ORIGINAL_ARTICLE Analyzing stability of neutron point kinetics equations with nine photo-neutron groups using Lyapunov exponent method Lyapunov exponent method is one of the best tools for investigating the range of stability and the transient behavior of the dynamical systems. In beryllium-moderated and heavy water-moderated reactors, photo-neutron plays an important role in dynamic behavior of the reactor. Therefore, stability analysis for changes in the control parameters of the reactor in order to guarantee safety and control nuclear reactor is important. In this work, the range of stability has been investigated using Lyapunov exponent method in response to step, ramp and sinusoidal external reactivities regarding six groups of delayed neutrons plus nine groups of photo-neutrons. The qualitative results are in good agreement with quantitative results of other works https://ijpr.iut.ac.ir/article_1200_4531ec13261d0769e5c1ba0f102640b4.pdf 2019-11-26 33 40 10.18869/acadpub.ijpr.16.3.33 photo-neutron control parameter delayed neutron Lyapunov exponent M Seidi masoudseidi@yahoo.com 1 1. گروه فیزیک، دانشکده علوم، دانشگاه ایلام، ایلام LEAD_AUTHOR R Khodabakhsh 2 1. گروه فیزیک، دانشکده علوم، دانشگاه ایلام، ایلام AUTHOR S Behnia 3 2. گروه فیزیک، دانشکده علوم، دانشگاه ارومیه، ارومیه AUTHOR 1. A N Abdallah, Nuc. Eng. Des. 238 (2008) 2648. 1 2. E A Ahmed, Nucl. Eng. Des. 224 (2003) 279. 2 3. D L Hetrick, “Dynamics of Nuclear Reactors”, American Nuclear Society, La Grange Park (1993). 3 4. G R Keepin, “Physics of Nuclear Kinetics”, Addison-Wesley Publishing Company, Inc., Massachusetts (1965). 4 5. E W Lynn, “Reactor Dynamics and Control”, American Elsevier Publishing Company, INC., New York (1968). 5 6. F Jatuff, A L Thi, M Murphy, T Williams, and R Chawla, Ann. Nucl. Energy 30 (2003) 1731. 6 7. A N Abdallah, Nucl. Eng. Des. 240 (2010) 1622. 7 8. F Y Li, Z Chen, and Y Liu, Prog. Nucl. Energy 67 (2013) 15. 8 9. L Z Fu, “Nuclear Reactor Kinetics”, Atomic Energy Press, Beijing (1988). 9 10. J D Lewins and E N Ngcobo, Ann. Nucl. Energy 23 (1996) 29. 10 11. J L Munoz-Cobo, C Garca, A Escriva, and J Melara, Ann. Nucl. Energy 35 (2008) 1185. 11 12. A Hainoun, I Khamis, and G Saba, Nucl. Eng. Des. 232 (2004) 19. 12 13. R Della, E Alhassan, N A Adoo, C Y Bansah, B J B Nyarko, and E H K Akaho, Energy Convers Manage 74 (2013) 587. 13 14. W Z Chen, B Kuang, and L F Guo, Nucl. Eng. Des. 236 (2006) 1326. 14 15. W K Ergen, H J Lipkin, and J A Nohel, Journal of Mathematics and Physics 36 (1957) 36. 15 16. T Suzudo, Prog. Nucl. Energy 43 (2003) 217. 16 17. R Khodabakhsh, S Behnia, and O Jahanbakhsh, Ann. Nucl. Energy 35 (2008) 1370. 17 18. M Shayesteh, S Behnia, and A Abdi Saray, Ann. of Nucl. Energy 43 (2012) 131. 18 19. S Glasstone and A Sesonske, “Nuclear Reactor Engineering”, Chapman & Hall Inc. (1981). 19 20. A Hainoun and I Khamis, Nucl. Eng. Des. 195 (2000) 299. 20 21. K Almenas and R Lee, “Nuclear Engineering an Introduction”, Springer, Berlin (1992). 21 22. T Sathiyasheela, Ann. of Nucl. Energy 36 (2009) 246. 22 23. J J Duderstadt and L J Hamilton, “Nuclear Reactor Analysis”, John Wiley and Sons, USA (1976). 23 24. W M Stacey, “Nuclear Reactor Physics”, John Wiley and Sons, Inc., USA, (2001). 24 25. E Ott, “Chaos in dynamical system”, Cambridge University Press, Canada (1993). 25 26. B J West, A L Goldberger, G Rouner, and V Bhar-gava, Physica D 17 (1985) 198. 26 27. A Wolf, J B Swift, H L Swinney, and J A Vastano, Physica D 16 (1985) 285. 27 28. R Hilborn, “Chaos and nonlinear dynamics”, Oxford University Press (2000). 28 29. J R Dorfman, “An Introduction to Chaos in Non-Equilibrium Statistical Mechanics”, Cambridge University Press, Cambridge (1999). 29
ORIGINAL_ARTICLE Kelvin-Helmholtz instability in solar spicules Magneto hydrodynamic waves, propagating along spicules, may become unstable and the expected instability is of Kelvin-Helmholtz type. Such instability can trigger the onset of wave turbulence leading to an effective plasma heating and particle acceleration. In present study, two-dimensional magneto hydrodynamic simulations performed on a Cartesian grid is presented in spicules with different densities, moving at various speeds depending on their environment. Simulations being applied in this study show the onset of Kelvin-Helmholtz type instability and transition to turbulent flow in spicules. Development of Kelvin-Helmholtz instability leads to momentum and energy transport, dissipation, and mixing of fluids. When magnetic fields are involved, field amplification is also possible to take place https://ijpr.iut.ac.ir/article_1201_270fbd604e54dde24150aea7488397e3.pdf 2019-11-26 41 45 10.18869/acadpub.ijpr.16.3.41 Sun spicules Astrophysical Magneto Hydrodynamics (MHD) waves Kelvin-Helmholtz instability H Ebadi hosseinebadi@tabrizu.ac.ir 1 1. گروه فیزیک نظری و اختر فیزیک، دانشکده فیزیک، دانشگاه تبریز، تبریز 2. مرکز تحقیقات نجوم و اختر فیزیک مراغه، مراغه LEAD_AUTHOR 1. B Edlen, Zeitschrift für Astrophysik 22 (1943) 30. 1 2. N Dadashi, H Safari, and S Nasiri, IJPR 9, 3 (2009) 227. 2 3. S Nasiri and L Yousefi, IJPR 5, 3 (2005)145. 3 4. A W Hood, D Gonzalez-Delgado, and J Ireland, A&A 324 (1997) 11. 4 5. R G Athay and T E Holzer, Astrophysical Journal 255 (1982) 743. 5 6. T V Zaqarashvili and R Erdelyi, Space. Sci. Rev. 149 (2009) 335. 6 7. J M Beckers, Sol. Phys. 3 (1968) 367. 7 8. A C Sterling, Sol. Phys. 196 (2000) 79. 8 9. V Kukhianidze, T V Zaqarashvili, and E Khutsishvili, Astronomy and Astrophysics, 449 (2006) 35. 9 10. T V Zaqarashvili, E Khutsishvili, V Kukhianidze, and G Ramishvili, A&A 474 (2007) 627. 10 11. H Ebadi, T V Zaqarashvili, and I Zhelyazkov, Astrophysics and Space Science 337 (2012) 33. 11 12. H Ebadi, Ap&SS 348 (2013) 11. 12 13. Z Fazel and H Ebadi, IJPR 14, 3 (2014) 73. 13 14. B De Pontieu, S W McIntosh, M Carlsson, et al., Science 318 (2007) 1574. 14 15. A Miura, Geophysics 89 (1984) 801. 15 16. A Frank, T W Jones, D Ryu, and J B Gaalaas, Astrophysical Journal 460 (1996) 777. 16 17. I Zhelyazkov, A&A 537 (2012) 124. 17 18. I Zhelyazkov and T V Zaqarashvili, A&A 547 (2012) 14. 18 19. T A Gardiner and J M Stone, J. Comput. Phys. 205 (2005) 509. 19 20. H Ebadi, M Hosseinpour and H Altafi-Mehrabani, Astrophysics and Space Science 340 (2012) 9. 20 21. H Cavus and D Kazkapan, New Astronomy 25 (2013) 89. 21
ORIGINAL_ARTICLE Effect of annealing temperature on optical and electrochromic properties of tungsten oxide thin films Tungsten trioxide (WO3) thin films were coated onto fluorine tin oxide coated glass substrates, using electrodeposition technique via aqueous solution of peroxotungstic acid. WO3 films were evaluated as a function of annealing temperature (60°C, 100°C, 250°C and 400°C). The films were analyzed by field emission Scanning Electron Microscopy (SEM), UV-visible spectrometer and cyclic voltammogram. The films had high transmission in optical visible region. Using optical transmittance and cyclic voltammogram measurements, the electrochromic properties of WO3 films were investigated in a non-aqueous lithium perchlorate in propylene carbonate electrolyte. Increasing the annealing temperature will decrease electrochromic and optical properties of WO3 films, since it leads to increasing the size of grains. Therefore, having been annealed at 60°C, WO3 film exhibited a noticeable electrochromic performance with a high transmission modulation and Coloration Efficiency Efficiency (CE) of 64.1 cm2 C−1 at wavelength equal to 638 nm https://ijpr.iut.ac.ir/article_1202_addc7f55f41f3f77aaf960211d8435d3.pdf 2019-11-26 47 54 10.18869/acadpub.ijpr.16.3.47 tungsten oxide electrochromic electrodeposition cyclic voltammogram A Abareshi abareshi.a66@gmail.com 1 دانشکده فیزیک، دانشگاه شاهرود، شاهرود AUTHOR H Haratizadeh hamha@shahrovdut.ac.ir 2 دانشکده فیزیک، دانشگاه شاهرود، شاهرود LEAD_AUTHOR 1. S Green, J Backholm, P Georen, C G Granqvist, and G A Niklasson, Sol. Energy Mat. Sol. C 93 (2009) 2050. 1 2. L Yang, D Ge, J Zhao, Y Ding, X Kong, and Y Li, Sol. Energy Mat. Sol. C 100 (2012) 251. 2 3. A E Aliev and H W Shin, Displays 23 (2002) 239. 3 4. C G Granqvist, P C Lansaker, N R Mlyuka, G A Niklasson, and E Avendano, Sol. Energy Mat. Sol. C 93 (2009) 2032. 4 5. S N Alamri, Sol. Energy Mat. Sol. C 93 (2009)1657. 5 6. R Baetens, B P Jelle, and A Gustavsen, Sol. Energy Mat. Sol. C 94 (2010) 87. 6 7. H Huang, J Tian , W K Zhang, Y P Gan, X Y Tao, X H Xia, and J P Tu, Electrochim. Acta 56 ( 2011) 4281. 7 8. C G Granqvist, S Green, G A Niklasson, N R Mlyuka, S von Kraemer, and P Georen, Thin Solid Films 518 (2010) 3046. 8 9. J Zhang, X L Wang, Y Lu, Y Qiao, X H Xia, and J P Tu, J. Solid State Electr. 15 (2011) 2213. 9 10. K Tajima, Y Yamada, S H Bao, M Okada, and K Yoshimura, Vacuum 84 (2010) 1460. 10 11. K Hari Krishna, O M Hussain, and C M Julien, Appl. Phys. A 99 (2010) 921. 11 12. B Baloukas, J M Lamarre, and L Martinu, Sol. Energ. Mat. Sol. C 95 (2011) 807. 12 13. X H Xia, J P Tu, J Zhang, X L Wang, W K Zhang, and H Huang, ACS Appl. Mater. Interfaces 2 (2010) 186. 13 14. B Yang, P R F Barnes, W Bertram, and V Luca, J. Mater. Chem. 17 (2007) 2722. 14 15. M Deepa, A K Srivastava, S N Sharma, G Govind, and S M Shivaprasad, Appl. Surf. Sci. 254 (2008) 2342. 15 16. M Giannouli and G Leftheriotis, Sol. Energy Mat. Sol. C 95 (2011) 1932. 16 17. A H Yan, C S Xie, D W Zeng, S Z Cai, and H Y Li, J. Alloys Compd. 495 (2010) 88. 17 18. J Zhang, X L Wang, X H Xia, C D Gu, Z J Zhao, and J P Tu, Electrochim. Acta 55 (2010) 6953. 18 19. R Deshpande, S H Lee, A H Mahan, P A Parilla, K M Jones, A G Norman, B To, J L Blackburn, S Mitra, and A C Dillon, Solid State Ion. 178 (2007) 895. 19 20. H S Shim, J W Kim, Y E Sung, and W B Kim, Sol. Energy Mat. Sol. C 93 (2009) 2062. 20 21. B B Cao, J J Chen, X J Tang, and W L Zhou, J. Mater. Chem. 19 (2009) 2323. 21 22. J Zhang, X L Wang, X H Xia, C D Gu, and J P Tu, Sol. Energy Mat. Sol. C 95 (2011) 2107. 22 23. Y S Lin, S S Wu, and T H Tsai, Sol. Energ. Mat. Sol. C 94 (2010) 2283. 23 24. W Cheng, E Baudrin, B Dunn, and J I Zink, J. Mater. Chem. 11 (2001) 92. 24 25. S Badilescu and P V Ashrit, Solid State Ionics 158 (2003) 187. 25 26. N Ozer, Thin Solid Films 304 (1997) 310. 26 27. P K Biswas, N C Pramanik, M K Mahapatra, and D Ganguli, J. Livage, Mater. Let. 57 (2003) 4429. 27 28. I Shiyanovskaya, M Hepel, and E Tewksburry, J. New Mat. Elect. Syst. 3 (2000) 241. 28 29. H Yang, F Shang, L Gao, and H Han, Appl. Surf. Sci. 253 (2007) 5553. 29 30. M Regragui, M Addou, B El Idrissi, J C Bernede, A Outzourhit, and E Ec chamikh, Mater. Chem. Phys. 70 (2001) 84. 30 31. M Deepa, R Sharma, A Basu, and S A Agnihotry, Electrochim. Acta 50 (2005) 3545. 31 32. J H Choy, Y I Kim, B W Kim, N G Park, G Campet, and J D Grenier, Chem. Mater. 12 (2000) 2950. 32 33. P V Ashrit, Thin Solid Films 385 (2001) 81. 33 34. T Pauporte, J. Electrochem. Soc. 149 (2002) C539. 34 35. T Brezesinki, D F Rohlfing, S Sallard, M Antonietti, and B M Smarsly, Small 2 (2006) 1203 35
ORIGINAL_ARTICLE DC conductivity studies of ZnS and Ag nanoparticles doped P3HT thin films Interest in the P3HT: ZnS nanocomposites are increased due to their applicability as an active layer for bulk heterojunction solar cells of high open circuit voltage and charge transport in this type of solar cells determines their performance. So the study of the conduction mechanism of the P3HT:ZnS nanocomposites is significant to improve the efficiency of such solar cells, and this paper discusses both the Arrhenius Model and the Variable Range Hopping (VRH) conduction mechanism in the P3HT:ZnS nanocomposite films. It is found that the addition of the semiconductor nanoparticles does not make any remarkable change in the room temperature DC conduction of P3HT polymer. Further, the films have been studied by their absorption spectra, x-ray diffractogram, scanning electron microscope and noncontact profilometer https://ijpr.iut.ac.ir/article_1203_61ab0efa3d7724909819fc3c3c28b4e7.pdf 2019-11-26 55 61 10.18869/acadpub.ijpr.16.3.55 P3HT:ZnS DC conductivity VRH conduction Arrhenius model T Abdul Kareem abdulkareem.t@gmail.com 1 فیزیک تشعشع، دانشگاه کلکته، مالاپورام، کرالا، هند LEAD_AUTHOR 1. D I Black, “Fabrication Of Hybrid Inorganic And Organic Photovoltaic Cells”, PhD thesis, Emerging Technologies Research Centre, De Montfort University, Leicester, London (2011). 1 2. H E Unalan, P Hiralal, D Kuo, B Parekh, G Amaratunga, and M Chhowalla, J. Mater. Chem. 18 (2008) 5909. 2 3. J U Lee, J W Jung, T Emrick, T P Russell , and W H Jo , J. Mater. Chem. 20 (2010) 3287. 3 4. G K Mor, K Shankar, M Paulose, O K Varghese, and C A Grimes, Appl. Phys. Lett. 91 (2007) 152111. 4 5. J H Lee, J H Park, J S Kim, D Y Lee, and K Cho, Organic Electronics 10 (2009) 416. 5 6. M Bredol, K Matras, A Szatkowski, J Sanetra, and A P Schwa, Sol. Mat. Sol. C. 93 (2009) 662. 6 7. M Mall, P Kumar, S Chand, and L Kumar, Chem. Phys. Lett. 495 (2010) 236. 7 8. B R Saunders and M L Turner, Adv. Colloid Interfac. 138,1 (2008) 1. 8 9. A Kongkanand, K Tvrdy, K Takechi, M Kuno, and P V Kamat, J. Am. Chem. Soc. 130, 12 (2008) 4007. 9 10. W Martienssen and H Warlimont, "Springer Handbook of Condensed Matter and Materials Data" ed. 1, Springer, New York (2005). 10 11. Y Yang, S Xue, S Liu, J Huang, and J Shen, Appl. Phys. Lett. 69 (1996) 377. 11 12. T Abdul kareem and A Anu kaliani, Arabian Journal of Chemistry 4 (2011) 325. 12 13. H Y Chen, M K F Lo, G Yang, H G Monbouquette, and Y Yang, Nature Nanotechnology 3 (2008) 543. 13 14. Y Ding , P Lu, and Q Chen, Proc. of SPIE Vol. 7099 (2008) 709919. 14 15. Y T Chang, S O L Hsu, M H Su, and K H Wei, Adv. Mater. 21 (2009) 2093. 15 16. Y Kim, S A Choulis, J Nelson J, D D C Bradley, S Cook, and J R Durrant, Appl. Phys. Lett. 86 (2005) 063502. 16 17. J Lee, A Kim, S M Cho, and H Chae, Korean J. Chem. Eng. 29, 3 (2012) 337. 17 18. T W Yun and K Sulaiman, Sains Malaysiana 40, 1 (2011) 43. 18 19. Z Hu, T Daeri, M S Bonner, and A J Gesquiere, J. Lumin. 130, 5 (2010) 771. 19 20. Y Dong, J Lu, F Yan, and Q Xu, High Perform. Polym. 21 (2009) 48. 20 21. U Zhokhavets, T Erb, H Hoppe, G Gobsch, and N S Sariciftci, Thin Solid Films 496 (2006) 679. 21 22. J Guo, H Ohkita, H Benten, and S Ito, J. Am. Chem. Soc.132 (2010) 6154. 22 23. W H Lee, S Y Chuang, H L Chen, W F Su, and C H Lin, Thin Solid Films 518 (2010) 7450. 23 24. L E Greene, M Law, B D Yuhas, and P Yang, J. Phys. Chem. C 111, 50 (2007) 18451. 24 25. J U Lee , J W Jung, T Emrick, T P Russell, and W H Jo, Nanotechnology 21(2010) 105201. 25 26. M Khissi, M E Hasnaoui, J Belattar, M P F Graça, M E Achour, and L C Costa, J. Mater. Environ. Sci. 2, 3 (2011) 281. 26 27. D Choi, S Jin, Y Lee, S H Kim, D S Chung, K Hong, C Yang, J Jung, J K Kim, M Ree, and C E Park, Appl. Mater. Interfaces, 2, 1 (2010) 48. 27 28. J C Nolasco, R Cabré, J Ferré-Borrull, L F Marsal, M Estrada, and J Pallarès, J. Appl. Phys.107 (2010) 044505. 28 29. J A Letizia, J Rivnay, A Facchetti, M A Ratner , and T J Marks, Adv. Funct. Mater. 20 (2010) 50. 29 30. Y Park, S Noh, D Lee, J Y Kim and C Lee C., J. Korean Phys. Soc. 59, 2 (2011) 362. 30 31. R K Singh, J Kumar, R Singh, R Kant, R C Rastogi, S Chand, and V Kumar, New J. Phys. 8 (2006) 112. 31 32. N Othman, Z A Talib, A Kassim, A H Shaari, and J Y C Liew, Journal of Fundamental Sciences 5 (2009) 29. 32 33. A A Hendi, Life Sci. J. 8 (2011) 3. 33 34. M Taunk, A Kapil and S Chand, The Open Macromolecules Journal 2 (2008) 74 34
ORIGINAL_ARTICLE Implementation of electro-optic amplitude modulator in the external cavity of semiconductor laser for generation of periodic sates and chaos control In this paper, by placing the electro optical modulator (EOM) into the external cavity of the semiconductor laser (SL) and amplitude modulation of the optical feedback, the dynamical variation of the output intensity  of the laser has been studied. This is analyzed numerically via bifurcation and time series diagrams with respect to the applied amplitude modulation index, and modulation voltage frequency of the EOM. It has been shown that, by modulating the amplitude of the optical feedback beam, various changes in the types of the dynamics of  can be observed, and various periodic states can be generated. This makes it possible to receive the desired dynamics without any variations in the main parameters of the SL. Also, in present study, a method of chaos control in the SL has been presented based on EOM in the external cavity. The obtained results confirm that based on this method the chaotic dynamics can be controlled single-periodic dynamics https://ijpr.iut.ac.ir/article_1204_a88580d917c577b878cb43802902598f.pdf 2019-11-26 63 74 10.18869/acadpub.ijpr.16.3.63 semiconductor laser electro optical modulator external cavity chaos control Kh Mabhouti 1 پیاده سازی مدولاتور الکترو اپتیکی دامنه در کاواک خارجی لیزر نیمرسانا برای تولید حالت‌های پریودیک و کنترل ناپایداری AUTHOR A Jafari 2 پیاده سازی مدولاتور الکترو اپتیکی دامنه در کاواک خارجی لیزر نیمرسانا برای تولید حالت‌های پریودیک و کنترل ناپایداری LEAD_AUTHOR 1. B Liu, Y Braiman, N Nair, Y Lu, Y Guo, P Colet, and M Wardlaw, Opt. Commun. 324 (2014) 301. 1 2. P Bhattacharyya, Opt. Commun. 319 (2014) 188. 2 3. W Jia-Gui, X Guang-Qiong, C Liang-Ping, and W Zheng-Mao, Opt. Commun. 282 (2009) 3153. 3 4. S Banerjee, L Rondoni, S Mukhopadhyay, and A P Misra, Opt. Commun. 284 (2011) 2278. 4 5. S Banerjee, L Rondoni, and S Mukhopadhyay, Opt. Commun. 284 (2011) 4623. 5 6. J Mørk, B Tromborg, and J Mark, IEEE J. Quant Electron. 28 (1992) 93. 6 7. J. Ohtsubo, “Semiconductor Lasers Stability, Instability and Chaos”, 3nd ed., Springer Verlag, Berlin, chapter 7 (2013). 7 8. S Wieczorek, B Krauskopf, and D Lenstra, Opt. Commun. 172 (1999) 279. 8 9. J Sacher, D Baums, P Panknin, W Elsässer, and E O Göbel, Phys. Rev. A 45 (1992) 1893. 9 10. T Heil, I Fisher, and W Elsäßer, Phys. Rev. Lett. 87 (2001) . 10 11. R Vicente, J Daudén, P Colet, and R Toral, IEEE Quantum Electron. 41 (2005) 541. 11 12. J P Eckmann, and D Ruelle, Rev. Mod. Phys. 55 (1985) 617. 12 13. E Ott, C Grebogi, and J A York, Phys. Rev. Lett. 64 (1990) 1196. 13 14. K Su and C Li, Optik 125 (2014) 3693. 14 15. C Han and S Yu, Optik 125 (2014) 3491. 15 16. A Uchida, Phys. Rev. E 58 (1998) 7249. 16 17. L Wu and S Q Zhu, Chin. Phys. 12 (2003) 300. 17 18. S L Yan, Chin. Optics Lett. 3 (2005) 283. 18 19. S L Yan, Comm. Theor. Phys. 47 (2007) 491. 19 20. S Rajesh and V M Nandakumaran, Physica D 213 (2006) 113. 20 21. A Ahlborn and U Parlit, Phys. Rev. Lett. 96 (2006). 21 22. G Jiang, J Zhang, Y Fu, and W Wang, Optik 123 (2012) 2140. 22 23. A Naumenko, N Loiko, S Turovets, P Spencer, and K Shore, J. Opt. Soc. Am. B 15 (1998) 551. 23 24. S Turovets, J Dellunde, and K Shore, J. Opt. Soc. Am. B 14 (1997) 200-208. 24 25. F Ruiz-Oliveras and A Pisarchik, Opt. Express 14 (2006) 128596. 25 26. A Uchida, T Sato, T Ogawa, F Kannari, IEEE J. Quantum Electron. 35 (1999) 1371. 26 27. M Ahmed and A Bakry, Opt. Commun. 360 (2016) 52. 27 28. A Nabih and Z Rashed, Opt. Commun. 294 (2013) 49. 28 29. D Samanta and S Mukhopadhyay, Optik 121 (2010) 1129. 29 30. J A Ibarra Fuste and M C Santos Blanco, Opt. Laser Technol. 49 (2013) 296. 30 31. A Yariv and P Yeh, “Optical Waves in Crystals”, Wiley, New York (1984). 31 32. M Bass, C MacDonald, G Li, C M DeCusatis, and V N Mahajan, “Handbook Of Optics”, 3nd ed., The McGraw Hill, New York , Vol. 5, chapter 7 (2010). 32 33. G P Agrawal, “Fiber-Optic Communication Systems”, 4nd ed., Wiley, New York (2010). 33 34. F Bachmann, P Loosen, and R Poprawe, “High Power Diode Lasers: Technology and Applications”, Springer, New York (2010). 34 35. R Lang and K Kobayashi, IEEE Quantum Electron. 16 (1980) 347. 35 36. T Erneux, Phys. Rev. E 69 (2004) 036210. 36 37. Yu Kuznetsov, “Elements of Applied Bifurcation Theory”, Springer, Berlin (2005). 37 38. T Heil, I Fischer, W Elsäßer, J Mulet, and C R Mirasso, Opt. Lett. 24 (1999) 1275. 38 39. D W Sukow, T Heil, I Fischer, A Gavrielides, A H AbiChedid, and W Elsäßer, Phys. Rev. A 60 (1999) 667. 39 40. G Vaschenko, M Guidici, J J Rocca, C S Menoni, J R Tredicce, and S Balle, Phys. Rev. Lett. 81 (1998) 5536. 40 41. A Uchida, Y Liu, I Fischer, P Davis, and T Aida, Phys. Rev. A 64 (2001) 023801. 41 42. M. Pan, B. Shi, and G.R. Gray, Opt. Lett. 22 (1997) 166. 42 43. T Heil, I Fischer, W Elsäßer, B Krauskopf, K Green, and A Gavrielides, Phys. Rev. E 67, (2003) 0662141. 43 44. D M Kane, K A Shore, “Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers”, Wiley, Chichester (2005). 44 45. K. Green, Phys. Rev. E 79 (2009) 036210. 45 46. A Jafari, H Sedghi, Kh Mabhouti, and S. Behnia, Opt. Commun. 284 (2011) 3018. 46 47. D J Gauthier, D W Sukow, H M Concannon, and E S Socolar, Phys. Rev. E 50 (1994) 2343. 47 48. A Jafari, Kh Mabhouti, S Afrang, and A Siahcheshm, Opt. Laser Technol. 44 (2012) 1398. 48 49. R Tkach and A Chraplyvy, J. Lightwave Technol. 4 (1986) 1655. 49 50. S Rajesh and V M Nandakumaran, Physica D 213 (2006) 113. 50 51. G Jiang, J Zhang, Y Fu, and W Wang, Optik 123 (2012) 2140. 51
ORIGINAL_ARTICLE The first-principle study of N2O gas interaction on the surface of pristine and Si-, Ga-, SiGa-doped of armchair boron phosphide nanotube using DFT method In present research,  the electrical, structural, quantum and Nuclear Magnetic Resonance (NMR) parameters of interaction of N2O gas on the B and P sites of pristine, Ga-, Si- and SiGa-doped (4,4) armchair models of boron phosphide nanotubes (BPNTs) are investigated by using density functional theory (DFT).  For this purpose, seven models for adsorption of N2O gas on the exterior surfaces of BPNTs have been considered and then all structures are optimized by B3LYP level of theory and 6–31G (d) base set. The optimized structures are used to calculate the electrical, structural, quantum and NMR parameters. The computational results revealed that the adsorption energy of all studied models of BPNTs is negative; all processes are exothermic and favorable in thermodynamic approach. When N2O gas is adsorbed from its O atom head on the B site of nanotube, N2O gas is dissociated to O atom and N2 molecule. The adsorption energy of this process is more than those of other models and more stable than other models. In A, B and C models, the global hardness decreases significantly from original values and so the activity of nanotube increases from original state. On the other hand, the electrophilicity index (ω), electronic chemical potential (μ), electronegativity (χ) and global softness (S) of the A, B and C models increase significantly from original value and CSI values of the C model are larger than those of other models. The results demonstrate that the Ga-, Si- and SiGa- doped BPNTs are good candidates to adsorb N2O and make N2O gas sensor https://ijpr.iut.ac.ir/article_1205_fdec0c12842513fefe8c445580586f11.pdf 2019-11-26 75 86 10.18869/acadpub.ijpr.16.3.75 BPNTS DFT NMR N2O adsorption Ga- Si- and SiGa-doped M Rezaei-Sameti mrsameti@maleru.ac.ir 1 گروه شیمی فیزیک، دانشکده علوم پایه، دانشگاه ملایر، ملایر LEAD_AUTHOR KH Hadian 2 گروه شیمی فیزیک، دانشکده علوم پایه، دانشگاه ملایر، ملایر AUTHOR 1. A S Tarendash, “Let's Review: Chemistry, the Physical Setting”, Barron's Educational Series (2004). 1 2. M Iwamoto and H Hamada, Catal. Today 10 (1991) 57. 2 3. F Kaptein, J Rodriguez-Mirasol, and J A Moulijn, App. Catal. B 9 (1996) 25. 3 4. G Delahay, M Mauvezin, B Coq, and S Kieger, J Catal. 202 (2001) 156. 4 5. B Coq, M Mauvezin, G Delahay, J B Butet, and S Kieger, App. Catal. B 27 (2000)193. 5 6. B Moden, P Da Costa, B Fonfe, D Ki Lee, and E Iglesia, J. Catal. 209 (2002) 75. 6 7. A Martinez, A Goursot, B Coq, and G Delahay, J. Phys. Chem. B 108 (2004) 8823. 7 8. A R Ravishankara, J S Daniel, and R W Portmann, Science 326 (2009) 23. 8 9. M T Baei, A Soltani, A V Moradi, and E Tazikeh Lemeski, Com. Theo. Chem. 970 (2011) 30. 9 10. M T Baei, A Soltani, A V Moradi, and M Moghimi, Monatsh. Chem. 142 (2011) 573. 10 11. A Soltani, M Ramezani Taghartapeh, E Tazikeh Lemeski, M Abroudi, and H Mig, Superlattic Microst. 58 (2013)178. 11 12. X Solans-Monfort, M Sodupe, and V Branchadell, Chem. Phys. Lett. 368 (2003) 42. 12 13. M Mirzaei, Z Phys. Chem. 223 (2005) 815. 13 14. M T Baei, A Varasteh Moradi, P Torabi, and M Moghimi, Monatsh. Chem. 142 (2011) 1097. 14 15. M T Baei, A Ahmadi Peyghan, and M Moghimi, Monatsh. Chem. 143 (2012) 1627. 15 16. M T Baei, Monatsh. Chem. 143 (2012) 881. 16 17. M Mirzaei, J. Mol. Model 17 (2011) 89. 17 18. A Ahmadi Peyghan M T, Baei, M Moghimi, and S Hashemian, J. Clust. Sci. 24 (2013) 49. 18 19. M T Baei, A Varasteh Moradi, P Torabi, and M Moghimi, Monatsh. Chem. 143 (2012) 37. 19 20. K Li, W Wang, and D Cao, Sensor Actuat. B Chem. 159 (2011)171. 20 21. M Rezaei-Sameti, Physica B 407 (2012)3717. 21 22. M Rezaei-Sameti, Physica E 44 (2012)1770. 22 23. M Rezaei-Sameti, and S Yaghobi, Comp. Condense Matt. 3 (2015) 21. 23 24. M Rezaei-Sameti, Physica B 407 (2012) 22. 24 25. M Rezaei-Sameti, and E A Dadfar, Iranian J. Phys. Res. 15 (2015) 41. 25 26. M J Frisch, et al., Gaussian 03, Inc., Pittsburgh (2003). 26 27. P K Chattaraj, U Sarkar, and D R Roy, Chem. Rev. 106 (2006) 2065. 27 28. K K Hazarika, N C Baruah, and R C Deka, Struct. Chem. 20 (2009)1079. 28 29. R G Parr, L Szentpaly, and S Liu, J. Am. Chem. Soc. 121(1999) 1922. 29 30. C Tabtimsai, S Keawwangchai, N Nunthaboot, V Ruangpornvisuti, and B Wanno, J. Mol. Model. 18 (2012) 3941. 30 31. A E Reed, L A Curtiss, and F Weinhold, Chem. Rev. 88 (1988) 899 31
ORIGINAL_ARTICLE Slow light tunability in photonic crystals by defect layers In present study, the effect of different defect layer refractive indices and thicknesses on group velocity has been studied in one-dimensional photonic crystal. It is found that the increase of refractive index, number of defects and defect layer thickness will induce the decrease of group velocity. Taking advantage of these results, a novel technique has been introduced to tune and control the slowing light in photonic crystal https://ijpr.iut.ac.ir/article_1206_9d60d1ecf274acf21051be40ddf12905.pdf 2019-11-26 87 90 10.18869/acadpub.ijpr.16.3.87 Photonic Crystal (PC) slow light tunability A R Bananej 1 پژوهشکده لیزرو اپتیک، پژوهشگاه علوم و فنون هسته‌ای ، سازمان انرژی اتمی، تهران AUTHOR M Asadnia-Fard-Jahromi kh.asadnia@gmail.com 2 پژوهشکده لیزرو اپتیک، پژوهشگاه علوم و فنون هسته‌ای ، سازمان انرژی اتمی، تهران LEAD_AUTHOR 1. M L Povinelli, S G Johnson, and J D Joannopoulous, Opt. Express 13 (2005) 7145. 1 2. T. Baba, Nature Photonics 2 (2008) 465. 2 3. C Li, Z Dutton, C Behroozi, and L Hau, Nature 409 (2001), 490 . 3 4. M Settle, R Engelen, M Salib, A Michaeli, L Kuipers, and T Krauss, Opt. Express 15 (2007) 219. 4 5. A Yariv, Y Xu, R K Lee, and A Scherer, Opt. Lett. 24 (1999) 711. 5 6. Y A Vlasov, M O’Boyle, H F Hamann, and S J McNab, Nature 438, (2005) 65 . 6 7. T Baba, T Kawasaki, H Sasaki, J Adachi, and D Mori, Opt. Express 16 (2008) 9245. 7 8. A Bananej, S M Hamidi, W. Li, C. Li, and M M Tehranchi, Opt. Mater. 30, 12 (2008) 1822. 8 9. A Taflove, S G Johnson, and A Oskooi, “Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology,” Artech House, Norwood, MA (2013). 9 10. H Tian and Y Ji, Mod. Phys. Lett. B 23, 8 (2009) 1053. 10 11. S Rawal, K Sinha, and M De La Rue, Opt. Express 17 (2009) 552 11
ORIGINAL_ARTICLE Electrostatic compressive and rarefactive dust ion-acoustic solitons in four component quantum plasma The propagation of nonlinear quantum dust ion-acoustic (QDIA) solitary waves in a unmagnetized quantum plasma whose constituents are inertialess quantum electrons and  positrons, classical cold ions and stationary negative dust grains are studied by deriving  the Korteweg–de Vries (KdV) equation under the reductive perturbation method. Quantum Hydrodynamic (QHD) equations are used to take into account the quantum diffraction in quantum statistics corrections. It is shown that depending on some critical values of the dust density (d) which is function of quantum diffraction parameter (H), both rarefactive and compressive type of solitons can exist in the model plasma. Further, the amplitude and width of both solitons increase as d increases. Moreover,  it is pointed out that an increase in quantum diffraction parameter, decreases the width of  compressive soliton but  increases the width of  rarefactive soliton, and the amplitude of both solitons is  independent of H. The present investigation could be useful for researches on astrophysical plasmas as well as for ultra small micro- and nano- electronic devices https://ijpr.iut.ac.ir/article_1207_7ceb6a77083c48fe4c3cacbb4ebee20b.pdf 2019-11-26 91 96 10.18869/acadpub.ijpr.16.3.91 Bohm potential compressive solitons dust density KdV equation quantum plasma rarefactive solitons M R Rouhani rouhanik@yahoo.com 1 گروه فیزیک دانشگاه الزهرا، تهران LEAD_AUTHOR A Akbarian 2 گروه فیزیک دانشگاه الزهرا، تهران AUTHOR Z Mohammadi 3 گروه فیزیک دانشگاه الزهرا، تهران AUTHOR 1. G Manfredi and F Haas, Phys. Rev. B 64 (2001) 075316. 1 2. F Haas et al., Phys. Plasmas 10 (2003) 3858. 2 3. Y D Jung, Phys. Plasmas 8 (2001) 3842. 3 4. D Kremp, Th Bornath, M Bonitz, and M Schlanges, Phys. Rev. E 60 (1999) 4725. 4 5. A V Andreev, Journal of Experimental and theoretical letters. 72 (2000) 238. 5 6. M Marklund and P K Shukla, Rev. Mod. Phys. 78 (2006) 591. 6 7. P A Markowich, C A Ringhofer, and C Schmeiser, "Semiconductor Equations," Springer-Verlag, New York (1990). 7 8. G V Shpatakovskaya, J. Exp. Theor. Phys. 102 (2006) 466. 8 9. L Wei and Y Wang, Phys. Rev. B 75 (2007) 193407. 9 10. L K Ang, T J T Kwan, and Y Y Lau, Phys. Rev. Lett. 91 (2003) 208303. 10 11. T C Killian, Nature 441 (2006) 298. 11 12. K Becker, K Koutsospyros, and S M. Yin et al., Plasma Phys. Control. Fusion B 47 (2005) 513. 12 13. F Hass et al. Phys. Plasmas 10 (2003) 3858. 13 14. S A Khan and A Mushtaq Phys. Plasmas 14 (2007). 14 15. S A Khan et al., Phys. Lett. A 372 (2008) 148. 15 16. G Das and J Sarma, Phys. Plasmas 6 (1999) 4394. 16 17. D A Mendis, Plasma Sources Sci. Technol. A 11 (2002) 219. 17 18. W Moslem, Phys. Lett. A 351 (2006) 290. 18 19. B Tian and Y T Gao, Phys. Lett. A 340 (2005) 449. 19 20. E Tandberg-Hansena and A G Emsile, "The Physics of Solar Flares," Cambridge University Press, Cambridge (1988). 20 21. S A Khan and Q Haque, Chin. Phys. Lett. 25, 12 (2008) 4329. 21 22. S Ali, W M Moslem, P K Shukla, and R Schlickeiser, Phys. Plasmas 14 (2007) 082307. 22 23. H Washimi and T Taniuti, Phys. Rev. Lett. 17 (1966) 996. 23 24. A Mushtaq and S A Khan, Phys. Plasmas 14 (2007) 052308 24
ORIGINAL_ARTICLE Compression between ion and hard x-ray emissions from nitrogen and argon in Mather type plasma focus device In this study, some characteristics of a Mather type Plasma Focus (PF) device such as a discharge current, pinch time, ion flux and hard x-ray intensity has been investigated simultaneously in argon and nitrogen gases separately for various operating gas pressures and charging voltages of capacitor bank. It was observed that pinch phenomena was energy and pressure dependent in current sheath as well as ion and hard x-ray emission intensity. Optimum pressure with maximum ion flux and the most intense hard x-ray showed a nearly linear dependence on the charging voltage of the device. Maximum ion flux was estimated in the order of 1018 ions per steradian in both gases. Hard x-ray emission was registered a little after discharge current and Faraday cup (FC) signals. Also, optimum pressure for maximum ion flux was not the same as the pressure for intense hard x-rays. Hard x-ray intensity reached its peak at higher pressures https://ijpr.iut.ac.ir/article_1208_ebaaae55bab90a6ba80ac5bd3186b83c.pdf 2019-11-26 97 101 10.18869/acadpub.ijpr.16.3.97 Plasma Focus (PF) pinch time ion flux Faraday Cup (FC) hard x-ray S Paghe 1 1. گروه مهندسی هسته‌ای، دانشکده علوم و فناوری‌های نوین، دانشگاه اصفهان، اصفهان AUTHOR M R Abdi r.abdi@phys.ui.ac.ir 2 . گروه فیزیک، دانشکده علوم، دانشگاه اصفهان، اصفهان LEAD_AUTHOR B Shirani 3 1. گروه مهندسی هسته‌ای، دانشکده علوم و فناوری‌های نوین، دانشگاه اصفهان، اصفهان AUTHOR 1. J W Mather, Phys. of Fluids 8 (1965) 366. 1 2. N V Filippov et al., Nucl. Fus. Suppl. 2 (1962) 577. 2 3. K Takao et al., Japan. J. Appl. Phys. 40 (2001) 1013. 3 4. M J Bernstein, Phys. Fluids 13 (1970) 2858. 4 5. M Mohammadnejad et al., Rev. Sci. Instrum. 84 (2013) 073505 . 5 6. M J Bernstein and G G Comisar, Phys. Fluids 15 (1972) 700. 6 7. T Katsouleas and J M Dawson, Phys. Rev. Lett. 51 (1983) 392. 7 8. M G Heines, Nucl. Inst. and Methods 207 (1983) 179. 8 9. H R Yousefi et al., Phys. Plasmas 13 (2006) 114506. 9 10. S P Gary and F Hohl, Phys. Fluids 16 (1973) 997. 10 11. S P Gray, Phys. Fluids, 17 (1974) 2135. 11 12. Y Mizuguchi et al., Phys. Plasmas 14 (2007) 032704. 12 13. T Haruki et al., Phys. Plasmas 13 (2006) 082106. 13 14. R Deutcch and W Kies, Plasma Phys. Control. Fusion 30 (1988) 263. 14 15. R A Behbahani and F M Aghamir, Phys. Plasmas 18 (2011) 103302. 15 16. R A Behbahani and F M Aghamir, J. Appl. Phys.111 (2012) 043304. 16 17. J N Feugeas et al., Rad. Eff. Def. Solids 128 (1994) 267. 17 18. M Zakaullah et al., Phys. Plasmas 6 (1999) 3188. 18 19. V N Pimenov et al., Nukleonika 51,1 (2006) 71. 19 20. R S Rawat et al., Mat. Res. Bull. 35 (2000) 477. 20 21. R S Rawat et al., Surf. Coat. Tech. 138 (2001) 159 . 21 22. H Kelly et al., Plasma Sources Sci. Technol. 5 (1996) 1. 22 23. M T Hosseinnejad et al., J. Fusion Energy 30 (2011) 516. 23 24. M Shafiq et al., Chin. Phys. B 19, 1 (2010) 012801. 24 25. S J Pestehe, et al., Phys. Plasmas 21 (2014) 033504. 25 26. M Hassan et al., J. Phys. D: Appl. Phys. 40 (2007) 769. 26 27. H Kelly et al., IEEE. Trans. Plasma Sci. 26, 1 (1998) 113. 27 28. G R Etaati, et al., J. Fusion Energy. 30 (2010) 121. 28 29. M Bhouyan et al., Physics of Plasmas, 18 (2011) 033101. 29 30. T Yamamoto et al., Japan. J. Appl. Phys. 23 (1984) 242. 30 31. H Heo and D K Park, Phys. Scr. 65 (2002) 350. 31 32. S Lee, IEEE Trans. on Plasma Sc. 19 (1991) 912 32
ORIGINAL_ARTICLE Objects cloaking in LWIR region by using a high efficiency infrared pixel This article, introduces a new pixel which can emit infrared wavelengths from its surface and can be used for the purpose of cloaking objects from thermal cameras. This pixel can simulate the temperatures between 0 and 100ºC emited from an infrared radiation in LWIR (8-12 micrometres) region. Nanocomposite material is used in the pixel structure and this has increased its capacities like ZT factor %40-50 better than the commercial material like Bi2Te3. Technical aspects of the pixel such as the emission wavelengths, rate of temperature changing, thermal contrast, ZT factor and so on are discussed in this paper and were determined by using thermography, non-contact thermometry, radiometry, four probe ac method and temperature differential https://ijpr.iut.ac.ir/article_1209_afd812a9abcf314f95ddc331695fb7d1.pdf 2019-11-26 103 106 10.18869/acadpub.ijpr.16.3.103 infrared pixel cloak nanocomposite LWIR علی Arab 1 گروه فیزیک، دانشگاه صنعتی مالک اشتر، شاهین شهر AUTHOR حمیدرضا Behzadi ir.optic@yahoo.com 2 گروه فیزیک، دانشگاه صنعتی مالک اشتر، شاهین شهر LEAD_AUTHOR محمد Yousefi 3 گروه فیزیک، دانشگاه صنعتی مالک اشتر، شاهین شهر AUTHOR 1. E L Dereniak and G D Boreman, “Inferared Detectors and Systems”, John Wiley & sons, Inc. (1996). 1 2. P W Kruse, Semiconduct. Semimet. 47 (1997) 17. 2 3. A Rogalski, Prog. Quantum Electron. 27 (2003) 59. 3 4. J D Vincent, “Fundamental of Inferared Detector Operation and Testings”, Wiley (1990). 4 5. R G Driggers, P Cox, and T Edwards, “Introduction to Inferared and Electro-Optical Systems”, Artech House, INC, Boston (1998). 5 6. J W Bos, “Thermoelectric materials: efficiencies found in nanocomposites, education in chemistry”, Royal Society of Chemistry (2012). 6 7. J Jiang, L Chen, Q Yao, S Bai, and Q Wang, Materials Chemistry and Physics, 92, 1 (2005) 39. 7 8. B Poudel, Q Hao, and Y Ma et al., Science, 320, 5876 (2008) 634. 8 9. Y Q Cao, X B Zhao, T J Zhu, X B Zhang, and J P Tu, Applied Physics Letters, 92 (2008) 14. 9 10. M Salavati-Niasari, M Bazarganipour, and F Davar, Journal of Alloys and Compounds, 489, 2 (2010) 530. 10 11. X Tang, W Xie, H Li, W Zhao, Q Zhang, and M Niino, Applied Physics Letters, 90, 1(2007) 5. 11 12. W Xie, X Tang, Y Yan, Q Zhang, and T M. Tritt, Applied Physics Letters, 94, 10 (2009) 4. 12 13. L D Zhao, B P Zhang, J F Li, M Zhou, W S Liu, and J Liu, Journal of Alloys and Compounds, 455, 1-2 (2008) 259. 13 14. G S Nolas, J Sharp, and H J Goldsmid, "Thermoelectrics: Basic Principles and New Materials Developments," Springer, New York, USA (2001). 14
ORIGINAL_ARTICLE Quantum vacuum effects for a massive Bosonic string in background B-field We study the Casimir effect for a Bosonic string extended between D-branes, and living in a flat space with an antisymmetric background B-field. We find the Casimir energy as a function of the B-field, and the mass-parameter of the string, and accordingly we obtain a B-dependence correction term to the ground-state mass of the string. We show that for sufficiently large B-field, the ground state of the string contains real (i.e. non-Tachyonic) particles https://ijpr.iut.ac.ir/article_1210_6ab05ca4a8897660f041892def7ebc29.pdf 2019-11-26 107 110 10.18869/acadpub.ijpr.16.3.107 Casimir energy Bosonic string background field background dependent corrections to the string mass Y Koohsarian yo.koohsarian@stu-mail.um.ac.ir 1 گروه فیزیک، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد LEAD_AUTHOR A Shirzad 2 پژوهشگاه دانش‌های بنیادی (IPM)، تهران AUTHOR 1. H B G Casimir, Proc. K. Ned. Akad. Wet 51 (1948) 793. 1 2. V M Mostepanenko and N N Turnov, “The Casimir effect and its applications,” Oxford University Press, Oxford (1997). 2 3. M Bordag, G L Klimchitskaya, U Mohideen, and V M Mostepanenko, “Advances in the CasimirEffect,” Oxford Science Publications (2009). 3 4. I Brevik and H B Nielsen, Phys. Rev. D 41 (1990)1185; 51 (1995) 1869. 4 5. M Fabinger and P Horava, Nucl. Phys. B 580 (2000) 243. 5 6. H Gies, K Langfeld, and L Moyaerts, JHEP 18 (2003) 306. 6 7. X Li, X Shi, and J Zhang, Phys. Rev. D 44 (1991)560. 7 8. I Brevik and E Elizalde, Phys. Rev. D 49 (1994) 5319. 8 9. M H Berntsen, I Brevik, and S D Odintsov, Ann. Phys. 257 (1997) 84. 9 10. L Hadasz, G Lambiase, and V V Nesterenko, Phys. Rev. D 62 (2000) 025011. 10 11. E D'Hoker and P Sikivie, Phys. Rev. Lett. 71 (1993) 1136. 11 12. E D'Hoker, P Sikivie, and Y Kanev, Phys. Lett. B 347 (1995) 56. 12 13. C S Cho and P M Ho, Nucl. Phys. B 636 (2002) 141. 13 14. N Seiberg and E Witten, JHEP 9 (1999) 32. 14 15. C S Cho and P M Ho, Nucl. Phys. B 550 (1999) 151. 15 16. F Ardalan, H Arfaei, M M Sheikh-Jabbari, JHEP 16 (1999) 9902. 16 17. R Gopakumar, S Minwalla, and A Strominger, JHEP 18 (2001) 104. 17 18. A Sen, JHEP 48 (2002) 204. 18 19. D Kutasov, M Marino, and G Moore, JHEP 10 (2000) 45. 19 20. L Rastelli, A Sen, and B Zwiebach, Adv. Theor. Math. Phys. 5 (2002) 353. 20 21. A Shirzad, A Bakhshi, and Y Koohsarian, Mod. Phy. Lett. A 27 (2012) 1250073. 21 22. M Bordag, U Mohideen, and V M Mostepanenko, Phys. Rep. 353 (2001) 1205. 22