ORIGINAL_ARTICLE Nanomagnetism Nanomagnetism is a branch of nanotechnology, which studies the magnetic properties of nanoparticles. Single-domain superparamagnetim, superferromagnetism and superspin glasses are different magnetic states which have been observed in a system of nanoparticles. Each of these magnetic states has unique features which determines the application range of magnetic nanoparticles assembly. Shell of nanoparticles is composed of canted spins while the core spins are almost regular. Study of nanoparticles system needs to explore and characterize several features, including different anisotropies, interactions between the particles, relaxation times, coercivity, remanent magnetization, saturation magnetization and etc. Researchers have made great efforts to characterize magnetic nanoparticles. Investigations in nanomagnetism field increases by developing the application range of nanoparticles in industry, medicine and daily life https://ijpr.iut.ac.ir/article_1211_d0d846fd45d0fe9d434d1e4a6e7efdc9.pdf 2019-11-26 251 272 10.18869/acadpub.ijpr.16.4.251 nanoparticles superparamagnetism AC susceptibility interactions Henkel plot B Aslibeiki b.aslibeiki@tabrizu.ac.ir 1 دانشکده فیزیک، دانشگاه تبریز، تبریز LEAD_AUTHOR P Kameli kameli@iut.ac.ir 2 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان AUTHOR H Salamati 3 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان AUTHOR 1. S Mansour and M Elkestawy, Ceram. Int., 37 (2011) 1175. 1 2. B Aslibeiki, P Kameli and M H Ehsani, Ceram. Int., 42 (2016) 12789. 2 3. J Frenkel, J Dorfman, Nature 126 (1930 ) 274. 3 4. C Kittel, Physical Review, 70 (1946) 965. 4 5. B Aslibeiki, P Kameli, H Salamati, M Eshraghi and T Tahmasebi, J. Magn. Magn. Mater., 322 (2010) 2929. 5 6. E C Stoner and E P Wohlfarth, IEEE Trans. Magn., 27 (1947) 3475. 6 7. R C O'Handley, Wiley, New York, USA. (2000). 7 8. G C Hadjipanayis, G A Prinz, North Atlantic Treaty Organization, Scientific Affairs Division, Plenum Press, New York (1991). 8 9. R D Gomez, T V Luu, A O Pak, K J Kirk and J N Chapman, J. Appl. Phys., 85 (1999) 6163. 9 10. H Koo, T V Luu, R D Gomez and V V Metlushko, J. Appl. Phys., 87 (2000) 5114. 10 11. W Wernsdorfer, K Hasselbach, D Mailly, B Barbara, A Benoit, L Thomas and G Suran, J. Magn. Magn. Mater., 145 (1995) 33. 11 12. W Wernsdorfer, D Mailly and A Benoit, J. Appl. Phys., 87 (2000) 5094. 12 13. J I Martı́n, J Nogués, K Liu, J L Vicent and I K Schuller, J. Magn. Magn. Mater., 256 (2003) 449. 13 14. S Singamaneni, V N Bliznyuk and C Binek, E Y Tsymbal, J. Mater. Chem., 21 (2011) 16819. 14 15. S Bedanta and W Kleemann, J. Phys. D: Appl. Phys., 42 (2009) 013001. 15 16. A H Lu, E E Salabas and F Schüth, Angewandte Chemie International Edition, 46 (2007) 1222. 16 17. V I Nikolaev and A M Shipilin, Physics of the Solid State, 45 (2003) 1079. 17 18. B Sadeh, M Doi, T Shimizu and M Matsui, Journal-Magnetics Society of Japan, 24 (2000) 511. 18 19. P Kameli, Z Mosleh, M Ranjbar and H Salamati, Iranian Journal of Physics Research, 14, 4 (2015) 341 19 20. E C Stoner and E P Wohlfarth, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 240 (1948) 599. 20 21. L Néel, Ann. Geophys. CNRS, 5 (1949) 99. 21 22. W F Brown, Jr. Physical Review, 130 (1963) 1677. 22 23. P Entel and D E Wolf, in, World Scientific, Singapore;305 (2000) 1. 23 24. B D Cullity, C D Graham, “Introduction to magnetic materials”, John Wiley & Sons, Inc., Hoboken, New Jersey (2009) pp. 364. 24 25. C P Bean, J. Appl. Phys., 26 (1955) 1381. 25 26. W T Coffey, D S F Crothers, J L Dormann, L J Geoghegan, Y P Kalmykov, J T Waldron and A W Wickstead, J. Magn. Magn. Mater., 145 (1995) L263. 26 27. W T Coffey, D S F Crothers, J L Dormann, L J Geoghegan, Y P Kalmykov, J T Waldron and A W Wickstead, Phys. Rev. B, 52 (1995) 15951. 27 28. D L Leslie-Pelecky and R D Rieke, Chem. Mater., 8 (1996) 1770. 28 29. J W F Brown, J. Appl. Phys., 29 (1958) 470. 29 30. J W F Brown, J. Appl. Phys., 34 (1963) 1319. 30 31. J W F Brown, Physical Review, 130 (1963) 1677. 31 32. H Mamiya, I Nakatani and T Furubayashi, Phys. Rev. Lett., 82 (1999) 4332. 32 33. E P Wohlfarth, Journal of Physics F: Metal Physics, 10 (1980) L241. 33 34. L E Wenger and J A Mydosh, Phys. Rev. B, 29 (1984) 4156. 34 35. R Chantrell, K O’Grady, R Gerber, C Wright and G Asti, Applied Magnetism, (1994). 35 36. M J Nasr Isfahani and V Sepelak, Iranian Journal of Physics Research, 12, 3, (2012) 262 36 W F Brown, J. Appl. Phys., 30 (1959) S130. 37 38. F Wiekhorst, E Shevchenko, H Weller and J Kötzler, Phys. Rev. B, 67 (2003) 224416. 38 39. C P Bean and J D Livingston, J. Appl. Phys., 30 (1959) S120. 39 40. P Ghahramaninezhad, M Rezaei Roknabadi and M Behdani, Iranian Journal of Physics Research, 15, 1 (2015) 105. 40 41. C Tannous and J Gieraltowski, European Journal of Physics, 29 (2008) 475. 41 42. M F Hansen and S Mørup, J. Magn. Magn. Mater., 203 (1999) 214. 42 43. P Panissod, M Malinowska, E Jedryka, M Wojcik, S Nadolski, M Knobel and J E Schmidt, Phys. Rev. B, 63 (2000) 014408. 43 44. B Aslibeiki, P Kameli, M H Ehsani, H Salamati, G Muscas, E Agostinelli, V Foglietti, S Casciardi and D Peddis, J. Magn. Magn. Mater., 399 (2016) 236. 44 45. R Sappey, E Vincent, N Hadacek, F Chaput, J P Boilot, D Zins, Phys. Rev. B, 56 (1997) 14551. 45 46. J L Dormann, D Fiorani, E Tronc, “Advances in Chemical Physics”, John Wiley & Sons, Inc., Hoboken, New Jersey (2007), pp. 283. 46 47. R Chantrell and E Wohlfarth, Phys. Status Solidi A, 91 (1985) 619. 47 48. B Aslibeiki, P Kameli and H Salamati, J. Appl. Phys., 119 (2016) 063901. 48 49. L Ji, R H Sohn, G C Spalding, C J Lobb and M Tinkham, Phys. Rev. B, 40 (1989) 10936. 49 50. B Aslibeiki, F Nasirzadeh and P Kameli, Procedia Materials Science, 11 (2015) 314. 50 51. B Aslibeiki, P Kameli and H Salamati, Journal of Nanoparticle Research, 15 (2013) 1. 51 52. J M Vargas, A Srivastava, A Yourdkhani, L Zaldivar, G Caruntu and L Spinu, J. Appl. Phys., 110 (2011) 064304. 52 53. S E Aalaye, P Kameli, H Salamati and H Arabi, Iranian Journal of Physics Research, 12, 4 (2013) 361 53 54. B Aslibeiki, P Kameli and H Salamati, J. Magn. Magn. Mater., 324 (2012) 154. 54 55. B Aslibeiki, P Kameli and H Salamati, Solid State Commun., 149 (2009) 1274. 55 56. B Aslibeiki, P Kameli and H Salamati, Iranian Journal of Physics Research, 10, 1 (2010) 9 56 57. V N Kondratyev and H O Lutz, Phys. Rev. Lett., 81 (1998) 4508. 57 58. M R Scheinfein, K E Schmidt, K R Heim and G G Hembree, Phys. Rev. Lett., 76 (1996) 1541. 58 59. K Yosida, Physical Review, 106 (1957) 893. 59 60. T Kasuya, Prog. Theor. Phys., 16 (1956) 45. 60 61. M A Ruderman, C Kittel, Physical Review, 96 (1954) 99. 61 62. S Sahoo, O Petracic, W Kleemann, P Nordblad, S Cardoso and P P Freitas, Phys. Rev. B, 67 (2003) 214422. 62 63. M Suzuki, S I Fullem, I S Suzuki, L Wang and C-J Zhong, Phys. Rev. B, 79 (2009) 024418. 63 64. S Mørup, M Bo Madsen, J Franck, J Villadsen and C J W Koch, J. Magn. Magn. Mater., 40 (1983) 163. 64 65. D G Rancourt, J M Daniels, Phys. Rev. B, 29 (1984) 2410. 65 66. W Kleemann, O Petracic, C Binek, G N Kakazei, Y G Pogorelov, J B Sousa, S Cardoso and P P Freitas, Phys. Rev. B, 63 (2001) 134423. 66 67. J Hauschild, H J Elmers and U Gradmann, Phys. Rev. B, 57 (1998) R677. 67 68. J L Dormann, L Bessais and D Fiorani, Journal of Physics C: Solid State Physics, 21 (1988) 2015. 68 69. B Aslibeiki, Ceram. Int., 42 (2016) 6413. 69 70. B Aslibeiki and P Kameli, J. Magn. Magn. Mater., 385 (2015) 308. 70 71. B Aslibeiki, P Kameli, I Manouchehri and H Salamati, Curr. Appl. Phys., 12 (2012) 812. 71 72. Dai, J-Q Wang, C Sangregorio, J Fang, E Carpenter, J Tang, J. Appl. Phys., 87 (2000) 7397. 72 73. S Mørup, EPL., 28 (1994) 671. 73 74. P Politi, M G Pini, Phys. Rev. B, 66 (2002) 214414. 74 75. R Kretschmer, K Binder and Z Physik B, 34 (1979) 375. 75 76. J L Dormann, F D'Orazio, F Lucari, E Tronc, P Prené, J P Jolivet, D Fiorani, R Cherkaoui and M Noguès, Phys. Rev. B, 53 (1996) 14291. 76 77. X Chen, S Bedanta, O Petracic, W Kleemann, S Sahoo, S Cardoso and P P Freitas, Phys. Rev. B, 72 (2005) 214436. 77 78. O Henkel, Phys. Status Solidi B, 7 (1964) 919. 78 79. E P Wohlfarth, J. Magn. Magn. Mater., 39 (1983) 39. 79 80. J Geshev, M Mikhov and J E Schmidt, J. Appl. Phys., 85 (1999) 7321. 80 81. J Garcia-Otero and M Porto, J Rivas, J. Appl. Phys., 87 (2000) 7376. 81 82. X Batlle and A Labarta, J. Phys. D: Appl. Phys., 35 (2002) R15. 82 83. M Sasaki, P E Jönsson, H Takayama and H Mamiya, Phys. Rev. B, 71 (2005) 104405. 83 84. J A Mydosh, “Spin glasses: an experimental introduction”, Taylor & Francis, London (1993) pp 88. 84 85. J L Dormann, R Cherkaoui, L Spinu, M Noguès, F Lucari, F D'Orazio, D Fiorani, A Garcia, E Tronc and J P Jolivet, J. Magn. Magn. Mater., 187 (1998) L139. 85 86. M Ulrich, J García-Otero, J Rivas and A Bunde, Phys. Rev. B, 67 (2003) 024416. 86 87. X Chen, O Sichelschmidt, W Kleemann, O Petracic, C Binek, J B Sousa, S Cardoso and P P Freitas, Phys. Rev. Lett., 89 (2002) 137203. 87 88. S Bedanta, O Petracic, E Kentzinger, W Kleemann, U Rücker, A Paul, T Brückel, S Cardoso and P P Freitas, Phys. Rev. B, 72 (2005) 024419. 88 89. J-O Andersson, T Jonsson and J Mattsson, Phys. Rev. B, 54 (1996) 9912. 89 90. S Laureti, G Varvaro, A M Testa, D Fiorani, E Agostinelli, G Piccaluga, A Musinu, A Ardu and D Peddis, Nanotechnology, 21 (2010) 315701. 90 91. H Zeng, J Li, J P Liu, Z L Wang and S Sun, Nature, 420 (2002) 395. 91 92. J Jakubowicz, M Giersig and J. Alloys Compd., 349 (2003) 311. 92 93. G C Hadjipanayis, J. Magn. Mater., 200 (1999) 373. 93 94. R Skomski, J. Phys.: Condens. Matter, 15 (2003) R841. 94 95. T Schrefl and J Fidler, J. Magn. Mater., 177 (1998) 970. 95 96. R Fischer and H Kronmüller, J. Magn. Mater., 184 (1998) 166. 96 97. R H Kodama, A E Berkowitz, J E J McNiff and S Foner, Phys. Rev. Lett., 77 (1996) 394. 97 98. R H Kodama, A E Berkowitz, J E J McNiff and S Foner, J. Appl. Phys., 81 (1997) 5552. 98 99. Ò Iglesias and A Labarta, Phys. Rev. B, 63 (2001) 184416. 99 100. H Kachkachi, M Noguès, E Tronc and D A Garanin, J. Magn. Magn. Mater., 221 (2000) 158. 100 101. P V Hendriksen, S Linderoth and P A Lindgård, Phys. Rev. B, 48 (1993) 7259. 101 102. F Liu, M R Press, S N Khanna and P Jena, Phys. Rev. B, 39 (1989) 6914. 102 103. B Aslibeiki, G Varvaro, D Peddis and P Kameli, J. Magn. Magn. Mater., 422 (2017) 7. 103 104. B Aslibeiki, Curr. Appl. Phys., 14 (2014) 1659. 104 105. B Aslibeiki and P Kameli, J. Supercond. Novel Magn., 28 (2015) 3343. 105 106. J Sung Lee, J Myung Cha, H Young Yoon, J-K Lee and Y Keun Kim, Scientific Reports, 5 (2015) 12135. 106 107. B D Cullity, C D Graham, “Introduction to magnetic materials”, John Wiley & Sons, Inc., Hoboken, New Jersey (2009) pp. 302 107
ORIGINAL_ARTICLE Evaluating the performance of graphene with structural defect and functionalized by –C6H4 as an electrode active material for supercapacitors In this study, quantum capacitance of graphene-based electrodes is evaluated using Density Functional Theory (DFT) calculations. The obtained results showed that quantum capacitance of graphene-based supercapacitors could be significantly improved by existence of structural defects on the graphene sheets at sufficiently high concentrations because of creating impure states resulted from carbon p < /font>z orbitals involved in defect. In another section of calculations, quantum capacitance of functionalized graphene with –C6H4, is evaluated. The obtained results of calculations showed that functionalized graphene with this functional group have a very good capacitance in comparison with pristine graphene, especially at smaller voltages of less than -1.0 V or greater than 1.0 V. Hybrid configurations between structural defects and functional group of –C6H4 was also studied. In general, the results indicated that the combined configuration shows higher capacity than pristine graphene https://ijpr.iut.ac.ir/article_1212_0564935a0cbfe18da86488667658dd0d.pdf 2019-11-26 273 281 10.18869/acadpub.ijpr.16.4.273 supercapacitor functionalized graphene DFT calculations quantum capacitance S M Mousavi-Khoshdel mmousavi@iust.ac.ir 1 دانشکده شیمی دانشگاه علم و صنعت ایران، تهران LEAD_AUTHOR M Safi Rahmanifar 2 دانشکده علوم، دانشگاه شاهد، تهران AUTHOR E Targholi 3 دانشکده شیمی دانشگاه علم و صنعت ایران، تهران AUTHOR 1. L L Rice, “Electrostatic capacitor” (1962). 1 2. H I Becker, “Low voltage electrolytic capacitor” (1957). 2 3. S Sarangapani, B V Tilak and C Chen, J Electrochem Soc. 143 (1996) 3791. 3 4. Y Wang, Z Shi, Y Huang, Y Ma, C Wang and M Chen, et al., J Phys Chem C 113 (2009)13103. 4 5. L R Shiue, C S Cheng, J H Chang, L P Li, W T Lo, and K F Huang, “Supercapacitor with high energy density” (2004). 5 6. J L Kaschmitter, S T Mayer and R W Pekala, “Supercapacitors based on carbon foams” (1993). 6 7. L L Zhang, R Zhou and X S Zhao, J Mater Chem 20 (2010)5983. 7 8. A M Namisnyk, “A survey of electrochemical supercapacitor technology”, University of Technology, Sydney, (2003). 8 9. L L Zhang, X S Zhao, “Carbon-based materials as supercapacitor electrodes”, Royal Society of Chemistry, (2009). 9 10. K Milowska, M Birowska, and J Majewski Diam Relat Mater 23 (2012) 167. 10 11. Y Wang, H Sun, R Zhang, S Yu and J Kong. Carbon N Y 53 (2013) 245. 11 12. K Milowska, “Mechanical and Electrical Properties of Covalently Functionalized Carbon Nanotubes and Graphene Layers”, Department of Condensed Matter Physics, (2013). 12 13. P Plachinda, D Evans and R Solanki, Solid State Electron 79 (2013) 262. doi:10.1016/j. sse. (2012).08. 009. 13 14. Y Chen, X Zhang, D Zhang, P Yu and Y Ma, Carbon N Y 49 (2011) 573. 14 15. A Du Pasquier, I Plitz, S Menocal, and G Amatucci, J Power Sources 115 (2003) 171. 15 16. C D Lokhande, D P Dubal, and O-S Joo, Curr Appl Phys 11 (2011) 255. 16 17. E Frackowiak., Phys Chem Chem Phys 9 (2007) 1774. 17 18. E Paek, A J Pak, K E Kweon and G S Hwang., J Phys Chem C 117 (2013) 5610. 18 19. B E Conway, “Electrochemical supercapacitors”, New York: New york Kluwer Academic (1999). 19 20. H Y Lee, and J B Goodenough., J Solid State Chem 144 (1999) 220. 20 21. T Fang, A Konar, H Xing, D Jena., Appl Phys Lett 91 (2007) 92109. 21 22. E Paek, A J Pak, G S Hwang., J Electrochem Soc., 160 (2012) 1. 22 23. B C B Wood, T Ogitsu, M Otani, and J Biener, J Phys Chem C 118 (2013) 4. 23 24. D L John, L C Castro and D L Pulfrey., J Appl Phys 96 (2004) 5180. 24 25. S M Mousavi-Khoshdel, and E Targholi., Carbon 89 (2015) 148. 25 26. P Giannozzi, S Baroni, N Bonini, M Calandra, R Car, C Cavazzoni, et al., J Phys Condens Matter 21 (2009) 395502. 26 27. J P Perdew, K Burke and M Ernzerhof., Phys Rev Lett 77 (1996) 3865. 27
ORIGINAL_ARTICLE Measurement of deuteron beam polarization before and after acceleration Beam polarization measurement in scattering experiments with a high accuracy and the lowest possible cost is an important issue. In this regard, deuteron beam polarization was measured in the low-energy beam line easily with a relatively low cost procedure and in a very short time by Lamb Shift Polarimeter (LSP). Also, the beam polarization has been measured in high-energy beam line with BINA. In low-energy line, a polarized beam of deuterons delivered by POLIS was decelerated and focused on LSP detection system. Three resonances between 52mT and 63mT show the distribution of different spin states of polarized deuteron beam. In high-energy beam line, polarization can be measured employing BINA via the H(d,d)p reaction. The asymmetry ratio, was obtained as a function of azimuthal angle, φ, for several polar scattering angles. Knowing values of the analyzing powers, the ratio has been used to extract the polarization results. The obtained results show that polarization of deuteron beam that is accelerated up to the energy of 130 MeV is almost the same before and after acceleration https://ijpr.iut.ac.ir/article_1213_4a355a7ad5082e194ac7cc6cf4123ceb.pdf 2019-11-26 283 290 10.18869/acadpub.ijpr.16.4.283 nuclear spin polarization Lamb-shift polarimeter cross-section analyzing power elastic scattering A Ramazani Moghaddam Arani ramezamo@kashanu.ac.ir 1 1. دانشکده فیزیک، دانشگاه کاشان، کاشان LEAD_AUTHOR M Hoseini 2 1. دانشکده فیزیک، دانشگاه کاشان، کاشان AUTHOR 1. J Fujita and H Miyazawa, Prog. Theor. Phys. 17, (1957) 360. 1 2. A Ramazani Moghaddam Arani, et al., phys Rev. C 78, (2008) 014006. 2 3. H R Kremers, J P M Beijers and N Kalantar-Nayestanaki, Nucl. Instr. Meth. Phys. Res. A 516 (2004) 209 3 4. K Sekiguchi, et al., Phys. Rev. Lett. 95, (2005) 162301. 4 5. H Shimizu, K Imai, N Tamura, K Nisimura, K Hatanaka, T Saito, Y Koike, and Y Taniguchi, Nucl. Phys. A 382, (1982) 242 5 6. H Mardanpour, et al., Eur. Phys. J. A 31, (2007) 383. 6 7. M P Westig et al., Physikalisches Institut, Universit at zu K¨oln, 50937 K¨oln, Germany (2011). 7 8. G O Ohlsen and J L McKibben, “Los, Alamos Scienti_c Laboratory Report”, LA-3725 (1967). 8 9. A Ramazani-Moghaddam-Arani, PhD thesis, University of Groningen (2009). 9 10. H P Gen.Schieck; Nuclear Physics With Polarized Particles Lecture Notes in physics 842 ,Sec8, Germany (2012). 10
ORIGINAL_ARTICLE Effect of voltage shape of electrical power supply on radiation and density of a cold atmospheric argon plasma jet In this work, we investigated generating argon cold plasma jet at atmospheric pressure based on dielectric barrier discharge configuration using three electrical power supplies of sinusoidal, pulsed and saw tooth high voltage shapes at 8 KHZ. At first; we describe the electronic circuit features for generating high voltage (HV) wave forms including saw tooth, sinusoidal and pulsed forms. Then, we consider the effect of voltage shape on the electrical breakdown. Relative concentrations of chemical reactive species such as Oxygen, atomic Nitrogen and OH were measured using optical emission spectroscopy. Using a simple numerical model, we showed a HV with less rise time increases electron density, therefore a cold plasma jet can be produced with a minimal consumption electrical power https://ijpr.iut.ac.ir/article_1214_54295f9f2e7c08754dcf114ed0e2ba49.pdf 2019-11-26 291 303 10.18869/acadpub.ijpr.16.4.291 dielectric barrier discharge atmospheric pressure cold plasma atmospheric plasma jet F Sohbatzadeh 1 1. گروه فیزیک اتمی و مولکولی، دانشکده علوم پایه، دانشگاه مازندران، بابل2. گروه پژوهشی نانو و بیوتکنولوژی، دانشکده علوم پایه، دانشگاه مازندران، بابلسرسر AUTHOR M Bagheri lab.plasma@umz.ac.ir 2 1. گروه فیزیک اتمی و مولکولی، دانشکده علوم پایه، دانشگاه مازندران، بابلسر LEAD_AUTHOR S Motallebi samaneh_motallebi@yahoo.com 3 1. گروه فیزیک اتمی و مولکولی، دانشکده علوم پایه، دانشگاه مازندران، بابلسر AUTHOR 1. J R Roth, Institute of physics publishing, Bristol and Philadelphia, (2000). 1 2. F Sohbatzadeh, A Hossienzadeh Colagar, S Mirzanejad, S Motallebi, M Farhadi, and M Bagheri, et al., Design and construction of triplet atmospherc cold plasma jet for sterilization. IJPR, 13 (2014) 363. 2 3. X Lu, T Ye, Y Cao, Z Sun , Q Xiong, Z Tang, Zh Xiongm and Y Pan, “The roles of the various plasma agent s in the inactivation of bacteria”, (2008). 3 4. G Fridman, G Friedman, A Gustol, A B Shekhte, V N Vasilets, and A Fridman Plasma Process.Polym. 5 (2008) 503. 4 5. S Mirpour, H Ghomi, S Piroozmand, M Nikkhah, S H Tavassoli, & S Z Azad, “The Selective Characterization of Non thermal Atmospheric Pressure Plasma Jet on Treatment of Human Breast Cancer and Normal Cells”, (2014). 5 6. A Calvimontes, R Saha, V Dutschk, AUTEX Research J. 11 (2011) 24. 6 7. C X Wang, Y P Qiu, Surf. & Coat. Tech. 201 (2007) 6273.. 7 8. C X Wang, H L Xu, Y Liu, Y P Qiu, Surf. & Coat Tech. 202 (2008) 2775. 8 9. Ch Wang, Fibers and Polymers. 11 (2010) 223. 9 10. D Sun, G K Stylios. J Materials Proc. Tech. 173 (2006) 172. 10 11. M A Lieberman and A J Lichtenberg, “Principles of Plasma Discharges and Materials Processing”, John Wiley and Sons, Inc, New York (1994). 11 12. M Chichina, Z Hubicka, O Churpita, and M Tichy, Plasma Process Polym. 2 (2005) 501. 12 13. Z Cao, J L Walsh, and M G Kong. Appl. Phys. Lett. 94 (2009) 21501. 13 14. X Zhang, M Li, R Zhou, K Feng and S Yang. Appl. Phys. Lett. 93 (2008) 21502. 14 15. H S Park, S J Kim, H M Joh, T H Chung, S H Bac, and S H Leem, Busan, (2010) 604. 15 16. J Walsh, J J Shi and M G Kong, Applied Physics Letters. 88 (2006) 171501. 16 17. http://en. Wikipedia.org / Wiki / fly back transformer. 17 18. Y P Raizer, and J E Allen, “ Gas discharge physics (Vol. 1)”, Berlin: Springer-Verlag (1991). 18 19. F Sohbatzadeh, A Hossienzadeh Colagar, S Mirzanejad, M Farhadi, M Bagheri,et al., “Design and Construction of triplet atmospheric cold plasma jet for sterilization”, IJPR. 13 (2014) 363. 19 20. Trek www.treking.com / products / H-V Amp.asp. 20 21. W C Zhu, Q Li, X M Zhu, and Y. K Pu, Characteristics of atmospheric pressure plasma jets emerging into ambient air and helium. Journal of Physics D: Applied Physics, 42 (20), (2009) 202002. 21 22. N Mericam-Bourdet, M Laroussi, A Begum, and E Karakas, Experimental investigations of plasma bullets. Journal of Physics D: Applied Physics, 42(5), (2009) 055207. 22 23. S Norberg, “Modeling Atmospheric Pressure Plasma Jets: Plasma Dynamics, Interaction With Dielectric Surfaces, Liquid Layers and Cells”, (Doctoral dissertation, University of Michigan) (2015). 23 24. S A Norberg, E Johnsen, and M J Kushner, Formation of reactive oxygen and nitrogen species by repetitive negatively pulsed helium atmospheric pressure plasma jets propagating into humid air, “Plasma Sources Science and Technology”, 24 (3), (2015) 035026. 24 25. A H Colagar‚ H Memariani, F Sohbatzadeh, and A V Omran, “Non thermal Atmospheric Argon Plasma Jet Effects on Escherichia coli Biomacromolecules”, Applied biochemistry and biotechnology, 171 (2013) 1617. 25 26. F Sohbatzadeh, S Mirzanejhad, M Ghasemi, and M Talebzadeh, “Characterization of a non-thermal plasma torch in streamer mode and its effect on polyvinyl chloride and silicone rubber surfaces”, Journal of Electrostatics. 71(5) (2013) 875. 26 27. F Sohbatzadeh, A Hosseinzadeh, S Mirzanejhad and S Mahmodi, E coil, P aeruginosa, and B cereus, Bacteria Sterilization Using Afterglow of Non-Thermal Plasma at Atmospheric Pressure Applied Biochemistry and Biotechnology, 160 (2010) 1978. 27
ORIGINAL_ARTICLE Quantum input-output relations for lossy and anisotropic multilayer magnetodielectric meta-material In this paper, we quantize electromagnetic field in, lossy, dispersive and anisotropic magnetodielectric media by using phenomenological approach. We obtain quantum input– output relations for anisotropic multilayer metamaterials. As an application of our approach, we investigate the dissipative and anisotropic effects of an anisotropic magnetodielectric slab on the quantum properties of incident input states. For this purpose, quadrature squeezing and Mandel parameter of output states has been calculated by modeling the anisotropic magnetodielectric slab through Lorentz model for a situation in which the incident states on the right and left side of the magnetodielectric slab are two- mode coherent states and quantum vacuum state, respectively https://ijpr.iut.ac.ir/article_1215_6da72dddf96979f3387a913b27f8676c.pdf 2019-11-26 305 318 10.18869/acadpub.ijpr.16.4.305 multilayer metamaterial quantization of electromagnetic field Anisotropy quadrature squeezing and Mandel parameter M Hoseinzadeh 1 1. گروه فیزیک، دانشکده علوم، دانشگاه شهرکرد AUTHOR E Amooghorban amoghorban@gmail.com 2 1. گروه فیزیک، دانشکده علوم، دانشگاه شهرکرد 2. گروه پژوهشی فوتونیک، دانشگاه شهرکرد LEAD_AUTHOR A Mahdifar mahdifar_a@sci.sku.ac.ir 3 1. گروه فیزیک، دانشکده علوم، دانشگاه شهرکرد. 2. گروه پژوهشی فوتونیک، دانشگاه شهرکرد AUTHOR 1. J B Pendry, Phys. Rev. Lett. 85, (2000) 3966. 1 2. J B Pendry, D. Schurig, D. R. Smith, Science 312 (2006) 1780. 2 3. D Schurig, J J Mock, B J Justice, S A Cummer, J B Pendry, A F. Starr, and D R Smith, Science 314 (2006) 977. 3 4. M M Behbahani, E Amooghorban, and A. Mahdifar, Phys. Rev. A 94 (2016) 013854. 4 5. J Zhang, M Wubs, P Ginzburg, G Wurtz, and A V Zayats, J. Opt. 18 (2016) 044029. 5 6. I E Tamm, J Russ. Phys.-Chem. Soc., Phys. Sect. 57 (1925) 209. 6 7. G V Skrotskii, Sov. Phys. Dokl. 2 (1957) 226. 7 8. J Plebanski, Phys. Rev. 118 (1960) 1396. 8 9. A M Volkov, A A Izmest’ev, and G V Skrotskii, Sov. Phys. JETP 32 (1971). 9 10. F De Felice, Gen. Relativ. Gravit. 2 (1971) 347. 10 11. B Mashhoon, Phys. Rev. D 7 (1973) 2807 11 13. B Huttner and S M Barnett, Phys. Rev. A 46 (1992) 4306. 12 14. R Matloob and R Loudon, Phys. Rev A 53 (1996) 4567. 13 15. H T Dung, S Y Buhmann, L Knoll, D G Welsch, S Scheel, and J Kastel, Phys. Rev. A 68 (2003) 043816. 14 16. F Kheirandish and M Amooshahi, Phys. Rev A 74 (2006) 042102. 15 17. M Amooshahi, J. Math Phys. 50 (2009) 062301. 16 18. E Amooghorban, M Wubs, N A Mortensen, and F Kheirandish, Phys. Rev. A 84 (2011) 013806. 17 19. E Amooghorban, N A Mortensen and M Wubs, Phys. Rev. Lett. 110 (2013).153602. 18 20. T Gruner and D G Welsch, Phys. Rev. A 54 (1996) 1661. 19 21. Y Dong and X Zhang, J. Opt. 13 (2011) 03540 20 23. R. Matloob and G Pooseh, Optics. Communications. 181 (2000) 109. 21 24. D Yun-Xia and L Chun-Ying, Chin. Phys. B 24 (2015) 064206. 22 25. Ch-I Chai, Phys. Rev. A 46 (1992) 7187. 23 26. M Artoni and R Loudon, Phys. Rev. A 59 (1999) 2279. 24
ORIGINAL_ARTICLE The effect of annealing temperature on electrical and optical properties of transparent and conductive thin films fabicated of multi-walled carbon nanotube/Ag nanowires Transparent and conductive thin films of multi-walled carbon nanotube/ Ag nanowires were fabricated using spin coating technique. In order to improve the electrical conductivity and the optical properties, the layers were annealed from room temperature to 350 °C for 30 minutes. The measurements revealed that annealing caused electrical conductivity of fabricated thin layes to be improved. The optimum annealing temperature for improving these properties was deduced 285 °C. For all different film thicknesses from about 89 to 183 nm it was observed that the presence of nanowires has improved the film’s electrical conductivity in all tempretures. The best ratio of DC conductivity to optical conductivity of the films, which is accounted as films figure of merit, was measured at 285 °C for all Ag percentages. Sheet resistance and optical transmittance were measured by four-point probe technique and UV-Vis spectrophotometer, respectively https://ijpr.iut.ac.ir/article_1216_8a6c7d41d6da1ea036ff8061be27b5cc.pdf 2019-11-26 319 326 10.18869/acadpub.ijpr.16.4.319 sheet resistance thin film figure of merit four-point probe UV-Vis spectrophotometer A zilaee zilaie_a@scu.ac.ir 1 گروه فیزیک، دانشگاه شهید چمران اهواز، اهواز LEAD_AUTHOR M Farbod farbod_m@scu.ac.ir 2 گروه فیزیک، دانشگاه شهید چمران اهواز، اهواز AUTHOR 1. I Hancox, et al., The Journal of Physical Chemistry C 117 (2012) 49. 1 2. J H Chen and Jun-Yu Chen Jpn. J. Appl. Phys 52 (2013) 6. 2 3. L Shie-Heng, T Chih-Chun, M Chen-Chi, M Ma, W Ikai, Journal of Colloid and Interface Science 364 (2011) 1. 3 4. T Takehiro, N Masaya, J Jinting and S Katsuaki, Nanoscale Research Lett. 7 (2012) 28. 4 5. J Mao-xiang, H Chong, L Min, and S Xiang-qian, Nanoscale Res Lett. 9 (2014) 588. 5 6. J Ham, J LLee. Adv Energy Mater. 4 (2014) 11. 6 7. S Iijima, T Ichihashi, Nature 363 (1993) 603. 7 8. Q B Zheng, Z G Li, J H Yang, J K Kim. Progress in Mater Sci. 64 (2014) 200. 8 9. S T Hsiao, H W Tien, W H Liao, Y S Wang, S M Li, C C Ma, Y H Yu, and W P Chuang. J Mater Chem C. 2 (2014) 7291. 9 10. Y S Kim, M H Chang, E J Lee, D W Ihm, and J Y Kim, Synthetic Metals. 195 (2014) 69. 10 11. A D Pasquire and S Fang, Science 309 (2005) 1215. 11 12. D Sukanta, T M Higgins, P E Lyon, E M Doherty, P N Nirmalraj, W J Blau, J J Boland, and J N Coleman, ACS Nano 3 (2009) 1767. 12 13. J Y Lee, S T Connor, Y Cui, and P Peumans, Nano Lett. 8 (2008) 689. 13 14. S Bae, H Kin, Y lee, X Xu, J S Park, Y Zheng, J Balakrumar, T Lei, and H R Kim, Nanotechnol. 5 (2010) 574. 14 15. A Thess, R Lee, P Nikolaev, H Dai, P Petit, J Robert,C Xu, Y H Lee, S G Kim, and A G Rinzler, Science 273 (1996) 483. 15 16. M Farbod, S Khajehpour Tadavani, and A Kiasat, Colloids and Surfaces A: Physicochem. Eng Aspects 384 (2011) 685 16 17. M Dressel, and G Gruner, “Electrodynamics of Solids: Optical Properties of Electrons in Matter”, Cambridge University Press: Cambridge (2002). 17 18. G Irvin, L Hu, and D S Hecht, Adv Mater 23 (2011) 513. 18
ORIGINAL_ARTICLE The effect of four-spin exchanges on the honeycomb lattice diagram phase of S=3/2 J1-J2 Antiferromagnetic Heisenberg model In this study, the effect of four-spin exchanges between the nearest and next nearest neighbor spins of honeycomb lattice on the phase diagram of S=3/2 antiferomagnetic Heisenberg model is considered with two-spin exchanges between the nearest and next nearest neighbor spins. Firstly, the method is investigated with classical phase diagram. In classical phase diagram, in addition to Neel order, classical degeneracy is also seen. The existance of this phase in diagram phase is important because of the probability of the existence of quantum spin liquid in this region for such amount of interaction. To investigate the effect of quantum fluctuation on the stability of the obtained classical phase diagram, linear spin wave theory has been used. Obtained results show that in classical degeneracy regime, the quantum fluctuations cause the order by disorder in the spin system and the ground state is ordered https://ijpr.iut.ac.ir/article_1217_2d99c31e16ab5fb071f79a161ac4e44f.pdf 2019-11-26 327 333 10.18869/acadpub.ijpr.16.4.327 Heisenberg model Neel order classical degeneracy quantum spin liquid F Keshavarz 1 گروه فیزیک، دانشکده علوم پایه، دانشگاه شهرکرد، شهرکرد AUTHOR H Mosadeq h-mosadeq@ph.iut.ac.ir 2 گروه فیزیک، دانشکده علوم پایه، دانشگاه شهرکرد، شهرکرد LEAD_AUTHOR 1. A Y Kitaev, Ann. Phys., 303, (2003) 2. 1 2. L Balents, Nature, 404, (2010) 199. 2 3. Z Y Meng, et.al., Nature, 88, (2010) 487. 3 4. P Fazekas, “Magnetism and electron correlations in strongly correlated systems,” Word scientific (2010). 4 5. B K Clark, D A Abanin and S L Sondhi, Phys. Rev. Lett., 107, (2011) 087204. 5 6. A Mattsson., P Frojdh, and T Einarsson, Eur. Phys. J. B, 49, (1994) 3997. 6 7. H Mosadeq, F Shahbazi and S A Jafari, J. Phys. Cond. Mat., 23, (2011) 226006. 7 8. A Mulder, R Ganesh, L Capriotti, and A Paramekanti, Phys. Rev. B, 81, (2010) 214419. 8 9. H Y Yang., New J. Phys., 14, (2012) 115027. 9 10. T Holstein and H Primakoff, Phys. Rev., 58, (1940) 1098. 10
ORIGINAL_ARTICLE Effect of fission fragment on thermal conductivity via electrons with an energy about 0.5 MeV in fuel rod gap The heat transfer process from pellet to coolant is one of the important issues in nuclear reactor. In this regard, the fuel to clad gap and its physical and chemical properties are effective factors on heat transfer in nuclear fuel rod discussion. So, the energy distribution function of electrons with an energy about 0.5 MeV in fuel rod gap in Busherhr’s VVER-1000 nuclear reactor was investigated in this paper. Also, the effect of fission fragments such as Krypton, Bromine, Xenon, Rubidium and Cesium on the electron energy distribution function as well as the heat conduction via electrons in the fuel rod gap have been studied. For this purpose, the Fokker- Planck equation governing the stochastic behavior of electrons in absorbing gap element has been applied in order to obtain the energy distribution function of electrons. This equation was solved via Runge-Kutta numerical method. On the other hand, the electron energy distribution function was determined by using Monte Carlo GEANT4 code. It was concluded that these fission fragments have virtually insignificant effect on energy distribution of electrons and therefore, on thermal conductivity via electrons in the fuel to clad gap. It is worth noting that this result is consistent with the results of other experiments. Also, it is shown that electron relaxation in gap leads to decrease in thermal conductivity via electrons https://ijpr.iut.ac.ir/article_1218_626efa3c462ed79cc3bee7c367625c38.pdf 2019-11-26 335 343 10.18869/acadpub.ijpr.16.4.335 Fokker-Planck equation thermal conductivity Electron energy distribution function fission fragment F Golian golyan@phd.pnu.ac.ir 1 1. تحصیلات تکمیلی دانشگاه پیام نور تهران، تهران LEAD_AUTHOR A Pazirandeh 2 2. گروه مهندسی هسته‌ای، واحد علوم وتحقیقات تهران، دانشگاه آزاداسلامی تهران، تهران AUTHOR S Mohammadi mohammadi@pnu.ac.ir 3 1. تحصیلات تکمیلی دانشگاه پیام نور تهران، تهران AUTHOR 1. W G Burns, E H P Cordfunke, et al., “Chemistry of the fuel-clad gap of a PWR rod”, International working group on water reactor fuel performance and technology, IAEA (1986) 41. 1 2. A Snytnikov, Procedia Computer Science 1 (2010) 607. 2 3. P Garcia, C Struzik, and N Veyrier, “Temperature Calculations and the Effect of Modelling the Fuel Mechanical Behaviour”, Seminar Proceedings Cadarache, 3-6 March France (1998). 3 4. K Lassmann and F Hohlefeld, Nuclear Engineering and Design, 103 (1987) 215. 4 5. I Cohen, B Lustman, and J D Eichenberg, “Measurement of Thermal Conductivity of Metal Clad Uranium Dioxide Rods During Irradiation”, WAPD-228, Bettis Atomic Power Laboratory (1960). 5 6. J A Turnbull, “A review of the thermal behavior of nuclear fuel”, Seminar Proceedings Cadarache, 3-6 March France (1998). 6 7. H Von Ubisch, S Hall, R Srivastav, “Thermal Conductivities of Mixture of Fission Product Gases with Helium and Argon”, Paper F/ 143, 2nd Geneva Conf. Peaceful Uses of Atomic Energy, IAEA, Vienna (1957). 7 8. N Tsoulfanidis,“Measurement and detection of radiation”, Hemispher Pub. Corp. (1983). 8 9. K Maeda, K Tanaka, T Asaga and H Furuya, Journal of Nuclear Materials, (2005) 274. 9 10. Warren F Ahtye, “Calculation of Total Conductivity of Ionized Gases”, Vehicle Environment Division, Ames Research Center, NASA, Moffett Field, California (1968). 10 11. Chai-sung Lee and Charles F Bonilla, “Thermal Conductivity of the Alkali Metal Vapors and Argon”, Liquid Metals Research Laburatory, Department of Chemical Engineering Columbia University, New York, N.Y.10027(1968). 11 12. L Spitzer, R Jr., Phys. Rev., 89 (1953) 977. 12 13. L Spitzer, R Jr., “Physics of Fully Ionized Gases”, Wiley Interscience, New York (1962). 13 14. H Risken, “The Fokker-Planck Equation”, ed. Herman Haken, Springer- Verlag, New York (1988)1. 14 A Parvazian and A Okhovat, Iranian Journal of Physics Research, 5, 4, (2005) 197. 15 16. F Golian, A Pazirandeh and S Mohammadi, Plasma. Sci. and Thecnol., 17 (2015) 441. 16 17. A Vertes, et al., “Hand book of nuclear chemistry”, ed. London (2011) 374. 17 18. K S Krane, “Introductory Nuclear Physics”, New York, United states (1988) 195. 18 19. D Diver, “A plasma formulary for physics”, Technology and Astrophysics, Berlin (2011) 79. 19 20. L Spitzer,“Physics of fully ionized gases”, New York (1962) 127. 20 21. U.S.NRC Regulatory Guide No.1.183,428. 21 22. E B Podgorsak, Radiation Physics for Medical Physicists, (2010) 233. 22 23. H Heil and B Scott, Phys. Rev. 145 (1966) 279. 23 24. W Demtroder, “Atoms, Molecules and Photons”, (2010) 39. 24 25. H A Hassan and J Deese, U.S. National Aeronautics and Space Administration(1974). 25 26. J Deese and H A Hassan, U.S. National Aeronauticsand Space Administration (1976). 26
ORIGINAL_ARTICLE Semi-analytical calculation of fuel parameters for shock ignition fusion In this paper, semi-analytical relations of total energy, fuel gain and hot-spot radius in a non-isobaric model have been derived and compared with Schmitt (2010) numerical calculations for shock ignition scenario. in nuclear fusion. Results indicate that the approximations used by Rosen (1983) and Schmitt (2010) for the calculation of burn up fraction have not enough accuracy compared with numerical simulation. Meanwhile, it is shown that the obtained formulas of non-isobaric model cannot determine the model parameters of total energy, fuel gain and hot-spot radius uniquely. Therefore, employing more appropriate approximations, an improved semianalytical relations for non-isobaric model has been presented, which  are in a better agreement with numerical calculations of shock ignition by Schmitt (2010). https://ijpr.iut.ac.ir/article_1219_b49c20ec51f8bd9b9903c80870517385.pdf 2019-11-26 345 350 10.18869/acadpub.ijpr.16.4.345 non-isobaric model shock ignition fast-shock ignition S A Ghasemi abo.ghasemi@yahoo.com 1 1. پژوهشکده پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، تهران LEAD_AUTHOR A H Farahbod ahfarahbod@yahoo.com 2 1. پژوهشکده پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، تهران AUTHOR S Sobhanian sobhanian@tabrizu.ac.ir 3 2. دانشکده فیزیک، دانشگاه تبریز، تبریز AUTHOR 1. M D Rosen, J D Lindl, and A R Thiessen, LLNL Laser Program Annual Report, UCRL-50021-83, 3-5 (1983). 1 2. J Meyer-Ter-Vehn, Nucl. Fusion 22, 561 (1982). 2 3. R Kidder, Nucl. Fusion 16, 405 (1976). 3 4. C Zhou and R Betti, Bull. Am. Phys. Soc. 50, 140 (2005). 4 5. R Betti, C D Zhou, K S Anderson, L J Perkins, W Theobald, and A A Solodov, Phys. Rev. Lett. 98, (2007) 155001. 5 6. B Canaud and M Temporal, New J. Phys. 12, (2010) 043037. 6 7. A J Schmitt, J W Bates, S P Obenschain, S T Zalesak, and D E Fyfe, Phys. Plasmas 17, (2010) 042701. 7 8. M Lafon, X Ribeyre, and G Schurtz, Phys. Plasmas 17, (2010) 052704 8 9. A H Farahbod and S A Ghasemi, Iranian Journal of Physics Research, 12, 4 (2013) 347. 9 . A H Farahbod and S A Ghasemi, Iranian Journal of Physics Research, 13, 4 (2014) 397. 10 11. A H Farahbod, S A Ghasemi, M J Jafari, S Rezaei and S Sobhanian, Eur. Phys. J. D 68 (2014) 314. 11 12. S A Ghasemi, A H Farahbod and S Sobhanian, AIP Adv. 4, (2014) 077130. 12 13. S A Ghasemi and A H Farahbod, Bulltein of the American Physical society, APS March Meeting March 3-7 Denver, Colorado 1, 59 )2014(. 13 14. S A Ghasemi and A H Farahbod, Bulletin of the American Physical Society, APS March Meeting (2014) MAR14-2013-000023. 14 15. S Atzeni, Phys. Plasmas 6, (1999) 3316 15
ORIGINAL_ARTICLE Investigating the growth rate in a free-electron laser with a laser wiggler and plasma background In this paper, a free-electron laser (FEL) growth rate with a laser wiggler in which plasma background is used to generate short wavelengths in x-ray regimes, has been investigated theoretically. A linearly polarized laser pulse, due to having short wiggler periods (inrange) is able to produce coherent radiations in x-ray regions and can be applied as a planar wiggler in a FEL. Phase velocity of the laser pulse in presence of plasma background decreases. In this case, the electron beam can be in synchronism with the laser pulse and enters the interaction region with less energy which leads to producing x-ray pulses by low enegy beams, without requiring high beam energies. This configuration allows obtaining higher frequencies than conventional FELs (with magnetostatic wigglers) for a device. Employing a perturbation  analysis for the momentum transfer, continuity, and Maxwell equations, the dispersion relation for system has been derived  and the effect of plasma density variation on growth rate of a free electron laser with a laser wiggler and plasma background has been discussed. In addition, cross section of electron trajectories for different values of axial magnetic field has been simulated by using fourth order Runge-Kutta method. Results shows that by increasing plasma density, growth rate for group  and decreases, while for group  increases https://ijpr.iut.ac.ir/article_1220_fdbfe36b76e816c7be4bdd537e145af3.pdf 2019-11-26 351 358 10.18869/acadpub.ijpr.16.4.351 free-electron laser growth rate dispersion relation plasma background N Esmaeildoost niloofaresmaeeldoost@gmail.com 1 1. گروه فیزیک، دانشکده علوم، دانشگاه گیلان، رشت LEAD_AUTHOR S Jafari 2 1. گروه فیزیک، دانشکده علوم، دانشگاه گیلان، رشت AUTHOR 1. D F Gordon, P Sprangle, B Hafizi, and C W Robersond, Nucl. Instrum. Methods Phys. Res. A 475 (2001) 190. 1 2. H P Freund and T M Antonsen, “Principle of Free Electron Lasers”, Chapman and Hall, London (1992). 2 3. I A Andriyash, R Lehe, A Lifschitz, C Thaury, J-M Rax, K Krushelnick, and V Malka, Nat. Commun. 5 (2014) 4736. 3 4. S Kiselev, A Pukhov, and I Kostyukov, Phys. Rev. Lett. 93 (2004) 1. 4 5. R A Ganeev, Laser Phys. Lett. 9 (2012) 175. 5 6. F Jafarinia, S Jafari, and H Mehdian, Phys. Plasmas 20 (2013) 3106. 6 7. D G Swanson, “Plasma Waves” Bristol, Institute of Physics Publishing (2003). 7 8. C Joshi, T Katsouleas, J M Dawson, Y T Yan and J M Slater, IEEE J. Quantum Electron. 23 (1987) 1571. 8 9. S Jafari, Laser Phys. Lett. 12 (2015) 5002. 9 10. E Z Gusakov and A V Surkov, Plasma Phys. Control. Fusion 49 (2007) 631. 10 11. R Hedayati, S Jafari, and S Batebi, Plasma Phys. Control. Fusion 57 (2015) 5007. 11 12. H Mehdian, A Hasanbeigi, and S Jafari, Phys. Plasmas 15 (2008) 3103. 12
ORIGINAL_ARTICLE Synthesis and characterization of iron oxide nanoparticles using electrical discharge in solution Iron oxide nanoparticles were synthesized for the first time using electrical arc discharge between a pair of highly pure titanium electrode without using metallic iron electrodes in iron chloride salt solution. The produced nanoparticles were characterized using various analyses such as X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). XRD and XPS analyses showed formation of α-Fe2O3 phase. Microscopic studies on the obtained samples revealed formation of rice like iron oxide nanostructures at 10 minutes of electrical discharge which changed to semi-spherical shape after calcination at 600 oC for 2 hours. The results of Dynamic Light Scattering (DLS) analysis demonstrated formation of 24 nm particles with almost narrow distribution of 11nm, which are increased in size and distribution width by heat treatment. The obtained results verify the potential ability of this technique to achieve monodispersed iron oxide nanoparticles with narrow distribution in a very short time https://ijpr.iut.ac.ir/article_1221_0b6f9930202bcdf57175dc28a5a1566c.pdf 2019-11-26 359 364 10.18869/acadpub.ijpr.16.4.359 nanoparticles iron oxide electrical discharge solution B Mohammadi 1 1. گروه فیزیک حالت جامد، دانشکده علوم پایه، دانشگاه مازندران ، بابلسر AUTHOR A A Ashkarran ashkarran@umz.ac.ir 2 1. گروه فیزیک حالت جامد، دانشکده علوم پایه، دانشگاه مازندران ، بابلسر LEAD_AUTHOR M Mahmoudi 3 2. مرکز تحقیقات نانوفناوری، دانشکده داروسازی، دانشگاه علوم پزشکی تهران، تهران AUTHOR 1. N Tiwari, N Pandey, D Roy, K Mukhopadhyay and N Eswara Prasad, Nanotechnology 27 (2016) 205604. 1 2. T Ahn, J H Kim, H M Yang, J W Lee and J D Kim, Journal of Physical Chemistry C 116 (2012) 6069. 2 3. A A Ashkarran, Journal of Cluster Science 22 (2011) 233. 3 4. S Kim, Y Song, T Takahashi, T Oh and M J Heller, Small 11 (2015) 5041. 4 5. K H Tseng, C J Chou, T C Liu, Y H Haung and M Y Chung, Materials Transactions 57 (2016) 294. 5 6. J Li, Z Huang, F Wang, X Yan and Y Wei, Applied Physics Letters 107 (2015) 051603. 6 7. A V Uschakov, I V Karpov, A A Lepeshev and S M Zharkov, Vacuum 128 (2016) 123. 7 8. A A Ashkarran, Applied Physics A: Materials Science and Processing 107 (2012) 401. 8 9. P K B Nagesh, N R Johnson, et al., Colloids and Surfaces B: Biointerfaces 144 (2016) 8. 9 10. H Liu, J Zhang, X Chen, X S Du, J L Zhang, G Liu and W G Zhang, Nanoscale 8 (2016) 7808. 10 11. J Hwang, E Lee, J Kim, Y Seo, K H Lee, J W Hong, A A Gilad, H Park and J Choi, Colloids and Surfaces B: Biointerfaces 142 (2016) 290. 11
ORIGINAL_ARTICLE The effect of pH on the structural and magnetic properties of PbFe12O19 nanoparticles prepared by sol-gel method In this research, lead hexaferrites nanoparticles (PbFe12O19) were prepared by sol-gel method. The effect of pH on the structural and magnetic properties of PbFe12O19 was studied. The attempt in this paper was to depict the effect of change in sol-gel pH on the size and morphology of the samples as well as their structural and magnetic properties. Therefore, samples with pH = 1.8, 3, 5, 6, 7, and 8 were prepared. Then, the dry gels of the samples were heated in the optimum annealing temperature and time of 800 oC and 3 h, respectively. In order to study the structural, morphological and magnetic properties of the samples prepared in various pHs X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Vibration Sample Magnetometer (VSM), and LCR meter were applied, respectively https://ijpr.iut.ac.ir/article_1222_16740fc8b8acf77421c980fee5fe8ec1.pdf 2019-11-26 365 374 10.18869/acadpub.ijpr.16.4.365 pH nanoparticles lead hexaferitte XRD VSM SEM S E Mousavi Ghahfarokhi mousavi355@scu.ac.ir 1 گروه فیزیک، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز LEAD_AUTHOR Z Araghi Rostami 2 گروه فیزیک، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز AUTHOR I Kazeminezhad i.kazeminezhad@scu.ac.ir 3 گروه فیزیک، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز AUTHOR 1. R C Pullar, Journal Progress in Materials Science 57 (2012) 1191. 1 2. H Kojima, Journal of ferromagnetic materials 3 (1982) 305. 2 3. A Davoodi and B Hashemi, Journal of Alloys and Compounds 509 (2011) 5893. 3 4. S Chaudhury, S K Rakshit, S C Parida, Z Singh, K D Singh Mudher and V Venugopal, Journal of Alloys and Compounds 455 (2008) 25. 4 5. N Yang, H Yang, J Jia and X Pang, Journal of Alloys and Compounds 438 (2007) 263. 5 6. S Diaz-Castanon, F Lecabue, B E Watts, R Yapp, A Asenjo and M Vazquez, Journal of Materials Letters 47 (2001) 356. 6 7. S A Palomares-Sanchez, S Diaz-Castanon, S Ponce-Castaneda, M Mirabal-Garcia, F Leccabue and B E Watts, Journal of Materials Letters 59 (2005) 591-594. 7 8. T Kikuchi, T Nakamura, T Yamasaki, M Nakanishi, T Fujii, J Takada and Y Ikeda, Journal of Magnetism and Magnetic Materials 322 (2010) 2381 8 10. M M Hessien, M M Rashad, K El-Barawy, Journal of Magnetism and Magnetic Materials 320 (2008) 336. 9 11. M Jean, V Nachbaur, J Bran, J L Breton, Journal of Alloys and Compounds 496 (2010) 306. 10 12. P E Kazin, L A Trusov, D D Zaitsev, and Y D Tret’yakov, Inorganic Chemistry 54 (2009) 2081. 11 13. I Perelshtein, N Perkas, Sh Magdassi, T Zioni, M Royz, Z Maor, and A Gedanken, Nanopart Res 10 (2008) 191. 12 14. M Zargar Shoushtari, F Ranjbar, and S E Mousavi Ghahfarokhi, Iranian Journal of Physics Research 14, 4, (2015) 305. 13 16. M Anis-ur-Rehman, and G Asghar, Alloys and Compounds 509 (2011) 435. 14 17. M Zargar Shoushtari, and S E Mousavi Ghahfarokhi, J. Supercond Nov Magn in perss DOI 10.1007/10948-014-2887-3. (20014) . 15 18. M J Iqbal, M N Ashiq, and I H Gul, Magnetism and Magnetic Materials 322 (2010) 1720. 16 19. T Kikuchi, T Nakamura, T Yamasaki, M Nakanishi, T Fujii, J Takada and Y Ikeda, Journal of Magnetism and Magnetic Materials 322 (2010) 2381 17
ORIGINAL_ARTICLE Determination of the dead layer and full-energy peak efficiency of an HPGe detector using the MCNP code and experimental results One important factor in using an High Purity Germanium (HPGe) detector is its efficiency that highly depends on the geometry and absorption factors, so that when the configuration of source-detector geometry is changed, the detector efficiency must be re-measured. The best way of determining the efficiency of a detector is measuring the efficiency of standard sources. But considering the fact that standard sources are hardly available and it is time consuming to find them, determinig the efficiency by simulation which gives enough efficiency in less time, is important. In this study, the dead layer thickness and the full-energy peak efficiency of an HPGe detector was obtained by Monte Carlo simulation, using MCNPX code. For this, we first measured gamma–ray spectra for different sources placed at various distances from the detector and stored the measured spectra obtained. Then the obtained spectra were simulated under similar conditions in vitro.At first, the whole volume of germanium was regarded as active, and the obtaind spectra from calculation were compared with the corresponding experimental spectra. Comparison of the calculated spectra with the measured spectra showed considerable differences. By making small variations in the dead layer thickness of the detector (about a few hundredths of a millimeter) in the simulation program, we tried to remove these differences and in this way a dead layer of 0.57 mm was obtained for the detector. By incorporating this value for the dead layer in the simulating program, the full-energy peak efficiency of the detector was then obtained both by experiment and by simulation, for various sources at various distances from the detector, and both methods showed good agreements. Then, using MCNP code and considering the exact measurement system, one can conclude that the efficiency of an HPGe detector for various source-detector geometries can be calculated with rather good accuracy by simulation method without any need for performing any experiment https://ijpr.iut.ac.ir/article_1223_c99801a53081db8fec3b38371e451380.pdf 2019-11-26 375 381 10.18869/acadpub.ijpr.16.4.375 HPGe detector dead layer MCNP code full-energy peak efficiency M Moeinifar m.moeinifar@ph.iut.ac.ir 1 گروه فیزیک، دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان LEAD_AUTHOR A Shirani 2 گروه فیزیک، دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان AUTHOR KH Rahmani 3 گروه فیزیک، دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان AUTHOR 1. G F Knoll, “Radiation Detection and Measurement”, Third Edition, John Wiley & Sons, Inc., (2000). 1 2. N Tsoulfanidis, “Measurement and Detection of Radiation”, Second Edition, Taylor & Francis,(1995). 2 3. P Sangsingkeow, “Recent developments in HPGe material and detectors for gamma-ray spectroscopy”, EG&G ORTEC, Oak Ridge tn.37830 U.S.A, (2000). 3 4. P Dryak and P Kovar, Applied Radiation and Isotopes, 64 (2006) 1346. 4 5. J Boson, G Agren, and L Johansson, Nuclear Instruments and Methods in Physics Research Section A: 587,(2008) 304. 5 6. J L Gutierrez-Villanueva, A Martin-Martin, and V Peña, MP Iniguez, B de Celis, Environmental Radioactivity, 99, (2008) 1520. 6 7. C M Salgado, H B Conti, C Paulo, and C Becker; Applied Radiation and Isotopes, 64, (2006) 700. 7 8. P Nogueira, L Silva , P Teles, J Bento, and P Vaz , Applied Radiation and Isotopes, 68,(2010) 184. 8 9. R Berndt and P Mortreau, Nuclear Instruments and Methods in Physics Research Section A: 694,(2012) 341. 9 10. M Yasser, A Hctor, M Carlos, L Jose , and G Aniel, Applied Radiation and Isotopes ,97,(2015) 59. 10 11. http://www.slac.stanford.edu/econf/c0805263/posters/johnson_r.pdf. 11 12. D Budjas, M Heisel, W Maneschg, and H Simgen, Applied Radiation and Isotopes, 67,(2009) 706. 12 13. E Chham, G F Pinero, T El Bardouni, M Angeles, M Azahra, K Benaalilou, M Krikiz, H Elyaakoubi, J El Bakkali, and M Kaddour , Applied Radiation and Isotopes, 95,(2015) 30. 13 14. N QuangHuy, D Quang and V Binh, Xuan An Nuclear Instruments and Methods in Physics Research Section A: 573 (2007) 384. 14 15. A Elanique, O Marzocchi, and D Leone, Applied Radiation and Isotopes, 70, (2012) 538. 15 16. N QuangHuy, Nuclear Instruments and Methods in Physics Research Section A, 621, (2010) 390. 16 17. B Denise and Pelowitz, editor, MCNPX USERۥ S MANUAL, version 2.6.0, (April 2008). 17 18. http://www.aptec-nrc.com. 18 19. J Wiley & Sons , MATLAB, “An Introduction with Applications”, 2nd Edition, Gilat, Amos (2004). 19 20. D Karamanis, et al., Nuclear Instruments and Methods in Physics Research Section A: 487.3 (2002): 477. 20 21. I O B Ewa, D Bodizs, S. Czifrus and Z. Molnar, Applied Radiation and Isotopes 55.1 (2001): 103. 21 22. V L Bui, VNU Journal of Science, Mathematics - Physics 25 (2009): 231. 22
ORIGINAL_ARTICLE Phase properties of a double-periodic quasi-crystal composed of single-negative materials In this paper, the phase properties of waves reflected from one-dimensional double-periodic quasi-crystals consisting of single-negative materials are investigated using transfer matrix method. It is observed that, by increasing the double-periodic generation number, a large omnidirectional band gap is created in the single-nagative frequency range. We limit our studies to the frequency range of this wide band phase compensator gap.The results show that  the value of phase difference between TE-polarized and TM-polarized waves reflected from this band gap, is independent from generation number in a wide band frequency range. Also, the reflection phase difference increases by increasing the incident angle, and in the central parts of the gap remains almost constant. Fourthermore, at two points near the edges of the gap, the value of the phase difference keeps almost zero in spite of the change of incident angle. Based on these properties, this structure can be used as a wide band phase compensator, an omnidirectional synchronous reflector, and a polarizer https://ijpr.iut.ac.ir/article_1224_90ba0d4d562938ce3999feb0b0a5487e.pdf 2019-11-26 383 388 10.18869/acadpub.ijpr.16.4.383 : phase double-periodic quasi-crystal single-negative phase compensator omni-directionally synchronous reflector polarizer آرزو Rashidi arezou_rashidi@yahoo.com 1 1. دانشکده فیزیک، دانشگاه تبریز، تبریز LEAD_AUTHOR صمد Roshan Entezar s-roshan@tabrizu.ac.ir 2 1. دانشکده فیزیک، دانشگاه تبریز، تبریز AUTHOR 1. E Yablonovitch, Phys. Rev. Lett. 58, (1987) 2059. 1 2. J Li, L Zhou, C T Chen, and P Sheng, Phys. Rev. Lett. 90, (2003) 083901. 2 3. V Shadrivov, A A Sukhorukor, and Y S Kivshar, Appl. Phy. Lett. 82, (2003) 3820. 3 4. D R Smith and N Kroll, Phys. Rev. Lett. 85, (2000) 2933. 4 5. D R Smith, W J Padilla, D C Vier, S C Nemat-Nasser, and S Schultz, Phys. Rev. Lett. 84, (2000) 4184. 5 6. V G Veselago, Sov. Phys. Usp. 10, (1968) 509. 6 7. H Jiang, H Chen, H Li, and Y Zhang, Appl. Phys. Lett. 83, (2003) 5386. 7 8. D Fredkin and A Ron, Appl. Phys. Lett. 81, (2002) 1753. 8 9. Alù and N Engheta, IEEE Trans. Antennas. Propag. 51, (2003) 2558. 9 10. H Jiang, H Chen, H Li, Y Zhang, J Zi, and S Zhu, Phys. Rev. E 69, (2004) 066607. 10 11. L -G Wang, H Chen, and S Zhu, Phys. Rev. B 70, (2004) 245102. 11 12. C Jin, B Cheng, B Man, and Z Li, D Zhang, Phys. Rev. B 61 (2000) 10762. 12 13. M Kohmoto, B Sutherland, K Iguchi, Phys. Rev. Lett. 58, (1987) 2436. 13 14. D Shechtman, I Blech, D Gratias, and J W Cahn, Phys. Rev. Lett. 53 (1984) 1951. 14 15. D Levine, and P J Steinhardt, Phys. Rev. Lett. 53 (1984) 2477. 15 16. P Sheng, “Scattering and localization of classical waves in random media”,: World Scientific, 8 (1990). 16 17. H He, and W Y Zhang, Phys. Lett. A 351 (2006) 198. 17 18. J Li, D Zhao, and Z Liu, Phys. Lett. A 332 (2004) 461. 18 19. W J Hsuesh, C T Chen, C H Chen, phys. Rev. A 78 (2008) 013836. 19 20. H Y Zhang, Y P Zhang, T Y Shang, Y Zheng, G J Ren, P Wang, and J Q Yao, Eur. Phys. J. B 52 (2006) 37. 20 21. E Liviotti, J. Phys. Condens. Matter 8 (1996) 5007. 21 22. R Riklund, M Severin, and L Youyan, Int. J. Mod. Phys. B 1 (1987) 121. 22 23. V V Grigoriev, and F Biancalana, Photon. Nanostructure. Fundam. Appl. 8 (2010) 285. 23 24. S Roshan Entezar, and H. Rahimi, Opt. Commun. 284 (2011) 5833. 24 25. H Rahimi, and S Roshan Entezar, Physica B 406 (2011) 3322. 25 26. K S Wu, J W. Dong, and H Z Wang, Appl. Phys. B 91 (2008) 30. 26 27. K S Wu, D H Chen, X N Luo, and H Z Wang Opt. Commun. 283, (2010) 4911. 27 28. Y T Fang and Z C Liang, Eur. Phys. J. D 61 (2011) 725. 28 29. M Born, and E Wolf, “Principles of optics”, Cambridge University Press. Chap. 1, (1999) 54. 29 30. M Centini, C Sibilia, M Scalora, G D’Aguanno, M Bertolotti, M J Bloemer, C M Bowden, and I Nefedov, Phys. Rev. E 60 (1999) 4891 30
ORIGINAL_ARTICLE Singlet particles as cold dark matter in θ-exact non-commutative space-time First, singlet dark matter annihilation into pair charged fermions and pair  bosons was studied to the first order of non-commutativity parameter in perturbative model. Our results are different from the results reported in some previous studies. Then the problem is formulated in -exact non-commutative space-time and non-perturbative model, then the exact results are presented https://ijpr.iut.ac.ir/article_1225_d646f7e8700531c702fb7f57a8d3fe6c.pdf 2019-11-26 389 392 10.18869/acadpub.ijpr.16.4.389 Dark matter singlet fermion singlet scalar non-commutative space-time S A A Alavi s.alavi@hsu.ac.ir 1 بخش فیزیک دانشگاه حکیم سبزواری، سبزوار LEAD_AUTHOR T Salehi 2 بخش فیزیک دانشگاه حکیم سبزواری، سبزوار AUTHOR 1. J Beringer et al., (Particle Data Group), Phys. Rev. D 86 (2012) 010001 1 2. G Bertone, D Hooper and J Silk, Phys. Rept. 405 (2005) 279. 2 3. P Gondolo and G Gelmini, Nucl. Phys. B 360 (1991) 145. 3 4. M M Ettefaghi, phys. Rev. D 79, (2009) 065022. 4 5. P Schupp, J Trampetic, J Wess and G Raffelt, Eur. Phys. J. C 36 (2004) 405. 5 6. R Horvat, D Kekez, P Schupp, J Trampetic and J You, Phys. Rev. D 84 (2011) 045004. 6
ORIGINAL_ARTICLE Nonlinear optical properties measurement of polypyrrole -carbon nanotubes prepared by an electrochemical polymerization method In this work, the optical properties dependence of Multi-Walled Carbon Nanotubes (MWNT) on concentration was discussed. MWNT samples were prepared in polypyrrole by an electrochemical polymerization of monomers, in the presence of different concentrations of MWNTs, using Sodium Dodecyl-Benzen-Sulfonate (SDBS) as surfactant at room temperature. The nonlinear refractive and nonlinear absorbtion indices were measured using a low power CW laser beam operated at 532 nm using z-scan method. The results show that nonlinear refractive and nonlinear absorbtion indices tend to be increased with increasing the concentration of carbon nanotubes. Optical properties of  carbone nanotubes indicate that they are good candidates for nonlinear optical devices https://ijpr.iut.ac.ir/article_1226_8867a323f0f530691dfdff860da089ac.pdf 2019-11-26 393 398 10.18869/acadpub.ijpr.16.4.393 carbon nanotubes nonlinear refractive index nonlinear absorption index z-scan method اسماعیل Shahriari shahriari@sci.sku.ac.ir 1 1. گروه فیزیک، دانشکده علوم پایه، دانشگاه شهرکرد 2. مرکز پژوهشی نانوفناوری، دانشگاه شهرکرد LEAD_AUTHOR محسن Ghasemi Varnamkhasti 2 1. گروه فیزیک، دانشکده علوم پایه، دانشگاه شهرکرد 2. مرکز پژوهشی نانوفناوری، دانشگاه شهرکرد AUTHOR 1. A G MacDiarmid, Chem. Int. Ed., 40 (2001) 2581. 1 2. T A Skotheim, Handbook of Conducting Polymers; Marcel Dekker: New York, NY, USA, (1986). 2 3. N Alizadeh, H Khodaei-Tazekendi, Sens. Actuator B. Chem., 75 (2001) 5. 3 4. C W Lin, B J Hwang C R Lee, Mater. Chem. Phys., 55 (1998) 139. 4 5. S Pruneanu, R Resel, G Leising, M Brie, Mater. Chem. Phys. 48 (1997) 240. 5 6. B Tieke, W Gabriel, Polymer, 31(1990) 20 6 7. A Zakery, B Hosseiny, and S E Pourmand, Iranian Journal of Physics Research 5, 1, (2005) 1. 7 8. M Raeisi and E Shahriari, Iranian Journal of Physics Research 14, 4, (2015) 261. 8 F Naseri and H Shahmirzaee, Iranian Journal of Physics Research 13, 4, (2014) 355. 9 10. G Yang, D W GuanWang, W Wu, and Z Chen, Opt. Mater, 25 (2004) 439. 10 11. T He, Z Cai, P Li, Y Cheng and Y. Mo, J. Mod. Opt. 55 (2008) 975. 11 12. D N Christodoulides, I C Khoo, G J Salamo, G I Stegeman and E W V Stryland, Adv. Opt. Photonic. 2 (2010) 60. 12 13. M Sheik-Bahae, A A Said and Van E W Stryland, Opt. Lett, 14 (1989) 95. 13 14. M Sheik-Bahae, A A Said, T H Wei, D J Hagan and E W Van Stryland, IEEE J. Quantum Electron, 26 (1990) 760. 14