and A A Zakhidov, Optics. Comm. 225 (2003) 233. 3 4. J Lagois, Solid State Comm. 39 (1981) 563. 4 5. J Matsuura, M Fukui, and O Tada, Solid State Comm. 45 (1983) 157. 5 6. M Fukui and H Dohi, J. Phys. C 17 (1984) 1783. 6 7. X J Liang, A Q Liu, X M Zhang, P H Yap, T C Ayi and H S Yoon, Solid-State Sensors, Actuators and Microsystems 2 (2005) 1712. 7 8. B H Ong, X Yuan, S C Tjin, J Zhang, and H M Ng, Sensors and Actuators B 114 (2006) 1028. 8 9. D Habauzit, J Chopineau, and B Roig, Anal. Bioanal. Chem. 387 (2007) 1215. 9 10. M A Ordal, L L Long, R J Bell, S E Bell, R R Bell, R W Alexander, and C A Ward, Appl. Optics 22 (1983) 1099. 10 11. A Stefan Maier, Plasmonics Fundamentals and Applications, Springer (2007). 11
ORIGINAL_ARTICLE Algebraic dynamics of Bloch oscillations of ultra - cold atoms in optical lattice The dynamic of a charged quantum particle in a system of arrays of quantum well in tight-binding model, under the effect an external field, in one and two dimension, is studied by algebraic approach. The persistent‎ (quantum confinement) and ‎transmission ‎(quantum teleportaion) probabilities of this quantum particle in terms of infinite-variable Bessel functions is calculated and the results is discussed by numerical method. https://ijpr.iut.ac.ir/article_1187_66efc28b766d52147e8de3170cddd45d.pdf 2019-11-26 139 145 10.18869/acadpub.ijpr.16.2.139 tight-binding model Lie algebra persistent probability transmission probability H Pahlavani h_pahlavaniha@yahoo.com 1 گروه فیزیک، دانشگاه قم، قم LEAD_AUTHOR A Zamani 2 گروه فیزیک، دانشگاه قم، قم AUTHOR 1. D H Dunlap and V M Kenkre, Phys. Rev. B 34 (1986) 3625. 1 2. A R Kolovsky and H J Korsch, Phys. Rev. A 67 (2003) 063601. 2 3. B P Anderson and M A Kasevich, “Macroscopic Quantum Interference from Atomic Tunnel Arrays”, Science 27 (1998) 1686. 3 4. R Walters, “Ultra-cold Atoms in Optical Lattices: Simulating Quantum Spin Systems”, Ph.D. ‎Thesis, Oxford University (2012). 4 5. B P Anderson and M A Kasevich, Science 282 (1998) 1686. 5 6. .A R Kolovsky and H J Korsch, International J. Mod. Phys. 18 (2004) 1235. 6 7. S Whitlock, R Gerritsma, T Fernholz, and R J C Spreeuw, New Journal of Physics 11 (2009) 023021. 7 8. H J Korsch and S Mossmann, Phys. Lett. A 317 (2003) 54. 8 9. S Mossmann, A Schulze, D Witthaut, and H J Korsch,‎ J. Phys. A: Math. Gen. 38 (2005) 3381. 9 10. T Hartman, F Keck, H J Korsch, and S Mossmann, New J. Phys. 6 (2004) 2. 10 11. L Galue, H G Khajah, S L Kalla, J. Computational and Applied Mathematics 118 (2000) 143. 11 12. ‎F Keck and ‎H J Korsch, J. Phys. A: Math. ‎Gen. 3‎5‎‎ (2002)‎ L105. 12
ORIGINAL_ARTICLE On the effect of moisture content on drying rate in porous media In this study, drying process is modeled in porous media using random walk theory. In this line, first the effect of microscopic quantities derived from random walk theory has been studied on drying rate. Then, the relationship between drying rate and moisture content is obtained taking convection into account. The results obtained in this study indicates the effect of convection on the process of drying in porous media. https://ijpr.iut.ac.ir/article_1188_5b10a0041296681c23a566c56a48c384.pdf 2019-11-26 147 152 10.18869/acadpub.ijpr.16.2.147 porous media random walk fractional calculus drying rate R Torabi rezatorabi@aut.ac.ir 1 دانشکده فیزیک، دانشگاه تفرش، تفرش LEAD_AUTHOR S Vasheghani Farahani 2 دانشکده فیزیک، دانشگاه تفرش، تفرش AUTHOR G R Jafari 3 دانشکده فیزیک، دانشگاه شهید بهشتی، تهران AUTHOR 1. S Havlin and D Ben-Avraham, Advances in Physics 51 (2002) 187. 1 2. M Mehrafarin and M Faghihi, Physica A 301 (2001) 163. 2 3. A Taloni, A Chechkin, and J Klafter, Phys. Rev. Lett. 104 (2010).160602. 3 4. A Taloni, A Chechkin, and J Klafter, Phys. Rev. E 82 (2010) 061104. 4 5. I Podlubny, “Fractional Differential Equations”, Academic Press, San Diego (1999). 5 6. K B Oldham and J Spanier, “The Fractional Calculus”, Academic Press, New York (1974). 6 7. K S Miller and B Ross, “An Introduction to the Fractional Calculus and Fractional Differential Equations”, Wiley-Interscience (1993). 7 8. S G Samko, A A Kilbas, and O I Marichev, “Fractional Integrals and Derivatives”, Gordonand Breach Science Publishers, Amsterdam (1993). 8 9. R Metzler and J Klafter, Phys. Rep. 339 1 (2000). 9 10. M Weissman, Rev. Mod. Phys. 60 (1988) 537. 10 11. M Shlesinger, Annu. Rev. Phys. Chem. 39 (1988) 269 11 12. G M Zaslavsky, Phys. Rep. 371 (2002) 461. 12 13. A I Saichev and G M Zaslavsky, Chaos 7 (1997) 753. 13 14. V V Uchaikin, J. Exper. Theor.Phys. 97 (2003) 810. 14 15. M M Meerschaert, D A Benson, and B Baeumer, Phys. Rev. E 63 (2001) 021112. 15 16. V E Tarasov, Phys. Rev. E 71 (2005) 011102. 16 17. V E Tarasov, J. Phys. A 38, (2005) 5929. 17 18. N Laskin and G M Zaslavsky, Physica A 368 (2005) 38. 18 19. V E Tarasov and G M Zaslavsky, Chaos 16 (2006) 023110. 19 20. A Compte, R Metzler, and J Camacho, Phys. Rev. E 56 (1997) 1445. 20 21. B J West and P Grigolini, “Complex Webs: Anticipating the Improbable”, Cambridge University Press (2011). 21 22. F Mainardi and P Pironi, Extracta Mathematicae 11 (1996) 140. 22 23. I Goychuk, Phys. Rev. E 80 (2009) 046125. 23 24. J H Jeon and R Metzler, Phys. Rev. E 81 (2010) 021103. 24 25. K Linkenkaer-Hansen, V V Nikouline, J Matias Palva, and R J Ilmoniemi, The Journal of Neuroscience 21 (2001) 1370. 25 26. R N Mantegna and H E Stanley, Nature 376 (1995) 46. 26 27. C K Peng, S Havlin, H E Stanley and A L Goldberger, Chaos 5 (1995) 82. 27 28. J M Coulsont, and J F Richardson, “Chemical Engineering”, 4th Edition, Pergamon Press, Oxford (1993). 28 29. H Theliander, “Chemical Engineering Design Advanced Course”, 3rd Edition, Chalmers University of Technology, Gothenburg (1999). 29 30. J G Salin, Drying Tech. 9 (1991) 775. 30
ORIGINAL_ARTICLE Self-similar expansion of plasma into vacuum including thermal ions Expansion of one dimensional collisionless plasma into vacuum is studied under different initial ions temperature. In this study, a simulation code is used, in which the electrons dynamic is determined by Vlasov equation and the ions dynamic is determined  by fluids equations. Finally, the effect of initial ions temperature on the expansion of plasma into vacuum is investigated and the obtained results are compared with self-similar solutions associated with plasma expansion including thermal ions. It is shown that in the area behind the ion front, in which quasi-neutrality conditions exists, the self-similar solutions coincide with the simulation results. https://ijpr.iut.ac.ir/article_1189_696ca6348a4c56d762ab49da2842a40f.pdf 2019-11-26 153 158 10.18869/acadpub.ijpr.16.2.153 plasma expansion self-similar ion front simulation Vaslov equation R Shokoohi shokoohi@aut.ac.ir 1 گروه فیزیک، دانشکده علوم پایه، دانشگاه بجنورد، بجنورد LEAD_AUTHOR L Yazdani 2 گروه فیزیک، دانشکده علوم پایه، دانشگاه شهرکرد، شهرکرد AUTHOR 1. A Diaw and P Mora, Phys. Rev. E 84 (2011) 036402. 1 2. A Diaw and P Mora, Phys. Rev. E 86 (2012) 026403. 2 3. K H Wright Jr, N H Stone, and U Samir, J. Plasma Phys. 33 (1985) 71. 3 4. P B Parks and R J Turnbull, Phys. Fluids 21 (1978) 1735. 4 5. E L Clark, K Krushelnick, J R Davies, M Zepf, M Tatarakis, F N Beg, A Machacek, P A Norreys, M I K Santala, I Watts, and A E Dangor, Phys. Rev. Lett. 84 (2000) 670. 5 6. M Borghesi, J Fuchs, S V Bulanov, A J Mackinnon, P K Patel, and M Roth, Fusion Sci. Technol. 49 (2006) 412. 6 7. J Fuchs, P Antici, E D’Humières, E Lefebvre, M Borghesi, E Brambrink, C A Cecchetti, M Kaluza, V Malka, M Manclossi, S Meyroneinc, P Mora, J Schreiber, T Toncian, H Pépin, and P Audebert, Nat. Phys. 2 (2006) 48. 7 8. R Tanberg , Phys. Rev. 35 (1930) 1080. 8 9. H W Hendel and T T Reboul, Phys. Fluids 5 (1962) 360. 9 10. F Brech and L Cross, Appl. Spectrosc. 16 (1962) 59. 10 11. J E Crow, P L Auer, and J E Allen, J. Plasma Phys. 14 (1975) 65. 11 12. Ch Sack and H Schamel, Phys. Rep. 156 (1987) 311. 12 13. P Mora, Phys. Rev. E 72 (2005) 056401. 13 14. P Mora, Phys. Rev. Lett. 90 (2003) 185002. 14 15. Y Huang, et al., Appl. Phys. Lett. 92 (2008) 031501. 15 16. R Shokoohi and H Abbasi, J. Appl. Phys. 106 (2009) 033309. 16 17. Y V Medvedev, Plasma Phys. Controlled Fusion 53 (2011) 125007. 17
ORIGINAL_ARTICLE Spin-dependent electrical transport in Fe-MgO-Fe heterostructures In this paper, spin-dependent electrical transport properties are investigated in a single-crystal magnetic tunnel junction (MTJ) which consists of two ferromagnetic Fe electrodes separated by an MgO insulating barrier. These properties contain electric current, spin polarization and tunnel magnetoresistance (TMR). For this purpose, spin-dependent Hamiltonian is described for Δ1 and Δ5 bands in the transport direction. The transmission is calculated by Green's function formalism based on a single-band tight-binding approximation. The transport properties are investigated as a function of the barrier thickness in the limit of coherent tunneling. We have demonstrated that dependence of the TMR on the applied voltage and barrier thickness. Our numerical results may be useful for designing of spintronic devices. The numerical results may be useful in designing of spintronic devices. https://ijpr.iut.ac.ir/article_1190_114b08a4e87b2df1ffe992ba2b66b936.pdf 2019-11-26 159 164 10.18869/acadpub.ijpr.16.2.159 spintronic magnetic tunnel junction tunnel magnetoresistance A A Shokri aashokri@pnu.ac.ir 1 گروه فیزیک، دانشکده علوم پایه، دانشگاه پیام نور، تهران LEAD_AUTHOR S Khabbaz 2 گروه فیزیک، دانشکده علوم پایه، دانشگاه پیام نور، تهران AUTHOR 1. E Y Tsymbal, O N Mryasov, and P R LeClair, J. Phys. Condens. Matter 15 (2003) R109. 1 2. X G Zhang and W H Butler, J. Phys. Condens. Matter 15 (2003) R1603. 2 3. M Julliere Phys. Lett. A 54 (1975) 225. 3 4. T Miyazaki and N Tezuka, J. Magn. Magn. Mater. 139 (1995) L231. 4 5. J Moodera et al., Phys. Rev. Lett. 74 (1995) 3273. 5 6. W H Butler, X G Zhang, T C Schulthess, and J M MacLaren, Phys. Rev. B 63 (2001) 054416. 6 7. J Mathon and A Umerski, Phys. Rev. B 63 (2001) R220403. 7 8. K Nagasaka, J. Magn. Magn. Mater. 321 (2009) 508. 8 9. S A Wolf, D D Awschalom, R A Buhrman, J M Daughton, S V Molna, M L Roukes, A Y Chtchelkanova, and D M Treger, Science 294 (2001) 1488. 9 10. S Ikeda, J Hayakawa, Y M Lee, F Matsukura, Y Ohno, T Hanyu, and H Ohno, IEEE Trans. Electron. Dev. 54 (2007) 991. 10 11. A Ney, C Pampuch, R Koch, and K H Ploog, Nature 425 (2003) 485. 11 12. B AbediRavan, A A Shokri, and A Yazdani, Solid State Communications 150 (2010) 214. 12 13. W H Butler, Sci. Technol. Adv. Mater. 9 (2008) 014106. 13 14. T Z Raza and H Raza, “Nanotechnology,” IEEE, Transactions 10 (2011) 237. 14 15. A A Shokri and M Mardaani, Chem. Phys. 330 (2006) 287. 15 16. T Z Raza and H Raza, Phys. Rev. B 78 (2008) 193401. 16
ORIGINAL_ARTICLE Thermodynamic properties of and Nuclei using modified Ginzburg-Landau theory In this paper, formulation of Modified Ginsberg – Landau theory of second grade phase transitions has been expressed. Using this theory, termodynamic properties, such as heat capacity, energy, entropy and order parameters ofandnuclei has been investigated. In the heat capacity curve, calculated according to tempreture, a smooth peak is observed which is assumed to be a signature of transition from the paired phase to the normal phase of the nuclei. The same pattern is also observed in the experimental data of the heat capacity of the studied nuclei. Calculations of this model shows that, by increasing tempreture, expectation value of the order parameter tends to zero with smoother slip, comparing with Ginsberg – Landau theory. This indicates  that the pairing effect exists between nucleons even at high temperatures. The experimental data obtained confirms the results of the model qualitatively. https://ijpr.iut.ac.ir/article_1191_5520b3f42845527c43ede15086d6cfa0.pdf 2019-11-26 165 172 10.18869/acadpub.ijpr.16.2.165 phase transition Ginsberg – Landau fluctuations pairing order parameter V Dehghani vdehghani@phys.usb.ac.ir 1 گروه فیزیک، دانشکده علوم، دانشگاه سیستان و بلوچستان، زاهدان LEAD_AUTHOR A A Mehmandoost-Khajeh-Dad 2 گروه فیزیک، دانشکده علوم، دانشگاه سیستان و بلوچستان، زاهدان AUTHOR P Mohammadi 3 گروه فیزیک، دانشکده علوم، دانشگاه سیستان و بلوچستان، زاهدان AUTHOR 1. S Havlin and D Ben-Avraham, Advances in Physics 51 (2002) 187. 1 2. M Mehrafarin and M Faghihi, Physica A 301 (2001) 163. 2 3. A Taloni, A Chechkin, and J Klafter, Phys. Rev. Lett. 104 (2010).160602. 3 4. A Taloni, A Chechkin, and J Klafter, Phys. Rev. E 82 (2010) 061104. 4 5. I Podlubny, “Fractional Differential Equations”, Academic Press, San Diego (1999). 5 6. K B Oldham and J Spanier, “The Fractional Calculus”, Academic Press, New York (1974). 6 7. K S Miller and B Ross, “An Introduction to the Fractional Calculus and Fractional Differential Equations”, Wiley-Interscience (1993). 7 8. S G Samko, A A Kilbas, and O I Marichev, “Fractional Integrals and Derivatives”, Gordonand Breach Science Publishers, Amsterdam (1993). 8 9. R Metzler and J Klafter, Phys. Rep. 339 1 (2000). 9 10. M Weissman, Rev. Mod. Phys. 60 (1988) 537. 10 11. M Shlesinger, Annu. Rev. Phys. Chem. 39 (1988) 269 11 12. G M Zaslavsky, Phys. Rep. 371 (2002) 461. 12 13. A I Saichev and G M Zaslavsky, Chaos 7 (1997) 753. 13 14. V V Uchaikin, J. Exper. Theor.Phys. 97 (2003) 810. 14 15. M M Meerschaert, D A Benson, and B Baeumer, Phys. Rev. E 63 (2001) 021112. 15 16. V E Tarasov, Phys. Rev. E 71 (2005) 011102. 16 17. V E Tarasov, J. Phys. A 38, (2005) 5929. 17 18. N Laskin and G M Zaslavsky, Physica A 368 (2005) 38. 18 19. V E Tarasov and G M Zaslavsky, Chaos 16 (2006) 023110. 19 20. A Compte, R Metzler, and J Camacho, Phys. Rev. E 56 (1997) 1445. 20 21. B J West and P Grigolini, “Complex Webs: Anticipating the Improbable”, Cambridge University Press (2011). 21 22. F Mainardi and P Pironi, Extracta Mathematicae 11 (1996) 140. 22 23. I Goychuk, Phys. Rev. E 80 (2009) 046125. 23 24. J H Jeon and R Metzler, Phys. Rev. E 81 (2010) 021103. 24 25. K Linkenkaer-Hansen, V V Nikouline, J Matias Palva, and R J Ilmoniemi, The Journal of Neuroscience 21 (2001) 1370. 25 26. R N Mantegna and H E Stanley, Nature 376 (1995) 46. 26 27. C K Peng, S Havlin, H E Stanley and A L Goldberger, Chaos 5 (1995) 82. 27 28. J M Coulsont, and J F Richardson, “Chemical Engineering”, 4th Edition, Pergamon Press, Oxford (1993). 28 29. H Theliander, “Chemical Engineering Design Advanced Course”, 3rd Edition, Chalmers University of Technology, Gothenburg (1999). 29 30. J G Salin, Drying Tech. 9 (1991) 775. 30
ORIGINAL_ARTICLE Sol-gel growth of TiO2 nanocrystals in n-heptan and their deposition for application in dye sensitized solar cells In this study, TiO2 nanocrystals were prepared by sol-gel method through the hydrolysis of the titanium tetraisopropoxide in n-heptan solution. The beneficial role of n-heptan solvent was the dilution of the reacting precursors. This could consequently create smaller TiO2 nanocrystals and a better powder effective area. The anatase phase TiO2 nanopowder was achieved by performing an annealing process at 450 ˚C for 1h. Then, the TiO2 nanocrystals were added to an aqueous solution of polyethylene glycol with suitable concentration, as a pastiness factor, to form a viscous TiO2 paste . Finally the prepared paste was deposited on glass FTO substrates by standard doctor blade method and the photoanode of the dye sensitized solar cells  was prepared.Then other steps, consisting of dye adsorption, preparation of platinum counter electrode and injection of  electrolyte were performed. The results demonstrated that the energy conversion efficiency was maximum for the cell with 15 μm photoanode thickness. The photovoltaic parameters of this cell were measured as 12.44 mA/cm2 , 655 mV, 0.55 and 4.4 % for the Jsc, Voc, FF and efficiency, respectively.  https://ijpr.iut.ac.ir/article_1192_d13bfdbbf4cfa36c5ab13cdc0fa185ae.pdf 2019-11-26 173 177 10.18869/acadpub.ijpr.16.2.173 dye sensitized solar cells synthesis of TiO2 nanocrystals sol gel Z Anajafi zakie.anajafi66@gmail.com 1 گروه فیزیک، دانشکده علوم، دانشگاه اراک، اراک LEAD_AUTHOR M Marandi 2 گروه فیزیک، دانشکده علوم، دانشگاه اراک، اراک AUTHOR 1. N S Lewis, and G Crabtree, “Basic Research Needs for Solar Energy Utilization”, Office of Science, U.S. Department of Energy, Washington DC (2005). 1 2. B O’Regan and M Gratzel, Nature 353 (1991) 737. 2 3. W Zhang, R Zho, B Liu, and S Ramakrishna, Appl. Energy 90 (2012) 305-8. 3 4. Y Liu, H wang, and W chen, Appl. Energy 87 (2010) 436. 4 5. S Ito, T N Murakami, P Comte, P Liska, M K Nazeeruddin, and M Grätzel, Thin Solid Films 16 (2008) 4613. 5 6. M Grätzel, Photochemistry Reviews 4 (2003) 145. 6 7. A V Murugan and V Ravi, Mater .Letters (2006) 479. 7 8. S Yang, Y Li, Y Guo, H Xu, and Z Wang, Mater. Chem. Phys. (2002) 501. 8 9. Y Li, T J White, and S H Lim, Solid State Chem. 177 (2004) 1372. 9 10. S D Mo and W Y Ching, Phys. Rev. B 51 (1995) 13023. 10 11. J Xu, Journal of Colloid and Interfaces Science 19 (2008) 29. 11 12. W Zhang, R Zho, B Liu, and S Ramakrishna, Appl. Energy 90 (2012) 305. 12 13. Y Liu, H wang, and W chen, Appl. Energy 87 (2010) 436. 13 14. S Ito, T N Murakami, P Comte, P Liska, M K Nazeeruddin, and M Grätzel, Thin Solid Films 16 (2008) 4613. 14 15. M Grätzel, Photochemistry Reviews 4 (2003) 145. 15 16. M A Khan et al., Solar Energy 84 (2010) 2195. 16 17. X DongMei and F S Jing, Chinese Science Bulletin 52 (2007) 2481. 17 18. N Kaloper and M Kaplighat, Phys. Rev. D 68 (2003) 123522. 18
ORIGINAL_ARTICLE On the energy gain enhancement of DT+D3He fuel configuration in nuclear fusion reactor driven by heavy ion beams It is expected that advanced fuels be employed in the second generation of nuclear fusion reactors. Theoretical calculations show that in such a fuel, a high plasma temperature about 100 keV is a requisite for reaction rate improvement of nuclear fusion. However, creating such a temporal condition requires a more powerful driver than we have today. Here, introducing an optimal fuel configuration consisting of DT and D-3He layers, suitable for inertial fusion reactors and driven by heavy ion beams, the optimal energy gain conditions have been simulated and derived for 1.3 MJ system. It was found that, in this new fuel configuration, the ideal energy gain, is 22 percent more comparing with energy gain in corresponding single DT fuel layer. Moreover, the inner DT fuel layer contributed as an ignition trigger, while the outer D3He fuel acts as particle and radiation shielding as well as fuel layer. https://ijpr.iut.ac.ir/article_1193_cb9f409eaf919866fe8ee8a50206d0ca.pdf 2019-11-26 179 193 10.18869/acadpub.ijpr.16.2.179 nuclear fusion reactor heavy ion beam inertial confinement fusion DT+D3He fuel configuration high energy gain S Khoshbinfar skhoshbinfar@guilan.ac.ir 1 1. گروه فیزیک، دانشکده علوم پایه، دانشگاه گیلان، رشت LEAD_AUTHOR S A Taghavi 2 2. دانشکده فیزیک، دانشگاه دامغان، دامغان AUTHOR 1. T Hamacher and A M Bradshaw, “Fusion as a Future Power Source: Recent Achievements and Prospects”, 18th World Energy Congress Energy Markets: The Challenges of the New Millennium, Buenos Aires, Argentina 21 (2001). 1 2. E L Neau, “Environmental and Industrial Applications of Pulsed Power Systems”, IEEE Transactions on Plasma Science 22 (1994) 2. 2 3. S Atzeni and J Meyer-Ter-Vehn, “The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics and Hot Dense Matter,” Clarendon Oxford university press (2004). 3 4. M Ragheb and D Haseltine, Journal of Fusion Energy 3 (1983) 283. 4 5. S J Zinkle and L L Snead, Annual Review of Materials Research 44 (2014) 241. 5 6. S V Ryzhkov, Sustainable Cities and Society 14 (2015) 313. 6 7. S Ido and T Tazim, Japanese Journal of Applied Physics 22 (1983) 1194. 7 8. H Daido, M Nishiuchi, and A S Pirozhkov, Report Progress in Physics 75 (2012) 056401-72. 8 9. D A Callahan-Miller and M Tabak, Physics of Plasmas 7 (2000) 2083. 9 10. B Yu. Sharkov et al., Nuclear Fusion 45 (2005) S291. 10 11. D Bohne, et al., Nuclear Engineering and Design 73 (1982) 195. 11 12. B Badger et al., “HIBALL-II-an Improved Conceptual Heavy Ion Beam Driven Fusion Reactor Study”, Kernforschungszentrum Karlsruhe GmbH, Germany, FR. Inst. fuer Neutronenphysik und Reaktortechnik (1985). 12 13. M M Basko, Nuclear Fusion 30 (1990) 2443. 13 14. S Atzeni and A Caruso, Il Nuovo Cimento B 80 (1984) 71. 14
ORIGINAL_ARTICLE Relativistic Cherenkov radiation in a magneto-dielectric media In this paper, relativistic Cherenkov radiation was studied in a 3-D magneto-dielectric medium. Electric permittivity and magnetic permeability of the medium as functions of frequency, are assumed to satisfy Kramers- Kronig equations. A new interaction Hamiltonian, which is different from Hamiltonian term in non-relativistic state, was introduced by the quantized vector potential field and particle field operator obtained from the second quantization method. The rate of electron energy dissipation was calculated using Fermi’s golden rule. https://ijpr.iut.ac.ir/article_1194_7c0f36ab308e4856df0451bc9ac616be.pdf 2019-11-26 195 198 10.18869/acadpub.ijpr.16.2.195 rate of electron energy dissipation relativistic Cherenkov radiation Fermi’s golden rule مریم محمدی خشوئی mohamady_maryam@znu.ac.ir 1 گروه فیزیک، دانشکده علوم، دانشگاه زنجان، زنجان LEAD_AUTHOR 1. R Matloob, Phys. Rev. A 60 (1999) 50. 1 2. E G Harris, “A Pedestrian Approch to Quantum Field Theory”, Wiley, USA (1972). 2
ORIGINAL_ARTICLE Corrections of the spectra with de sitter background in Krein space Gravitational waves are the last unconfirmed prediction of the general relativity. These waves are tiny fluctuations in world frame that dessipate energy throghout space. The gravitatinal waves spectra of fluctuations can be originated from the non-linear effects during different cosmic evolution periods, especially from initially non-linear and excited vacuum state in the very early universe. Based on this fact, in this paper introducing "excited-de Sitter vacuum" as a fundamental mode, the obtained power spectrum has been investigated. Corrected spectra obtained from Hilbert and Krein spaces are compared.The renormalization approach presented in this work, preserves the curved space-time symmetry and stimulates us to use excited de Sitter mode. Also, the corrections obtained from the non-linear mode includes the second-order corrections and in the linear limit accords with the results from conventional methods. https://ijpr.iut.ac.ir/article_1195_ef32f89341b2a3fb90590f3fdcb469e2.pdf 2019-11-26 199 205 10.18869/acadpub.ijpr.16.2.199 power spectrum de sitter background inflation Krein space M Mohsenzadeh mohsenzadeh@qom-iau.ac.ir 1 1. گروه فیزیک، دانشگاه آزاد اسلامی واحد قم، قم LEAD_AUTHOR E Yusofi 2 2. گروه فیزیک، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل AUTHOR 1. A D Linde, “Inflationary Cosmology and Particle Physics”, Harwood (1990). 1 2. V F Mukhanov, H A Feldman, and R H Brandenberger, Phys.Rept. 215 (1992) 203. 2 3. N D Birrell and P C Davies, “Quantum Field Theory in Curved Space-Time”, Cambridge University Press (1982). 3 4. U H Danielsson, J. High. Energy. Phys. 0207, (2002) 040. 4 5. U H Danielsson, J. High. Energy. Phys. 0212, (2002) 025. 5 6. K Goldstein and D A Lowe, Nucl. Phys. B 669 (2003) 325. 6 7. N Deruelle and V F Mukhanov, Phys. Rev. D 52 (1995) 5549. 7 8. D Baumann, hep-th/0907.5424v1. 8 9. K Goldstein and D A Lowe, Phys. Rev. D 67 (2003) 063502. 9 10. G L Alberghi, R Casadio and A Tronconi, Phys. Lett. B 579 (2004) 1. 10 11. L Bergstrom and U H Danielsson, J. High Energy Phys. 0212 (2002) 038. 11 12. N Kaloper et al., J. High Energy Phys. 0211 (2002) 037. 12 13. R Easther et al., Phys. Rev. D 66 (2002) 023518. 13 14. J C Niemeyer et al., Phys. Rev. D 66 (2002) 083510. 14 15. N Kaloper et al., Phys. Rev. D 66 123510. 15 16. R H Brandenberger and J Martin, Int. J. Mod. Phys. A 17 (2002) 3663. 16 17. J Martin and R H Brandenberger, Phys. Rev. D 68 (2003). 17 18. U H Danielsson, Phys. Rev. D 71 (2005) 023516. 18 19. C Armendariz-Picon and E A Lim, J. Cosmology and Astroparticle Phys. 0312:006, (2003). 19 20. U H Danielson, Physical Review. D 66 (2002) 23511. 20 21. R Brandenberger and J Martin, astro-ph: 1211.6753. 21 22. M Mohsenzadeh et al., Mod. Phys. Lett. A 26 (2011) 2697. 22 23. J P Gazeau et al., Class. Quantum Grav. 17 (2000) 1415. 23 24. B Forghan et al., Annals of Physics 327 (2012) 2388. 24 25. S Rouhani and M V Takook, Euro. Phys. Lett. 68 (2004) 15. 25 26. A Refaei and M V Takook, Phys. Lett. B 704 (2011) 326. 26 27. M Mohsenzadeh et al., Int. J. Theor. Phys. 48 (2009) 755. 27 28. A R Liddle and D H Lyth, Phys. Rep. 231 (1993) 1. 28 29. A A Starobinsky, JETP Letters 30 (1979) 683. 29 30. E Yusofi and M Mohsenzadeh, Phys. Lett. B 735 (2014) 261. 30 31. M Mohsenzadeh et al., Eur. Phys. J. C 74 (2014) 2920-5. 31 32. E Yusofi, M Mohsenzadeh, and M R Tanhayi, The National Confrence on Gravitation and Cosmology, “Readout of Inflation with Quasi-de Sitter Initial Modes”, (2013), Tehran University. 32 33. N Kaloper, M Kaplighat, Phys. Rev. D 68 (2003) 123522. 33 36. M Razmi and H Zamani, Iranian Journal of Physics Research, 14, 3 (2014) 85. 34
ORIGINAL_ARTICLE Thomas-Fermi calculations for determination of critical properties of symmetric nuclear matter on the basis of extended effective mass approach Using mean-field and semi-classical approximation of Thomas-Fermi, within a statistical model, equation of state and critical properties of symmetric nuclear matter is studied.  In this model, two body and phenomenological interaction of Myers and Swiatecki is used in phase space. By performing  a functional variation of the total Helmholtz free energy of system with respect to the nucleonic distribution function in phase space to reach an equilibrium state according to the second low of thermodynamics, we obtain  expressions for the effective mass which is only density dependent and the effective one-body potential  whereby the key quantity of the extended effective mass with both density and temperature dependency is determined. Accordingly, we reach to the explicit form of distribution function. In this mode, extensive thermodynamic quantities such as, inner energy, entropy and Helmholtz free energy are determined as the functionals of the distribution function for given temperature and density. In this research special attentions has been paid to the critical behavior and stability of symmetric nuclear matter. Our findings about the quantities which describe critical behavior of symmetric nuclear matter are in good agreement with other proposed models. https://ijpr.iut.ac.ir/article_1196_d4cf09b73d2a0d8b8f03646b3d01ef43.pdf 2019-11-26 207 216 10.18869/acadpub.ijpr.16.2.207 symmetric nuclear matter Thomas-Fermi approximation extended effective mass distribution function M Ghazanfari Mojarrad ghazanfari@kashanu.ac.ir 1 دانشکده فیزیک، دانشگاه کاشان، کاشان LEAD_AUTHOR S K Mousavi Khoreshtami 2 دانشکده فیزیک، دانشگاه کاشان، کاشان AUTHOR A Mostajeran Gurtani 3 دانشکده فیزیک، دانشگاه کاشان، کاشان AUTHOR 1. B Borderie et al., Nucl. Phys. A 734 (2004) 495. 1 2. M F Rivet et al., Nucl. Phys. A 749 (2005) 73. 2 3. N K Glendenning, “Compact Stars,” New York: Springer (1997). 3 4. H A Bethe, Rev. Mod. Phys. 62 (1990) 801. 4 5. P Haensel, A Y Potekhin, D G Yakovlev, “Neutron Stars 1: Equation of State and Structure,” Springer Science and Business Media 326 (2007). 5 6. S L Shapiro and S A Teukolsky, “Black Holes, White Dwarfs and Neutron Stars”, John Wiley and Sons, New York (1983). 6 7. M Camenzind, “Compact Objects in Astrophysics,” Springer-Verlag, Berlin, Heidelberg (2007). 7 8. C F von Weizsacker, Z. Phys. 96 (1935) 431. 8 9. H A Bethe and R F Bacher, Rev. Mod. Phys. 8 (1936) 82. 9 10. A Rios, A Polls, A Ramos, and H Müther, Phys. Rev. C 78 (2008) 044314. 10 11. A Rios, A Polls, and I Vidana, Phys. Rev. C 79 (2009) 025802. 11 12. M Modarres and H R Moshfegh, Prog. Theo. Phys. 112 (2004) 21. 12 13. B Friedman and V R Pandharipande, Nucl. Phys. A 361 (1981) 502. 13 14. I E Lagaris and V R Pandharipande, Nucl. Phys. A 359 (1981) 331. 14 15. R B Wiringa, V Ficks, and A Fabrocini, Phys. Rev. C 38 (1988) 1010. 15 16. R B Wiringa, V G J Stoks, and R Schiavilla, Phys. Rev. C 51 (1995) 38. 16 17. A Akmal, V R Pandharipande, and D G Ravenhall, Phys. Rev. C 58 (1998)1804. 17 18. M Baldo, “Nuclear Methods and the Nuclear Equation of State”, Singapore: World Scientific, (1990). 18 19. W Zuo, Z H Li, A Li, and U Lombardo, Nucl. Phys. A 745 (2004) 34. 19 20. M Baldo, A Fiasconaro, H Q Song, G Giansiracusa, and U Lombardo, Phys. Rev. C 65 (2002) 017303. 20 21. H Huber, F Weber, and M K Weigel, Phys. Rev. C 57 (1998) 3484. 21 22. G H Bordbar, Iranian Journal of Physics Research 3 (2001) 1. 22 22. گ ح بردبار، مجله پژوهش فیزیک ایران 3 (1380) 1. 23 23. D Serot and J D Walecka, Adv. Nucl. Phys. 16 (1986) 1. 24 24. H Müller and B D Serot, Nucl. Phys. A 606 (1996) 508. 25 25. H Müller and B D Serot, Phys. Rev. C 52 (1995) 2072. 26 26. E Chabanat, P Bonche, P Haensel, J Mayer, and R Schaeffer, Nucl. Phys. A 635 (1998) 231. 27 27. S W Huang, M Z FU, S S Wu, and S D Yang, Mod. Phys. Lett. A 5 (1990) 1071. 28 28. J Randrup and E Lima Medeiros, Nucl. Phys. A 526, (1991) 115. 29 29. K Strobel, F Weber, and M K Weigel, ZNaturforschr 54a (1999) 83. 30 30. H R Moshfegh, M GhazanfariMojarrad, J. Phys. G 15 (2011). 31 31. W D Myers and W J Swiatecki, Ann. Phys. 204 (1990) 401. 32 32. W D Myers and W J Swiatecki, Nucl. Phys. A 601 (1996) 141. 33 33. H R Moshfegh, M Ghazanfari Mojarrad, Eur. Phys. J. A 49.1 (2013) 1. 34 34. R K Pathria, “Statistical Mechanics,” Oxford: Butterworth-Heinemann (1996). 35 35. D Alonso and F Sammarruca, Phys. Rev. C 67 (2003) 054301. 36 36. J Margueron, and Ph Chomaz, Phys. Rev. C 67 (2003) 041602R. 37 37. Ph Chomaz and C Colonna, J. Randrup, Phys. Rep. 389 (2004) 263. 38 38. C Ducoin, Ph Chomaz, and F Gulminelli, Nucl. Phys. A 789 (2007) 403. 39 39. P Wang, Phys. Rev. C 61 (2000) 54904. 40 40. B V Jacak, C et al., Phys. Rev. Lett. 51 (1983) 1846. 41
ORIGINAL_ARTICLE Classification of mini-dimmings associated with extreme ultraviolet eruptions by using graph theory Coronal dimmings in both micro and macro scales, can be observed by extreme ultraviolet images, recorded from Solar Dynamics Observatory or Atmospheric Imaging Assembly (SDO/AIA). Mini-dimmings are sometimes associated with wave-like brightening, called coronal mass ejections. Here, the sun full disk images with 171 Å wavelenght, cadence of 2.5, and  0.6 arcsec cell size, were taken on 3 March 2012, then the obtained data were analyzed. Using Zernike Moment and Support Vector Machine (SVM), mini dimmings are detected. 538 active region events, 680 coronal hole events and 723 quiet sun events have been recognized using algorithm. The position, time duration and spatial expansion of these events were computed .The eruptive dimmings have a more spatial development than thermal dimmings after eruptions. This is evident in their graph characteristics length. Then, using graph theory, eruptive and thermal mini-dimmings were classified, with 13% error, for 200 dimmings. 68 dimmings were classified as thermal, and 132 as eruptive. To do this, evolution of graph characteristic length were used. https://ijpr.iut.ac.ir/article_1197_d81f6c477dbce1b521ebbe92934c9ae2.pdf 2019-11-26 217 223 10.18869/acadpub.ijpr.16.2.217 Sun mini - dimmings coronal mass ejections Zernike moments support vector machine S Bazargan 1 دانشکده فیزیک، دانشگاه زنجان، زنجان LEAD_AUTHOR H Safari 2 دانشکده فیزیک، دانشگاه زنجان، زنجان AUTHOR H Kaashisaaz 3 دانشکده فیزیک، دانشگاه زنجان، زنجان AUTHOR 1. O Podladchikova and D Berghmans, “Solar Physics”, Springer (2005) 228. 1 2. N Alipour, H Safari, and D E Innes, Astro Phys. J. 746 (2012) 12. 2 3. G D R Attril and M J Wills-Davey, “Solar Physics”, Springer (2009) 262. 3 4. N Alipour and H Safari, Iranian Journal of Physics Research 12, 1 (2012) 29. 4 5. D E Innes et al., Astron. Astrophys. 495 (2009) 319. 5 6. B J Thompson et al., Geophysical Research Letters 25 (1998) 2461. 6 7. A Barrat, M Barthelemy, and A Nespignani, “Dynamical Processes on Complex Networks,” Cambridge University Press (2008). 7 8. T H Cormen, C E Leiserson, R L Rivest, and C Stein, “Introduction to Algorithm”, Massachusetts Institute of Technology Press (2009). 8
ORIGINAL_ARTICLE The effect of bond defect movement on the electronic conductance of linear and cyclic nanostructures In this paper, the electronic transport of a graphene nanoribbon including a bond defect as well as a polyacetylene nanowire, including an extra bond, has been studied based on Green's function technique at the tight-binding approach. The results show that the behavior of electronic conductance is different in resonance and nonresonance cases with respect to variation of bond defect position. The conductance value at the zero energy tunes by variation of defect position, only for the cases which includes double bonds. These changes is more observable especially at the polyacetylene nanowires. The amount of antiresonance shift with respect to bond defect position, in conductance spectrum, strongly depends on type and shape of center wire structure. https://ijpr.iut.ac.ir/article_1198_bdb75cb468606da5b4f3ca263d6c6b91.pdf 2019-11-26 225 230 10.18869/acadpub.ijpr.16.2.225 nanoribbon graphene polyacetylene bond movement defect tight-binding electronic conductance H Rabani 1 1. گروه فیزیک، دانشکده علوم پایه، دانشگاه شهرکرد، شهرکرد2. مرکز پژوهشی فناوری نانو، دانشگاه شهرکرد، شهرکرد LEAD_AUTHOR M Mardaani mohammad-m@sci.sku.ac.ir 2 1. گروه فیزیک، دانشکده علوم پایه، دانشگاه شهرکرد، شهرکرد2. مرکز پژوهشی فناوری نانو، دانشگاه شهرکرد، شهرکرد AUTHOR M Mardaani moh.mardaani@gmail.com 3 1. گروه فیزیک، دانشکده علوم پایه، دانشگاه شهرکرد، شهرکرد2. مرکز پژوهشی فناوری نانو، دانشگاه شهرکرد، شهرکرد AUTHOR S Moghbel 4 1. گروه فیزیک، دانشکده علوم پایه، دانشگاه شهرکرد، شهرکرد AUTHOR 1. S Roth and D Carroll, “One-Dimensional Metals: Conjugated Polymers, Organic Crystals, Carbon Nanotubes”, John Wiley and Sons )2006). 1 2. J Lan, J S Wang, C K Gan, and S K Chin, Physical Review B 79 (2009) 115401. 2 3. A Nitzan and M A Ratner, Science 300 (2003) 1384. 3 4. M Mardaani and H Rabani, Superlattices and Microstructures 59 (2013) 155. 4 5. Y Aharonov and D Bohm, Phys. Rev. 115 (1959) 485. 5 6. D Nozaki, H M Pastawski, and G Cuniberti, New J. Phys. 12 (2010) 063004. 6 7. C J Delerue and M Lannoo, “Nanostructures Theory and Modeling”, Springer Science and Business Media (2013). 7 8. A M Popov, I V Lebedeva, A A Knizhnik, Y E Lozovik, and B V Potapkin, J. Chem. Phys. 138 (2013) 024703. 8 9. H Rabani and M Mardaani, Solid State Communications 152 (2012) 235. 9
ORIGINAL_ARTICLE Investigation of induced chirp type and its effect on wake field amplitude in propagation of laser pulse through a plasma channel In this paper, the propagation of a Gaussian and femtosecond laser pulse through a plasma channel is considered and the amount of induced chirp, as well as it’s type, on laser pulse frequency has been investigated. The group velocity dispersion (GVD) and relativistic effects has been taken into account in propagation equations. It is concluded that the relativistic effect induces positive chirp on laser pulse propagating into plasma channel for every initial chirp, while the GVD effect can induce a negative or positive chirp on laser pulse depending on initial chirp. As the relativistic effect overcomes on GVD in nonlinear region, the induced chirp would be positive. Comparing the results, it is concluded that propagating a laser pulse with initial positive chirp is more effective than a negative and un-chirped pulse for generating a  higher wake field. https://ijpr.iut.ac.ir/article_1199_b166e3cd09175b04a41ee8af5308244d.pdf 2019-11-26 231 238 10.18869/acadpub.ijpr.16.2.231 laser wake field plasma channel chirping H Akou h.akou@nit.ac.ir 1 گروه فیزیک، دانشکده علوم پایه، دانشگاه صنعتی نوشیروانی بابل، بابل LEAD_AUTHOR 1. M Lamehi Rashti et al., Iranian Journal of Physics Research, Special Issue, 15 (2015) 2. 1 2. Y Glinec, J Faure, V Malka, T Fuchs, H Szymanowski, and U Oelfke, Med. Phys. 33 (2006) 155. 2 3. T Fuchs, H Szymanowski, U Oelfke, Y Glinec, C Rechatin, J Faure, and V Malka, Phys. Med. Biol. 54 (2009) 3315. 3 4. K Shimoda, Appl. Opt.1 (1962) 33. 4 5. http://home.web.cern.ch/. 5 6. http://www.fnal.gov/ 6 7. 1 P X Wang, Y K Ho, X Q Yuan, Q Kong, N Cao, L Shao, A M.Sessler, E Esarey, E Moshkovich, Y Nishida, N Yugami, H Ito, J X.Wang, and S Scheid, J. Appl. Phys. 91 (2002) 856. 7 8. Z Yan, Y K Ho, P X Wang, J F Hua, Z Chen, and L Wu, Appl. Phys. B: Lasers Opt. 81 (2005) 813. 8 9. Y I Salamin, Phys. Rev. A 73 (2006) 043402. 9 10. M O Scully and M S Zubairy, Phys. Rev. A 44 (1991) 2656. 10 11. R Bingham, U D E Angelis, M R Amin, R A Carins and B Mcnamara, Plasma Phys. Control. Fusion 34 (1992) 557. 11 12. T Tajima and J M Dawson, Phys. Rev. Lett. 43 (1979) 267. 12 13. V Malka, S Fritzler, E Lefebvre, M M Aleonard, F Burgy, J P Chambaret, J F Chemin, K Krushelnick, G Malka, S P D Mangles, Z Najmudin, M Pittman, J P Rousseau, J N Scheurer, B Walton, and A E Dangor, Science 298 (2002) 1596. 13 14. S Mirzanejhad, F Sohbatzadeh, M Asri, and K Ghanbari, Phys. Plasmas 17 (2010) 033103. 14 15. A G Khachatryan, Phys. Rev. E 60 (1999) 6210. 15 16. D Strickland and G Mourou, Opt. Commun. 56 (1985) 219. 16 17. F V Hartemann et al., Phys. Plasmas 6 (1999) 4104. 17 18. A G Khachatryan, F A van Goor, J W J Verschuur, and K J Boller, Phys. Plasmas 12 (2005) 062116. 18 19. F Sohbatzadeh, S Mirzanejhad, and M Ghasemi, Phys. Plasmas 13 (2006) 123108. 19 20. F Sohbatzadeh, S Mirzanejhad, and H Akou, Phys. Plasmas 16 (2009) 023106. 20 21. C B Schroeder, E Esarey, B A Shadwick and W P Leemans, Phys. Plasmas 10 (2003) 285. 21 22. D F Gordon, B Hafizi, R F Hubbard, J R Penano, P Sprangle, and A Ting, Phys. Rev. Lett. 90 (2003) 215001. 22 23. F Sohbatzadeh and H Akou, Phys. Plasmas 20 (2013) 043101. 23 24. P Sprangle, E Esarey, J Krall, and G Joyce, Phys. Rev. Lett. 69 (1992) 2200. 24 25. P Sprangle, A Ting and C M. Tang, Phys. Rev. A 36 (1987) 2773. 25 26. P Sprangle, B Hafizi, and J R Penano, Phys. Rev. E 61 (2000) 4381. 26