ORIGINAL_ARTICLE Improving the current density Jsc and efficiency enhancement of polymer solar cells P3HT:PCBM via nanorods ZnO Hybrid solar cells combine organic and inorganic materials with the aim of utilizing the low cost cell production of organic photovoltaics (OPV) as well as obtaining other advantages, such as tuneable absorption spectra, from the inorganic component. Whilst hybrid solar cells have the potential to achieve high power conversion efficiencies (PCE), currently obtained efficiencies are quite low. The design of the inorganic material used as the electron acceptor in hybrid solar cells, particularly the electronic structure, is crucial to the performance of the device. Hence, this paper, nanorods ZnO have been synthesized by using zinc acetate dihydrate and polyvinylpyrrolidone (PVP) as starting materials. The calcined powders in air at 600 oC for 1 hour have been characterized by XRD, TEM and SEM. So, with nanorods ZnO as electrode in inverted polymer solar cells,the average performance of devices with open circuit voltage ,short circuit current density, fill factor,and power conversion efficiency are measured are measured as 0.61V, 8.7 mA/cm2, 0.58 and 3.01%, respectively. The results indicate that the structure of ZnO nanorod can effectively serve as an electrode for inverted polymer solar cells. https://ijpr.iut.ac.ir/article_1269_896216b966626d6e7f3b3043f06ebab4.pdf 2019-11-26 337 343 10.18869/acadpub.ijpr.17.3.337 ZnO nanorod Sol-gel Polymer solar cell Photovoltaic Organic / Inorganic lida ahmadkhani l.ahmadkhani@yahoo.com 1 باشگاه پژوهشگران جوان LEAD_AUTHOR robabeh abbasi nae.abbasi@yahoo.com 2 دانشگاه آزاد AUTHOR 1. B R Saunders and M L Turner, Adv. Colloids. Interface Sci. 138 (2008) 1. 1 2. Y Zhou, M Eck, and M Kruger, Energy Environ. Sci 3 (2010) 1851. 2 3. N C Greenham, in C Brabec, V Dyakonov, and U Scherf (Eds.), “Organic Photovoltaics; Materials Device Physics and Manufacturing Technologies”, Wiley-VCH, Weinheim (2008). 3 4. V Thangadurai and P Kopp, J. Power Sources 168 (2007) 2. 4 5. T Tuken, B Yazici, and M Erbil, Material Chemistry and Physics 99 (2006) 459. 5 6. M S White, D C Olson, S E Shaheen, N Ko pida kis, and D S Ginley, Applied Physics Letters 89 (2006) 143517. 6 7. F Zhang, X Xu, W Tang, J Zhang, Z Zhuo, J Wang, J Wang, Z Xu, and Y Wang, Solar Energy Materials and Solar Cells 95 (2011) 1785. 7 8. W Cai, X Gong, and Y Cao, J. Solar Energy Materials and Solar Cells 94 (2010) 114. 8 9. S K Hau, H L Yip, and A K Y Jen, Polymer Reviews 50 (2010) 474. 9 10. Y Sun, J H.Seo, C J Takacs, J Seifter, and A J Heeger, J. Advanced Materials 23 (2011) 1679. 10 11. J Nelson, Mater. Today 14, 10 (2011) 462. 11 12. Y W Heo, D P Norton, L C Tien, Y Kwon, B S Kang, F Ren, S J Pearton, and J R LaRoche, Materials Science and Engineering R: Reports 47 (2004) 1. 12 13. J W Kang, Y J Kang, S Jung, M Song, D G Kim, C SuKim, and S H Kim, Solar Energy Materials and Solar Cells 103 (2012) 76. 13 14. D C Lim, W H Shim, K D Kim, H O Seo, J H Lim, Y Jeong, Y D Kim, and K H Lee, Solar Energy Materials and Solar Cells 95 (2011) 3036. 14 15. J Huang, Z Yin, and Q Zheng, Energy & Environmental Science 4 (2011) 3861. 15 16. M A Ibrahem, H Y Wei, M H Tsai, K C Ho, J J Shyue, and C W Chu, Solar Energy Materials and Solar Cells 108 (2013) 156. 16 17. T Y Chu, S W Tsang, J Zhou, P G Verly, J Lu, S Beaupré, M Leclerc, and Y Tao, Solar Energy Materials and Solar Cells 96 (2012) 155. 17 18. F C Krebs, J Fyenbo, and M Jorgensen, J. Materials Chemistry 20 (2010) 89941. 18 19. R Søndergaard, M Helgesen, M Jørgensen, and F C Krebs, J. Advanced Energy Materials 1 (2011) 68. 19 20. F C Krebs, S A Gevorgyan, and J Alstrup, J. Materials Chemistry 19 (2009) 5442. 20 21. F C Krebs, T D Nielsen, J Fyenbo, M Wadstrom, and M S Pedersen, Energy & Environmental Science 3 (2010) 512. 21 22. R R Søndergaard, M Hösel, and F C Krebs, J. Polymer Science Part B: Polymer Physics 51 (2013) 16. 22 23. R Thitima, C Patcharee, S Takashi, and Y Susumu, Solid- State Electronics 53 (2009) 176. 23 24. Y Hames, Z Alpaslan, A Kösemen, S E San, and Y Yerli, J. Solar Energy 84 (2010) 426. 24 25. M Wang, Y Li, H Huang, E D Peterson, W Nie, W Zhou, W Zeng, W uang, G Fang, N Sun, X Zhao, and D L Carroll, J. Applied Physics Letters 98 (2011) 103305. 25 26. Z Hu, J Zhang, Y Liu, Z Hao, X Zhang, and Y Zhao, Solar Energy Materials and Solar Cells 95 (2011) 2126. 26 27. K Takanezawa, K Tajima, and K Hashimoto, J. Applied Physics Letters 93 (2008) 63308. 27 28. C Y Chou, J S Huang, C H Wu, C Y Lee, and C F Lin, Solar Energy Materials and Solar Cells 93 (2009) 1608. 28 29. J S Huang, C Y Chou, and C F Lin, Solar Energy Materials and Solar Cells 94 (2010) 182. 29 30. J Ajuria, I Etxebarria, E Azaceta, R Tena-Zaera, N Fernandez-Montcada, E Palomares, and R Pacios J. Physical Chemistry Chemical Physics 13 (2011) 20871. 30 31. Y M Sung, F C Hsu, C T Chen, W F Su, and Y F Chen, Solar Energy Materials and Solar Cells 98 (2012) 103 31
ORIGINAL_ARTICLE Two-Centre Close-Coupling method in charge transfer In the present work, the transition matrix elements as well as differential and total scattering cross-sections for positronium formation in Positron-Hydrogen atom collision and hydrogen formation in Positronium-Hydrogen ion collision, through the charge transfer channel by Two-Centre Close-Coupling method up to a first order approximation have been calculated. The charge transfer collision is assumed to be a three-body reaction, while the projectile is a plane wave. Additionally, the hydrogen and positronium atoms are assumed, initially, to be in their ground states. For the case of charge transfer in the scattering of positron by hydrogen atoms, the differential cross sections are plotted for the energy range of 50eV to 10keV, where the Thomas peak is clearly observable. Finally, the total scattering cross-section for the charge transfer in the collision of Positron-Hydrogen and Positronium-Hydrogen ion are plotted as a function of projectile energies and compared with other methods in the literature. https://ijpr.iut.ac.ir/article_1270_84e29e5919989ca6c2225834a29deb24.pdf 2019-11-26 345 355 10.18869/acadpub.ijpr.17.3.345 Two-Centre Close-Coupling electron Capture Thomas Peaks transition matrix Scattering Cross-Sections Reza Bagheri rezabagheri341@yahoo.com 1 دانشکده فیزیک دانشگاه شهید باهنر کرمان AUTHOR Farideh Shojaei fshojaei@uk.ac.ir 2 دانشکده فیزیک دانشگاه شهید باهنر کرمان LEAD_AUTHOR [1] J. Chadwick, “The existence of a neutron”, Proc. Roy. soc. A 136, (1932) 692. 1 [2] C. J. Joachain, “Quantum collision theory”, North-Holland Publishing Company Amsterdam, (1975). 2 [3] L. H. Thomas: Proc. Soc. A 114, (1927), 561. 3 [4] N. R. Hewitt, C. J. Noble and B. H. Bransden, J. Phys. B 23, (1990), 4185. 4 [5] H. R. J. Walters, A. A. Kernoghan, M. T. McAlinden, and C. P. Campbell,“in Photon and Electron Collisions with Atoms and Molecules”, edited by P. G. Burke and C. J. Joachain (Plenum Press, New York, 1997), pp. 313–345. 5 [6] K. Higgins and P. G. Burke, J. Phys. B 24, (1991), L343. 6 [7] A. S. Kadyrov and I. Bray, “Two-center convergent close-coupling approach to positron-hydrogen collisions”, Phys. Rev. A 66, (2002) 012710. 7 [8] I. Bray, “Convergent close-coupling method for the calculation of electron scattering on hydrogenlike targets”, Phys. Rev. A 49, (1994c) 1066. 8 [9] I. Bray and A. T. Selbovics, “Calculation of electron scattering on hydrogenic targets”, Advances in At. Mol. Opt. Phys. VOL . 35 (1995). 9 [10] I. Bray and A. T. Stelbovics,” The convergent close-coupling method for a Coulomb three-body problem”, Computer Physics Communications 85 (1995), 1. 10 [11] K. Ratnavelu, J. Mitroy and A. T. Stelbovics,” Positron–hydrogen and positronium–proton scattering at intermediate and high energies”, J. Phys. B: At. Mol. Opt. Phys. 29 (1996) 2775. 11 [12] W. Sperber, “PhD Thesis”, University Bielefeld, Germany (1993). 12 [13] W. Sperber, D. Becke, K. G. Lynn, W. Raith, A. Schweb, A. Sinapius, G.Spicher and M. Weber, “Measurement of positronium formation in positron collisions with hydrogen atoms”, Phys. Rev. Lett. 68 (1992) 3690. 13 [14] S. J. Ward and J. H. Macek, “Positronium formation by electronic capture from hydrogenic ions”, Hyperfine Interactions. 89, (1994) 477. 14 [15] F. Shojaei, “PhD Thesis” Shahid Bahonar University, Kerman (2008). 15 [16] J. H. McGuier, N. C. Sil and N. C. Deb, “Capture of atomic electrons by high-velocity positrons”, Phys. Rev. A 34, (1986) 685. 16 [17] A. Igarashi and N. Toshima, “Second-order Born cross sections for positronium formation in positron-hydrogen collisions”, Phys. Rev. A 47 (1993) 2386. 17
ORIGINAL_ARTICLE Synthesis and evaluation of physical and magnetic properties of doped barium hexaferrite with BaZn0.6Zr0.3X0.3Fe10.8O19 (X=Ti,Ce,Sn) composition In this research, barium hexaferrite samples with BaZn0.6Zr0.3X0.3Fe10.8O19 (X=Ti,Ce,Sn) composition were synthesized via mechanical activation method and were evaluated by simultaneous thermal analysis (STA), X-ray diffraction (XRD), field emission electron microscopy (FE-SEM) and vibrating sample magnetometer (VSM). All of the synthesized samples were almost single phase and with average particles size of about 450 nm and 250 nm for samples without and with dopant respectively. Significant change in magnetic properties of barium hexaferrite were observed with effect of substitution of Fe ions. According to the results maximum magnetic saturation (33.1 emu/g) and minimum coercivity force (8.14 Oe) were related to samples with composition of BaZn0.6Zr0.3Ti0.3Fe10.8O19 and BaZn0.6Zr0.3Sn0.3Fe10.8O19 respectively. https://ijpr.iut.ac.ir/article_1271_7c9863c048884a0f1002f3ed338ce4e5.pdf 2019-11-26 357 363 10.18869/acadpub.ijpr.17.3.358 Barium hexaferrites Mechanical activation microstructure magnetic properties Seyyed Salman Seyyed Afghahi salmanafghahi@gmail.com 1 دانشگاه جامع امام حسین (ع)، دانشکده فنی مهندسی، گروه مهندسی مواد، تهران، ایران AUTHOR Mojtaba Jafarian jafarian_67@yahoo.com 2 گروه مهندسی مواد، دانشگاه آزاد اسلامی، واحد تهران جنوب، تهران، ایران LEAD_AUTHOR [1] Zhao L., Lv X., Wei Y., Ma C., Zhao L., "Hydrothermal synthesis of pure BaFe12O19 hexaferrite nanoplatelets under high alkaline system", Journal of Magnetism and Magnetic Materials, 332 (2013) 44-47. 1 [2] Xu X., Park J., Hong Y.K., Lane A.M., "Synthesis and characterization of hollow mesoporous BaFe12O19 spheres", Journal of Solid State Chemistry, 222 (2015) 84-89. 2 [3] Wang Y., Huang Y., Wang Q., "Preparation and magnetic properties of BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite", Journal of Magnetism and Magnetic Materials, 324 (2012) 3024-3028. 3 [4] Molaei M.J., Ataie A., Raygan S., Picken S.J., "Role of intensive milling in the processing of barium ferrite/magnetite/iron hybrid magnetic nano-composites via partial reduction of barium ferrite", Materials Characterization, 101 (2015) 78-82. 4 [5] Fortes S.S., Duque J.G.S., Macedo M.A., "Nanocrystals of BaFe12O19 obtained by the proteic sol-gel process", Physica B: Condensed Matter, 384 (2006) 88-90. 5 [6] Xu G., Ma H., Zhong M., Zhou J., Yue Y., He Z., "Influence of pH on characteristics of BaFe12O19 powder prepared by sol–gel auto-combustion", Journal of Magnetism and Magnetic Materials, 301 (2006) 383-388. 6 [7] Zhao L., Lv X., Wei Y., Ma C., Zhao L., "Hydrothermal synthesis of pure BaFe12O19 hexaferrite nanoplatelets under high alkaline system", Journal of Magnetism and Magnetic Materials, 332 (2013) 44-47. 7 [8] Xu X., Park J., Hong Y.K., Lane A.M., "Synthesis and characterization of hollow mesoporous BaFe12O19 spheres", Journal of Solid State Chemistry, 222 (2015) 84-89. 8 [9] Yu H.F., " BaFe12O19 powder with high magnetization prepared by acetone- aided coprecipitation", J. Magn. Magn. Mater., 341 (2013) 79-85. 9 [10] Rashad M.M., Ibrahim I.A., "Improvement of the magnetic properties of barium hexaferrite nanopowders using modified co-precipitation method", Journal of Magnetism and Magnetic Materials, 323 (2011) 2158-2164. 10 [11] Pillai V., Kumar P., Multani M.S., Shah D.O., "Structure and magnetic properties of nanoparticles of barium ferrite synthesized using microemulsion processing", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 80 (1993) 69-75. 11 [12] Nabiyouni G., Ghanbari D., Yousofnejad A., Seraj M., "A sonochemical-assisted method for synthesis of BaFe12O19 nanoparticles and hard magnetic nanocomposites", Journal of Industrial and Engineering Chemistry, 20 (2014) 3425-3429. 12 [13] Shafi K.V.P.M., Gedanken A., "Sonochemical approach to the preparation of barium hexaferrite nanoparticles", Nanostructured Materials, 12 (1999) 29-34. 13 [14] Qiu J., Shen H., Gu M., "Microwave absorption of nanosized barium ferrite particles prepared using high-energy ball milling", Powder Technology, 154 (2005) 116-119. 14 [15] Dursun S., Topkaya R., Akdogan N., Alkoy S., "Comparison of the structural and magnetic properties of submicron barium hexaferrite powders prepared by molten salt and solid state calcinations routes", Ceramics International, 38 (2012) 3801-3806. 15 [16] Mendonca Almeida R., Paraguassu W., Soares Pires D., Ribeiro Correa R., de-Araujo Paschoal C.W., "Impedance spectroscopy analysis of BaFe12O19 M-type hexaferrite obtained by ceramic method", Ceramics International, 35 (2009) 2443-2447. 16 [17] Berco P.G., Bertorello H.R., "High-energy ball milling of Ba-hexaferrite/Fe magnetic composite", Journal of Magnetism and Magnetic Materials, 187 (1998) 169-176. 17 [18] Gadaila A.M., Hennicke H.W., "Formation of Barium Hexaferrite", Journal of Magnetism and Magnetic Materials, 1 (1975) 144-152. 18 [19] Acher O., "Modern microwave magnetic materials: Recent advances and trends", Journal of Magnetism and Magnetic Materials, 321 (2009) 2033-2034. 19 [20] Awawdeh M., Bsoul I., Mahmood S.H., "Magnetic properties and Mössbauer spectroscopy on Ga, Al, and Cr substituted hexaferrites", Journal of Alloys and Compounds, 585 (2014) 465-473. 20 [21] Verma S., Pandey O.P., Paesano A., Sharma P., "Comparison of structural and magnetic properties of La3+ substituted BaFe12O19 prepared by different substitution methods", Physica B: Condensed Matter, 448 (2014) 57-59. 21 [22] Li J., Zhang H., Li Q., Li Y., Yu G., "Influence of La-Co substitution on the structure and magnetic properties of low-temperature sintered M-type barium ferrites", Journal of Rare Earths, 31 (2013) 983-987. 22 [23] Kaur T., Kaur B., Bhat B., Kumar S., Srivastava A.K., "Effect of calcinations temperature on microstructure, dielectric, magnetic and optical properties of Ba0.7La0.3Fe11.7Co0.3O19 hexaferrites", Physica B, 456 (2015) 206-212. 23 [24] Zhang M., Zi Z., Liu Q., Zhu X., Liang C., Sun Y., Dai J., "Solvothermal synthesis and magnetic properties of BaFe12−2x(NiTi)xO19 nanoparticles", Journal of Magnetism and Magnetic Materials, 369 (2014) 23-26. 24 [25] Kishimoto M., Kitahata S., Amemiya M., "Structural and Magnetic Properties of BaCoxFe12xO19 (x=0.2, 0.4, 0.6, 1) Nanoferrites Synthesized via Citrate Sol-Gel Method", J. Appl. Phys., 61 (2011) 101-104. 25 [26] Xia A., Du D., Li P., Sun Y., "Crystalline structures and intrinsic magnetic properties of ZnTi-substituted hexagonal M-type Ba ferrite powder", J. Mater. Sci.: Mater. Electron., 22 (2011) 223–227. 26 [27] Zi Z.F., Liu Q.C., Dai J.M., Sun Y.P., "Effects of Ce–Co substitution on the magnetic properties of M-type barium hexaferrites", Solid State Communications, 152 (2012) 894-897. 27 [28] Soman V.V., Nanoti V.M., Kulkarni D.K., "Effect of Substitution of Zn-Ti on Magnetic and Dielectric Properties of BaFe12O19", Physics Procedia, 54 (2014) 30-37. 28 [29] Sharma M., Kashyap S.C., Gupta H.C., "Effect of Mg–Zr substitution and microwave processing on magnetic properties of barium hexaferrite", Physica B: Condensed Matter, 448 (2014) 24-28. 29 [30] Jamalian M., "An investigation of structural, magnetic and microwave properties of strontium hexaferrite nanoparticles prepared by a sol-gel process with doping Sn and Tb", Journal of Magnetism and Magnetic Materials, 378 (2015) 217-220. 30
ORIGINAL_ARTICLE Effects of cooling timescale and non-ideaness of the gas in the shockwaves According to the suddenly compression of the matters in some regions of the compressible fluids, the density and temperature suddenly increases, and shockwaves can be produced. The cooling of post-shock region and non-idealness of the equation of state, $p=(k_B/mu m_p)rho T (1+brho) equivmathcal{K}rho T (1+eta R)$, where $mu m_p$ is the relative density of the post-shock gas and $Requiv rho_2 / rho_1$ is the non-idealness parameter, may affect on the shocked gases. In this article, we study the effects of both cooling timescale and non-idealness of the shocked gases, on the relative density of the post-shock region. For simplicity, the shock is assumed planar and steady in which the deceleration is negligible and there is no any instabilities through the cooling layer. Conservation of mass, momentum, and energy across the shock front are given by the Rankine-Hugoniot conditions. The most important factor through the shock is the energy lost per unit mass during the shock process, $Q=frac{n_2 Lambda}{mu_2 m_p} t_{dur}$, where $Lambda (erg cm^{-3} s^{-1}$ is the cooling function at the post-shock region with density $n_2} and mean particle mass $mu_2 m_p$, and $t_{dur}$ is the duration time of the post-shock process. Accurate determination of the cooling timescale requires specifying the elemental abundance of the post-shock region, but a simple estimate can be obtained using $t_{cool}approx k_B T_2/(n_2Lambda)$. Eliminating the $n_2 Lambda$, we approximately have $Q/c^2approx lambda T$, where $c equiv sqrt{K_1 T_1}$ is the pre-shock sound speed, $lambda  equiv t_{dur}/t_{cool}$ and $T equiv K_2 T_2/K_1 T_1$. We would be interested to consider the collision of two gas sheets with velocities $v_0$ in the rest frame of the laboratory. Defining the Mach number as $M_0 equiv v_0/c$, we obtain a third degree polynomial equation for $R$, with coefficients as functions of the three parameters $eta$, $lambda$, and $M_0$. We numerically solved this three degree polynomial equation to obtain $R$.The results for adiabatic case ($lambda=0$), with ideal ($eta=0$) and non-ideal ($eta neq 0$) mono-atomic ($gamma_1 = gamma_2 = 5/3$) gas are shown in the Fig.1. In the ideal case, the strong supersonic shockwave ($M_0 rightarrow infty$) leads to $R approx 4$. Considering of non-ideal parameter ($eta neq 0$) increases the pressure of the post-shock region so that the shock fronts move faster. In this way, for each $M_0$, the relative density of the post-shock non-ideal gas decreases in respect to the ideal case. The cooling shockwaves with low cooling timescale ($lambda=1$) and fast cooling timescale ($lambda=10$) are shown in the Fig.2. The results show that the relative density of post-shock gas, $R$, increases with increasing the Mach number, $M_0$, and asymptotically reaches to a value which depends on the two other parameters $eta$ and $lambda$. With increasing of the energy lost per unit mass during the shock process, $Q$ (i.e., increasing of $lambda$), the post-shock gas has more chance for condensation and increasing of its relative density, while including the non-ideal effects (i.e., increasing of $eta$) reduces this chance. https://ijpr.iut.ac.ir/article_1272_a3d6fc4d58d28cca7b29c06cc5bc37c0.pdf 2019-11-26 365 370 10.18869/acadpub.ijpr.17.3.365 Shockwaves Non-ideal gas Gas cooling rate Fluid dynamics ISM Mohsen Nejad-Asghar nejadasghar@umz.ac.ir 1 دانشگاه مازندران LEAD_AUTHOR 1. W J M Rankine, Philos. Trans. R. Soc. Lond. 160 (1870) 277. 1 2. H J Hugoniot, J Ec. Polytech. 58 (1889) 1. 2 3. G Guderlay, Luftfahrtforschung 19 (1942) 302. 3 4. J von Neumann, "Collected works of J. von Neumann", vol. VI, p. 219, Oxford: Pergamon Press (1947). 4 5. G I Taylor, Proc. R. Soc. A, Math. Phys. Eng. Sci. 201 (1950) 175. 5 6. L I Sedov, "Similarity and Dimensional methods in Mechanics", chap4, New York: Academic Press (1959). 6 7. A Sakurai, "Basic Developments in Fluid dynamics", p. 309, New York: Academic Press (1964). 7 8. R A Freeman, J. Phys. D, Appl. Phys. 2 (1968) 1697. 8 9. G G Bech, and J H S Lee, AIAA J. 8 (1970) 271. 9 10. G B Whitham, "The propagation of spherical blast", Report 358, Tokyo: Aeronautical Research Institute, University of Tokyo (1960). 10 11. K L Sanjiva, Phys. Fluids A 4 (1992) 2900. 11 12. S L Gavrilyuk, and A Saurel, J. Fluid Mech. 19 (2007) 495. 12 13. R S Baty, F Farassat, and D H Tuckers, J. Math. Phys. 49 (2008) 1. 13 14. M Kjellander, N. Tillmark, and N Apazidis, Phys. Fluids 22 (2010) 116102. 14 15. M Nejad-Aghar, Astron. Notes 332 (2011) 631. 15 16. G Emanuel, ShWav 25 (2015) 11. 16 17. L D Landau, and E M Lifshitz, "Courses of Theoretical Physics, Statistical Physics", vol. 5, Oxford: Pergamon Press (1958). 17 18. R K Anand, Ap&SS 342 (2012) 377. 18 19. G Nath, AdSpR 52 (2013) 1304. 19 20. G Nath, Ap&SS 361 (2016) 31. 20 21. M Nejad-Asghar MNRAS 414 (2011) 470. 21 22. D Hollenbach, and C F McKee, ApJS 41 (1979) 555. 22
ORIGINAL_ARTICLE Numerical investigation of laser beam qulity in thin disk laser with unstable resonator In this article, M2 factor of a thin disk laser with unstable resonator in two regimes is calculated numerically. In the first case, thermal effects are ignored and the parameters of beam width, divergence angle, radius of wave front curvature and finally, M2 factor of laser beam are calculated by using generalized beam parameters. These calculations show that the beam quality of the laser is dependent on the resonator magnification parameter in disk laser. In the second case, thermal effects are considered. In this regime, by using analytical formula for distribution of temperature in crystal and the main contributors to the OPD, M2 factor of thin disk laser is calculated numerically. When the thermal effects are considered, calculations show that the beam quality of thin disk laser is degraded in respect to the condition in which thermal effect was ignored, and also the output power is reduced extremely.   https://ijpr.iut.ac.ir/article_1273_40b5d458a497b5c789d1017d6c6e9309.pdf 2019-11-26 371 385 10.18869/acadpub.ijpr.17.3.371 M2 factor unstable resonator thin disk laser generalized beam parameters OPD R Beirami r_beirami@iustalumni.ac.ir 1 گروه فیزیک، دانشگاه علم و صنعت ایران، تهران LEAD_AUTHOR 1. H Injeyan and G D Goodno, “High Power Laser Handbook: Thin-Disk Lasers”, 1stedition, McGraw-Hill (2011) 225. 1 2. C Nelson and J Crist, Laser Technik Journal 9, 1 (2012) 36. 2 3. M Shayganmanesh, M H Daemi, Z h Osgoui, S Radmard, et al., Optics & Laser Technology 44, 7 (2012) 2292. 3 4. J Alda, “Laser and Gaussian Beam Propagation and Transformation”, Enclopedia of Optical Engineering, Madrid (2001) 999. 4 5. V Sazegari, M R Jafari Milani and A K.Jafari, Appl Optics 49, 36 (2010) 6910. 5 6. V Ashooriand et al., “Heat Generation and Removal in Solid State Lasers”, INTECH Open Access Publisher, chapter 12 (2012) 342. 6 7. G Zhu et al., Appl. Optics 54, 10 (2015) 3025. 7 8. J Shang et al., Appl. Optics 50, 32 (2011) 6103. 8 9. J Mende et al., “Thin-disk laser Power scaling to the kW regime in fundamental mode operation’’, SPIE: lasers and applications in Science and Engineering 7193, 71931v, (2009) v1-v12. 9 10. M Shayganmanesh and R Saeedizadeh, Opt. Quant. Electron 21, 7 (2014) 197. 10 11. H Weber, “Laser Resonators and Beam Propagation”, 2nd edition, Springer (2004) 57. 11 12. E Anashkina and O Antipov, J. Opt. Soc. Am. B 27, 3 (2010) 363. 12 13. G Zhu et al., Appl. Optics 53, 29 (2014) 6756. 13
ORIGINAL_ARTICLE Study the effect of annealing temperature on structural and magnetic properties of Ni0.3Cd0.7Fe2O4 ferrite nanoparticles In this investigation nickel-cadmium ferrite nanoparticle with stoichiometric composition of Ni0.3Cd0.7Fe2O4 was synthesized by Sol-gel auto- combustion method. In order to study the effect of particle size on physical properties of samples, the powder samples was annealed at temperatures 350, 400, 450 and 500 ○ C for 3h. Structural, morphological and magnetic properties of samples were analyzed using X- ray diffraction (XRD), field emission scanning electron microscope (FESEM), vibrating sample magnetometer (VSM) and ac susceptibility. XRD data revealed spinel mono-phase formation and crystallite size was estimated in the range of 17- 35 nm, using sherrer’s equation which also confirmed by FESEM. The VSM results indicate that magnetization increases by increasing particle size. Using the results of ac susceptibility measurements and analysis by the Neel- Brown, Vogel-Fulcher and critical slowing down methods, indicates that the samples annealed at temperatures of 350  and    400    ○ C are super-paramagnet at room temperature and have super-spin glass behavior at low temperatures. https://ijpr.iut.ac.ir/article_1274_48a0d62abbfe0389e11397705eea35ba.pdf 2019-11-26 387 396 10.18869/acadpub.ijpr.17.3.387 nanoparticle Ferrite Super-paramagnetic Super-spin glass mahin eshraghi mahin_eshraghi@yahoo.com 1 دانشگاه پیام نور LEAD_AUTHOR [1] A. Raut, R. Barkule, D. Shengule, K. Jadhav, Synthesis, Structural investigation and magnetic properties of Zn substituted cobalt ferrite ...; Journal of Magnetism and Magnetic Materials 358, (2014) 87-92. 1 [2] D. S. Mathew, and R.-S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions”; Chemical Engineering Journal, 129, (2007)51-65. 2 [3] I. Soibam, S. Phanjoubam, and C. Prakash; “Magnetic and Mössbauer studies of Ni substituted Li–Zn ferrite”; Journal of Magnetism and Magnetic Materials 321, (2009) 2779-2782. 3 [4] E. De Fazio, P. Bercoff, and S. Jacobo; “Electromagnetic properties of manganese–zinc ferrite with lithium substitution”; Journal of Magnetism and Magnetic Materials 323, (2011) 2813-2817. 4 [5] M.E. F. Brollo, J.M.Orozco-Henao, R.López-Ruiz, D.Muraca, C.S.B.Dias, K.R.Pirota, M. Knobel, Magnetic hyperthermiainbrick-likeAg@Fe3O4 core–shell nanoparticles Journal of Magnetism and Magnetic Materials 397(2016)20–27. 5 [6] B. Peeples, V. Goornavar, C. Peeples, D. Spence, V. Parker, C. Bell, D. Biswal, G. T. Ramesh, A. K. Pradhan, Structural, stability, magnetic, and toxicity studies of nanocrystalline iron oxide and cobalt ferrites for biomedical applications, Nanopart Res (2014) 16:2290 6 [7] M. Rahimi, P. Kameli, M. Ranjbar, H. Salamati, The effect of sintering temperature on evolution of structural and magnetic properties of nanostructured Ni0.3Zn0.7Fe2O4 ferrite, J Nanopart Res (2013) 15:1865. 7 [8] K. Maaz, W. Khalid, A. Mumtaz, S. Hasanain, J. Liu, and J. Duan; “Magnetic characterization of Co1-xNixFe2O4 (0x1) nanoparticles prepared by co-precipitation rout”; Physica E Low-dimensional Systems and Nanostructures 41, (2009) 593-599. 8 [9] M. Rahimi, M. Eshraghi, P. kameli; “ Structural and magnetic characterizations of Cd substituted nickel ferrite nanoparticles”; Ceramics International40(2014)15569–15575. 9 [10] Parvatheeswara B. Caltun O. Dumitru I. Spinu L; “Ferromagnetic resonance of ball milled Ni-Zn ferrite nanoparticles”; Journal of Magnetism and Magnetic Materials 304, (2006) 752-754. 10 [11] N. A. Abdullah, S. Hasan, and N. Osman, "Role of CA-EDTA on the Synthesizing Process of Cerate-Zirconate Ceramics Electrolyte," Journal of Chemistry, vol. 2013, 2012. 11 [12] M. Mouallem-Bahout, S. Bertrand, and O. Peña, "Synthesis and characterization of Zn1−xNixFe2O4 spinels prepared by a citrate precursor," Journal of Solid State Chemistry, vol. 178, pp. 1080-1086, 2005. 12 [13] J. R. Hook and H. E. Hall, Solid State Physics: John Wiley & Sons, 1995. 13 [14] M. Rahimi, P. Kameli, M. Ranjbar, H. Hajihashemi, and H. Salamati, "The effect of zinc doping on the structural and magnetic properties of Ni1-xZnxFe2O4," Journal of Materials Science, pp. 1-8, 2012. 14 [15] J. Dormann, D. Fiorani, and E. Tronc, "On the models for interparticle interactions in nanoparticle assemblies: comparison with experimental results," Journal of Magnetism and Magnetic Materials, vol. 202, pp. 251-267, 1999. 15 [16] D. E. Madsen, M. F. Hansen, and S. Mørup, "The correlation between superparamagnetic blocking temperatures and peak temperatures obtained from ac magnetization measurements," Journal of Physics: Condensed Matter, vol. 20, p. 345209, 2008. 16 [17] A. A. Birajdar, S. E. Shirsath, R. H. Kadam, S. M. Patange, D. R. Mane, and A. R. Shitre, "Frequency and temperature..." Ceramics International, vol. 38, pp. 2963-2970, 2012. 17 [18] B. Aslibeiki, P. Kameli, H. Salamati, M. Eshraghi, and T. Tahmasebi, "Superspin glass state in MnFe2O4 nanoparticles," Journal of Magnetism and Magnetic Materials, vol. 322, pp. 2929-2934, 2010. 18
ORIGINAL_ARTICLE Magnetic properties of single 3d-transition metals added on 2D hexagonal Boron Nitride In the frame work of relativistic density functional theory, using full potential local orbital band structure scheme (FPLO), the magnetic properties of single 3d transition metals (3d-TM) adsorbed on 2D hexagonal boron nitride (2D h-BN) are investigated. Binding energies between 3d-TM adatoms and 2D h-BN in three different compositions, local spin magnetic moments of 3d-TM and total spin magnetic moments per supercell, orbital magnetic moments and spin orbit coupling energies are calculated. In this study, three different magnetic relativistic methods the so-called scalar relativistic (SR), full relativistic (FR) and full relativistic plus an orbital polarization correction (OPC) are used. Results of nonmagnetic binding energies in the nonmagnetic SR method indicate that with the exception of Sc other 3d-TM adatoms can bind to BN surface. While, the results of magnetic binding energies in the spin-polarized SR approach show that Sc, Cr and Mn cannot bind on the surface of 2D h-BN. In addition, there is shown that the behavior of spin magnetic moments of 3d-TM adatoms are depended on their geometric positions due to their different crystal fields. Moreover, it is shown that Co in the top of  N atoms and  Fe adatoms in the top of  B atoms  with 1.23 (1.92) and 0.89 (1.72 )   have a large orbital magnetic moments in the FR(OPC) approaches due to their massive spin-orbit coupling effects, respectively. These so large values of orbital magnetic moments are promising the existence of large magnetic anisotropy energies. https://ijpr.iut.ac.ir/article_1275_b2759ecf0534db550c072a2cf7cbc516.pdf 2019-11-26 397 409 10.18869/acadpub.ijpr.17.3.397 DFT 2D h-BN 3d transition metal spin magnetic moment orbital magnetic moment spin-orbit cupling Mahdi Afshar afshar.arjmand@gmail.com 1 وزارت علوم، تحقیقات و فن آوری LEAD_AUTHOR Hosein Doosti doosi_h@iust.ac.ir 2 وزارت علوم، تحقیقات و فن آوری AUTHOR 1. H Cao, R Li, Q J Gui, X H Wang, and X B Bin, Nanoscience 12 (2007) 35. 1 2. K Pi, K M McCreary, W Bao, W Han, Y F Chiang, Y Li, S W Tsai, C N Lau, and R K Kawakami, Phys. Rev. B 80 (2009) 075406. 2 3. J Shen, Y Hu, M Shi, N Li, H Ma, and M Ye, J. Phys. Chem. C 114 (2010) 1498. 3 4. M Bystrzejewski, S Cudzilo, A Huczko, H Lange, G Soucy, G Cota- Sanchez, and W Kaszuwara, Biomol. Eng. 24 (2007) 555. 4 5. H Ago, Y Ito, N Mizuta, K Yoshida, B Hu, C M Orofeo, M Tsuji, K I Ikeda, and S Mizuno, American Chemical Society Nano. 4 (2010) 7407. 5 6. K T Chan, J B Neaton, and M L Cohen, Phys. Rev. B 77 (2008) 235430. 6 7. Y Mao, J Yuan and J Zhong, J. Phys.: Condens. Matter 20 (2008) 115209. 7 8. H Johll, H C Kang, and E S Tok, Phys. Rev. B vol. 79 (2009) 245416. 8 9. C Cao, M Wu, J Jiang, and H P Cheng, Phys. Rev. B 81 (2010) 205424. 9 10. A N Rudenko, F J Keil, M I Katsnelson, and A I Lichtenstein, Phys. Rev. B 86 (2012) 075422. 10 11. H C Kandpal, K Koepernik, and M Richter, Phys. Rev. B 86 (2012) 235430. 11 12. M Sargolzaei and F Gudarzi, J. Appl. Phys. 110 (2011) 064303. 12 13. M Afshar and H Doosti, Modern Physics Letters B 29 (2015) 1450262. 13 14. B Fazeli and F Fazileh, Iranian Journal of Physics Research. 11, 4 (2012) 58. 14 15. C Li, Y Bando, C Zhi, Y Huang, and D Golberg, Nanotechnology 20 (2009) 385707. 15 16. D Golberg, Y Bando, Y Huang, T Terao, M Mitome, C Tang, and C Zhi, American Chemical Society Nano. 4 (2010) 2979. 16 17. L Lindsay and A D Broido, Phys Rev B 84 (2011) 155421. 17 18. A Pakdel, C Zhi, Y Bando, T Nakayama and D Golberg, American Chemical Society Nano. 5 (2011) 6507. 18 19. A Du, et al., J. Am. Chem. Soc. 131 (2009) 17354. 19 20. C Jin, F Lin, K Suenaga, and S Iijima, Phys. Rev. Lett. 102 (2009) 195505. 20 21. L C Yin, H M Cheng, and R Saito, Phys. Rev. B 81 (2010) 153407. 21 22. D Ma, Zh Lu, W Ju, and Y Tang, J. Phys. Condens. Matter 24 (2012) 145501. 22 23. J Li, M L Hu, Zh Yu, J X Zhong, and L Z Sun, Chem. Phys. Letter 532 (2012) 40. 23 24. D Sen, R Thapa, K Bhattacharjee, and K K Chattopadhyay, Computational Materials Science 51 (2012) 165. 24 1. Noncollinear 25 25. Y G. Zhou, J Xiao-Dong, Z G Wang, H Y Xiao, F Gao, and X T Zu, Phys. Chem. Chem. Phys, 12 (2010) 7588. 26 26. P Hohenberg, and W Kohn, Phys. Rev. 136 (1964) B864. 27 27. A K Rajagopal and J Callawy, Phys. Rev. B 7 (1973) 1912. 28 28. A K Rajagopal, J. Phys. C 11 (1978) 943. 29 29. K Koepernik and H Eschrig, Phys. Rev. B 59 (1999) 1743. 30 30. J P Perdew, K Burke, and M Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. 31 31. M S S Brooks, Physica B 130 (1985) 6. 32 Eriksson, B Johansson, and M S S Brooks, J. Phys. Cond. Mat. 1 (1989) 4005. 33
ORIGINAL_ARTICLE Ab- initio investigation of physical properties of KTP and RTP In this work,the physical properties of  KTP and RTP single-crystals have been investigated by performing accurate total energy calculations in the framework of density functional theory by using the full-potential linearized augmented plane wave method. The effects of Rb substitution on structural, electronic and optical properties of KTP are discussed. The structural properties have been calculated by using different exchange correlation including LDA, PBE, WC and PBEsol. Also PBEsol approximation and and more accurate approximation mBJ are employed to calculate the energy gap values. The Pseudoinversion values of both crystals have been calculated by using PseudoSymmetry software . Rb substitution effect on pseudosymmetry of KTP and also relation between second-order susceptibility of crystals and the Pseudoinversion values are discussed. The optical coefficients such as refractive index, birefringence values and absorption coefficients have been calculated by using the dielectric function. The anisotropy in the linear optical properties of KTP and RTP crystals have been demonstrated. Then calculated results have been compared. https://ijpr.iut.ac.ir/article_1276_cbf6775c1364e65f021ef8b93f9c8307.pdf 2019-11-26 411 419 10.18869/acadpub.ijpr.17.3.411 density functional theory -structural electronic and optical properties- Pseudoinversion-dielectric function-anisotropy-birefringence Marzieh Ghoohestani mghoohestani18@gmail.com 1 دانشگاه صنعتی مالک اشتر اصفهان AUTHOR Ali Arab aa.arab@yahoo.com 2 دانشگاه صنعتی مالک اشتر اصفهان LEAD_AUTHOR Hossein Sadeghi hsadeghi@mut-es.ac.ir 3 دانشگاه صنعتی مالک اشتر اصفهان AUTHOR [1]. Z. Kecong and W. Ximin, Structure sensitive properties of KTP-type crystals, Chinese science bulletin 46 (2001) 2028-2036. 1 [2]. V. Atuchin, V. Kesler, G. Meng, and Z. Lin, The electronic structure of RbTiOPO4 and the effects of the A-site cation substitution in KTiOPO4-family crystals, Journal of Physics: Condensed Matter 24 (2012) 405503. 2 [3]. P. Blaha, K. Schwarz, P. Sorantin, and S. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems, Computer Physics Communications 59 (1990) 399-415. 3 [4]. J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B 45 (1992) 13244. 4 [5]. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters 77 (1996) 3865. 5 [6]. Z. Wu and R. E. Cohen, More accurate generalized gradient approximation for solids, Physical Review B 73 (2006) 235116. 6 [7]. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Physical Review Letters 100 (2008) 136406. 7 [8]. F. Tran and P. Blaha, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential, Physical Review Letters 102 (2009)06/03/ 226401. 8 [9]. D. Koller, F. Tran, and P. Blaha, Merits and limits of the modified Becke-Johnson exchange potential, Physical Review B 83 (2011)05/31/ 195134. 9 [10]. N. V. Somov and E. V. Chuprunov, Pseudosymmetry software for studying the pseudosymmetry of crystal atomic structures, Crystallography Reports 59 (2014)2014// 137-139. 10 [11]. A. H. Reshak, I. Kityk, and S. Auluck, Investigation of the linear and nonlinear optical susceptibilities of KTiOPO4 single crystals: Theory and experiment, The Journal of Physical Chemistry B 114 (2010) 16705-16712. 11 [12]. F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, KxRb1−xTiOPO4: A new nonlinear optical material, Journal of Applied Physics 47 (1976) 4980-4985. 12 [13]. S. T. Norberg, J. Gustafsson, and B.-E. Mellander, Phase transitions in KTP isostructures: correlation between structure and Tc in germanium-doped RbTiOPO4, Acta Crystallographica Section B: Structural Science 59 (2003) 588-595. 13 [14]. N. K. Hansen, J. Protas, and G. Marnier, The electron-density distribution in KTiOPO4, Acta Crystallographica Section B: Structural Science 47 (1991) 660-672. 14 [15]. J. Lowther, P. Manyum, and P. Suebka, Electronic and structural properties of orthorhombic KTiOPO4 and related isomorphic materials, physica status solidi (b) 242 (2005) 1392-1398. 15 [16]. P. Thomas, S. Mayo, and B. Watts, Crystal structures of RbTiOAsO4, KTiO (P0. 58, As0. 42) O4, RbTiOPO4 and (Rb0. 465, K0. 535) TiOPO4, and analysis of pseudosymmetry in crystals of the KTiOPO4 family, Acta Crystallographica Section B: Structural Science 48 (1992) 401-407. 16 [17]. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. V. Stryland, and M. Sheik-Bahae, Infrared to ultraviolet measurements of two-photon absorption and n <sub>2</sub> in wide bandgap solids, IEEE Journal of Quantum Electronics 32 (1996) 1324-1333. 17 [18]. W. Ching and Y.-N. Xu, Band structure and linear optical properties of KTiOPO 4, Physical Review B 44 (1991) 5332. 18 [19]. H. Li, C. Kam, Y. Lam, and W. Ji, Femtosecond Z-scan measurements of nonlinear refraction in nonlinear optical crystals, Optical Materials 15 (2001) 237-242. 19 [20]. G. Mann and H. Weber, Measurement of Nonlinear Absorption Coefficients of KTP Crystals in the Green Spectral Range, LASER PHYSICS-LAWRENCE- 9 (1999) 426-429. 20 [21]. A. Zukauskas, V. Pasiskevicius, and C. Canalias, Second-harmonic generation in periodically poled bulk Rb-doped KTiOPO 4 below 400 nm at high peak-intensities, Optics express 21 (2013) 1395-1403. 21 [22]. N. Golego and M. Cocivera, Polycrystalline RbTiOPO 4 and KTiOPO 4 bilayer thin films by spray pyrolysis, Thin Solid Films 322 (1998) 14-20. 22 [23]. L. Kang, D. M. Ramo, Z. Lin, P. D. Bristowe, J. Qin, and C. Chen, First principles selection and design of mid-IR nonlinear optical halide crystals, Journal of Materials Chemistry C 1 (2013) 7363-7370. 23 [24]. A. Dudelzak, P.-P. Proulx, V. Denks, V. Mürk, and V. Nagirnyi, Anisotropic fundamental absorption edge of KTiOPO4 crystals, Journal of Applied Physics 87 (2000) 2110-2113. 24 [25]. A. P. Gazhulina and M. O. Marychev, Pseudosymmetric Features and Nonlinear Optical Properties of Potassium Titanyl Phosphate Crystals, (2013). 25 [26]. J. Tauc, R. Grigorovici, and A. Vancu, Optical properties and electronic structure of amorphous germanium, physica status solidi (b) 15 (1966) 627-637. 26
ORIGINAL_ARTICLE A comparative study of magnetic properties of MnFe2O4 nanoparticles prepared by thermal decomposition and solvothermal methods A comparative study of magnetic properties of MnFe2O4 ferrite nanoparticles prepared by two different methods has been reported. The first sample (S1) was synthesized by thermal decomposition of metal nitrates. And the second sample (S2) was prepared by solvothermal method using Tri-ethylene glycol (TEG). Magnetic hysteresis loops at 300 and 5 K; magnetization and AC susceptibility measurements versus temperature confirmed the effective role of TEG on the magnetic properties of nanoparticles. The results showed that, at 300 K the saturation magnetization (MS) of S2 sample is 46% greater than that of S1 sample. At 5 K, the difference in MS of the samples raised to 60%. AC susceptibility measurements at different frequencies and also magnetization versus temperature under field cooling and zero field cooling processes revealed that, the TEG molecules influence the surface spins order of S2 sample. The sample S1 showed strongly interacting superspin glass state, while the sample S2 consists of weakly interacting superparamagnetic nanoparticles. https://ijpr.iut.ac.ir/article_1277_d46258f6b0e134a7161f57c6f4a72c44.pdf 2019-11-26 421 431 10.18869/acadpub.ijpr.17.3.421 Ferrite nanoparticles MnFe2O4 Polymer coating superparamagnetic Superspin glass B Aslibeiki b.aslibeiki@tabrizu.ac.ir 1 دانشکده فیزیک، دانشگاه تبریز، تبریز LEAD_AUTHOR P Kameli kameli@iut.ac.ir 2 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان AUTHOR 1. D Makovec, A Košak, A Žnidaršič, and M Drofenik, J. Magn. Magn. Mater. 289 (2005) 32. 1 2. M Pita, J M Abad, C Vaz-Dominguez, C Briones, E Mateo-Martí, J A Martín-Gago, M del Puerto Morales, and V M Fernández, J. Colloid Interface Sci. 321 (2008) 484. 2 3. S Rana, A Gallo, R S Srivastava, and R D K Misra, Acta Biomaterialia 3 (2007) 233. 3 4. Q Dai, D Berman, K Virwani, J Frommer, P-O Jubert, M Lam, T Topuria, W Imaino, and A Nelson, Nano Lett. 10 (2010) 3216. 4 5. K Praveena, K Sadhana, S Bharadwaj, and S Murthy, J. Magn. Magn. Mater. 321 (2009) 2433. 5 6. B K Kuanr, V Veerakumar, K Lingam, S Mishra, A V Kuanr, R Camley, and Z Celinski, J. Appl. Phys. 105 (2009) 07B522. 6 7. C S Kumar and F Mohammad, Adv. Drug Deliv. Rev. 63 (2011) 789. 7 8. B Aslibeiki, P Kameli, M H Ehsani, H Salamati, G Muscas, E Agostinelli, V Foglietti, S Casciardi, and D Peddis, J. Magn. Magn. Mater. 399 (2016) 236. 8 9. S Patra, E Roy, P Karfa, S Kumar, R Madhuri, and P K Sharma, ACS Applied Materials & Interfaces 7 (2015) 9235. 9 10. V Singh, V Srinivas, M Ranot, S Angappane, and J-G Park, Phys. Rev. B 82 (2010) 054417. 10 11. A Yang, C N Chinnasamy, J M Greneche, Y Chen, S D Yoon, K Hsu, C Vittoria, and V G Harris, Appl. Phys. Lett. 94 (2009) 113109. 11 12. P J van der Zaag, V A M Brabers, M T Johnson, A Noordermeer, and P F Bongers, Phys. Rev. B 51 (1995) 12009. 12 13. B Aslibeiki, Ceram. Int. 42 (2016) 6413. 13 14. G C Lavorato, E Lima Jr, D Tobia, D Fiorani, H E Troiani, R D Zysler, and E L Winkler, Nanotechnology 25 (2014) 355704. 14 15. J Wan, X Jiang, H Li, and K Chen, J. Mater. Chem. 22 (2012) 13500. 15 16. H Deligöz, A Baykal, E E Tanrıverdi, Z Durmus, M and S Toprak, Mater. Res. Bull. 47 (2012) 537. 16 17. C Cannas, A Ardu, A Musinu, D Peddis, and G Piccaluga, Chem. Mater. 20 (2008) 6364. 17 18. A Baykal, H Deligöz, H Sozeri, Z Durmus, and M S Toprak, J. Supercond. Novel Magn. 25 (2012) 1879. 18 19. Z X Tang, C M Sorensen, K J Klabunde, and G C Hadjipanayis, Phys. Rev. Lett. 67 (1991) 3602. 19 20. B Aslibeiki, and P Kameli, J. Supercond. Novel Magn. 28 (2015) 3343. 20 21. B Aslibeiki, P Kameli, I Manouchehri, and H Salamati, Curr. Appl. Phys. 12 (2012) 812. 21 22. R Topkaya, Ö Akman, S Kazan, B Aktaş, Z Durmus, and A Baykal, Journal of Nanoparticle Research 14 (2012) 1. 22 23. H Khurshid, W Li, M-H Phan, P Mukherjee, G C Hadjipanayis, and H Srikanth, Appl. Phys. Lett. 101 (2012) 022403. 23 24. R D Desautels, E Skoropata, Y Y Chen, H Ouyang, J W Freeland, and J v Lierop, J. Phys.: Condens. Matter 24 (2012) 146001. 24 25. T Shendruk, R Desautels, B Southern, and J Van Lierop, Nanotechnology 18 (2007) 455704. 25 26. S E Aalaye, P Kameli, H Salamati., and H Arabi., Iranian Journal of Physics Research 12 (2013) 361. 26 27. J I Gittleman, B Abeles, and S Bozowski, Phys. Rev. B 9 (1974) 3891. 27 28. M F Hansen and S Mørup, J. Magn. Magn. Mater. 203 (1999) 214. 28 29. C Cannas, A Musinu, G Piccaluga, D Fiorani, D Peddis, H K Rasmussen, S Mørup, J. Chem. Phys. 125 (2006) 164714. 29 30. D Peddis, F Orrù, A Ardu, C Cannas, A Musinu, and G Piccaluga, Chem. Mater. 24 (2012) 1062. 30 31. B Aslibeiki, P Kameli, and H Salamati, J. Appl. Phys. 119 (2016) 063901. 31 32. G Goya, T Berquo, F Fonseca, and M Morales, J. Appl. Phys. 94 (2003) 3520. 32 33. R D Desautels, E Skoropata, M Rowe, and J van Lierop, J. Appl. Phys. 117 (2015) 17C755. 33 34. K Nadeem, H Krenn, T Traussnig, R Würschum, D Szabó, and I Letofsky-Papst, J. Magn. Magn. Mater. 323 (2011) 1998. 34 35. M Suzuki, S I Fullem, I S Suzuki, and L Wang, C-J Zhong, Phys. Rev. B 79 (2009) 024418. 35 36. W Kleemann, O Petracic, C Binek, G Kakazei, Y G Pogorelov, J Sousa, S Cardoso, and P Freitas, Phys. Rev. B 63 (2001) 134423. 36 37. K Hiroi, K Komatsu, and T Sato, Phys. Rev. B, 83 (2011) 224423. 37 38. B Aslibeiki, P Kameli, and H Salamati, J. Magn. Magn. Mater. 324 (2012) 154. 38 39. B Aslibeiki, P Kameli, H Salamati, M Eshraghi, and T Tahmasebi, J. Magn. Magn. Mater. 322 (2010) 2929. 39 40. J L Dormann, D Fiorani, E Tronc, “Magnetic Relaxation in Fine-Particle Systems”, Adv. Chem. Phys., John Wiley & Sons, Inc. (1997) 283. 40 41. J Dormann, D Fiorani, and E Tronc, J. Magn. Magn. Mater. 202 (1999) 251. 41
ORIGINAL_ARTICLE Production of anti-hydrogen atom by charge transfer process in anti-proton-positronium atom impact در کار حاضر محاسبه سطح مقطع جزئی و کل برای تولید اتم پادهیدروژن در حالت پایه و چند حالت برانگیخته، توسط بازچینی‌های مختلف هامیلتونی و با استفاده از پتانسیل‌های برهم‌کنشی الکترونی و الکترون- پادپروتون، به عنوان تقریب‌های بورن موج تخت و بورن موج واپیچیده کولنی در محدوده انرژی‌های میانی و بالا انجام شده است. در این محاسبات اتم پوزیترونیوم در حالت پایه در نظر گرفته شده و تشکیل اتم پادهیدروژن در حالت پایه و حالت‌های برانگیخته2p 2s  مورد بررسی قرار گرفته است. نتایج به دست آمده به صورت سطح مقطع جزئی و کل با داده‌های تجربی و نظریه‌های مختلف در دسترس مقایسه شده است. محاسبات نشان می‌دهند که تقریب بورن موج تخت در کانال بازآرایی بار برخلاف کانال تهییج به نتایج بهتری در مقایسه با تقریب بورن موج واپیچیده کولنی منجر خواهد شد.     https://ijpr.iut.ac.ir/article_1278_0f5061cabb2071567f8856b47822dc62.pdf 2019-11-26 433 442 10.18869/acadpub.ijpr.17.3.433 Anti-Hydrogen positronium differential cross Section Coulomb wave function R fathi rfathi@uk.ac.ir 1 دانشگاه شهید باهنر کرمان LEAD_AUTHOR H Pishkooi hpishkooi@sci.uk.ac.ir 2 دانشگاه شهید باهنر کرمان AUTHOR 1. M Charlton et al., Phys. Rep. 241 (1994) 65. 1 2. M H Holzscheiter, and M Charlton, Rep. Prog. Phys. 62 (1999) 1. 2 3. J Eades, and F J Hartmann, Rev. Mod. Phys. 71 (1999) 373. 3 4. M H Holzscheiter et al., Hyp. Int. 109 (1997) 1. 4 5. G Baur et al., Phys. Lett. B 368 (1996) 251. 5 6. M Amoretti et al., Phys. Lett. B 583 (2004) 59. 6 7. G Gabriels et al., Phys. Rev. Lett. 100 (2008) 113001 (4pp). 7 8. A Chattopadhyay and C Sinha, Phys. Rev. A 74 (2006) 022501. 8 9. D B Cassidy, J P Merrison, M Charlton, J Mitroy and G Ryzhikh, J. Phys. B 32 (1999) 1923. 9 10. J Mitroy and G Ryzhikh, J. Phys. B 30 (1997) L371. 10 11. N Yamanaka and Y Kino, Nucl. Instrum. Meth. Phys. Res. B 214 (2004) 40. 11 12. H C Brinkman and H A Kramers, Proc. Acad. Sci. 33 (1930) 973. 12 13. J D Jackson and H Schiff, Phys. Rev. 89 (1953) 359. 13 14. S Geltman, J. Phys. B 4 (1971) 1288. 14 15. R P Feynman, Phys. Rev. 76 (1949) 769. 15 16. A Nordsiek, Phys. Rev. 93 (1954) 785. 16 17. S Tripathi, R Biswas and C Sinha, Phys. Rev. A 51 (1995) 3584. 17 18. J P Merrison et al., Phys. Rev. Lett. 78 (1997) 2728. 18
ORIGINAL_ARTICLE The comparison of double-diffusive mixed convection in square driven cavities with one and two moving lids In this study, the unsteady double-diffusive mixed convection in the one and two-sided lid-driven cavities are studied and compared together using numerical SIMPLE algorithm. Uniform but different temperatures and mass concentrations are assumed at horizontal walls. The used fluid (pure air) was assumed incompressible and Newtonian. The used numerical method is firstly validated against previously published numerical results. Then, the numerical simulations were carried out for almost a wide range of Richardson number, whereby the study of various convection regimes would be possible. Results show that the convection heat and mass transfer are reduced with increasing Richardson number. The conductive mode of heat transfer is enhanced by increasing Ri value, so cavities are quasi-conductive domains when fluid flow was dominated by free convection. It was also observed that the heat and mass are better transferred in two-sided lid-driven cavities with respect to the other ones which was due to the extra mechanical forces imposed by the two-sided lids movement. The velocity profile variations demonstrate that the flow is decelerated with increasing Richardson number especially near the bottom horizontal wall. It has also been found that both of entropy generation and total kinetic energy reduce as either Richardson number enhances or two-sided lids movement reduces to one-sided lid movement. https://ijpr.iut.ac.ir/article_1279_de3565ba225cf85c77056859b1f8b06a.pdf 2019-11-26 443 456 10.18869/acadpub.ijpr.17.3.443 double-diffusive convection diffusion conduction heat and mass transfer entropy Omid Ghaffarpasand o.ghaffarpasand@gmail.com 1 دانشگاه اصفهان LEAD_AUTHOR Mohsen Mohebinejad shiler2030@live.com 2 دانشگاه اصفهان AUTHOR 1. A Al-Amiri, K Khanafer, J Bull, and I Pop, International Journal of Heat and Mass Transfer 50, 9 (2007) 1771. 1 2. K Khanafer and K Vafai, Numerical Heat Transfer: Part A: Applications 42, 5 (2002) 465. 2 3. L Florio and A Harnoy, International Journal of Thermal Sciences 46, 1 (2007) 76. 3 4. C Cha and Y Jaluria, International Journal of Heat And Mass Transfer 27, 10 (1984) 1801. 4 5. P O Iwanik and W K Chiu, Numerical Heat Transfer A: Applications 43, 3 (2003) 221. 5 6. M Hasan and A Mujumdar, International Journal of Energy Research 9, 2 (1985) 129. 6 7. S Singh and M Sharif, Numerical Heat Transfer A: Applications 44, 3 (2003) 233. 7 8. R Iwatsu and J M Hyun, International Journal of Heat and Mass Transfer 38, 18 (1995) 3319. 8 9. HF Oztop and I Dagtekin, International Journal of Heat and Mass Transfer 47, 8 (2004) 1761. 9 10. D Maiti, A Gupta, and S Bhattacharyya, Journal of Heat Transfer 130, 12 (2008) 122001. 10 11. B Ghasemi and S Aminossadati, Numerical Heat Transfer A: Applications 54, 7 (2008) 726. 11 12. W Shi and K Vafai, Numerical Heat Transfer A: Applications 57, 10 (2010) 709. 12 13. M M Rahman, H F Oztop, A Ahsan, M A Kalame, and Y Varolb, International Communication in Heat and Mass Transfer 39 (2012) 264. 13 14. K Ghachem, L Kolsi, C Maatki, A K Hussein, and M N Borjini, International Communication in Heat and Mass Transfer 39 (2012) 869. 14 15. R Alvarado-Juárez, G Álvarez, J Xamán, and I Hernández-López, Numerical study of Conjugate Heat and Mass Transfer in a Solar Still Device. Desalination 325 (2013) 84. 15 16. S Saha, S Mojumder, MM Rahman, MAH Mamun, S Mekhilef, and R Saidur, “Effect of Lewis Number on Unsteady Double-Diffusive Induced Flow in a Triangular Solar Collector With Corrugated Wall”, Proceding in Engineering 90 (2014) 418. 16 17. Sh Chen, B Yang, X Xiao, and C Zheng, International Journal of Heat and Mass Transfer 87 (2015) 447. 17 18. M B Uddin, M M Rahman, M A H Khan, R Saidur, and T A Ibrahim, Alexandria Engineering Journal 55, 2 (2016) 1165. 18 19. MM Gholizadeh, R Nikbakhti, J Khodakhah, and A Ghasemi, Alexandria Engineering Journal. 55, 2 (2016) 779. 19 20. K Ghachem, L Kolsi, C Maatki, A Alghamdi, H F Oztop, M N Borjini, H B Aissia, and Al-Salem K International Journal of Thermal Sciences 110 (2016) 241. 20 21. A Barletta and E Zanchini, International Journal of Heat and Mass Transfer 42, 16 (1999) 3169. 21 22. G h Kefayati, International Journal of Heat and Mass Transfer 94 (2016) 582. 22 23. T Cheng, International Journal of Thermal Sciences 50, 2 (2011) 197. 23 24. S Patankar, “Numerical Heat Transfer and Fluid Flow”, Hemisphere, Washington DC (1980). 24 25. N Ouertatani, N B Cheikh, B B Beya, T Lili, and A Campo, International Journal of Thermal Sciences 48, 7 (2009) 1265. 25 26. M A Teamah and W M El-Maghlany, International Journal of Thermal Sciences 49, 9 (2010) 1625. 26 27. R Schreiber and H Keller, Journal of Computational Physics 49, 2 (1983) 310. 27
ORIGINAL_ARTICLE Transport in quantum dots resonant tunneling diodes in non-interacting regime In this paper, we used green's function approach in microscopic theory to investigate a resonant tunneling diode (RTD). We introduced the detailed Hamiltonian for each part of the photovoltaic p-i-n system, then by calculating the green's function components in tight-binding approximation, we calculate local density of states and current-voltage characteristic of the p-i-n structure. Our results show a non-Ohmic behavior and negative differential resistance in RTD. As a result of a longitudinal electric field, the local density of states varies by changing the applied potential. Moreover, we study the effect of changing the physical parameters on the current of the device. Entering quantum dots in the middle of device causes a negative differential resistance, which is a consequence of resonant tunneling phenomenon. https://ijpr.iut.ac.ir/article_1280_138be51269ebe573544e38e1a2edc404.pdf 2019-11-26 457 463 10.18869/acadpub.ijpr.17.3.457 resonant tunnelling diode Green function quantum dots transport local density of states M T Asefpour 1 دانشگاه صنعتی اصفهان AUTHOR P Sahebsara sahebsara@cc.iut.ac.ir 2 دانشگاه صنعتی اصفهان LEAD_AUTHOR [1] L. L. Chang et al., Appl. Phys. Lett. 24 (1974) 593. 1 [2] H. Mizota and T. Tanoue, “The Physics and Applications of Resonant Tunneling Diods”, Cambridge University Press (2006). 2 [3] A. Luque et al., Solar Energy Materials & Solar Cells 95 (2011) 2095. 3 [4] A Berbezier and F Michelini, J. Renewable Sustainable Energy 6 (2014) 011205. 4 [5] J Ping Sun et al., Proceedings of the IEEE 86, 4 (1998) 641. 5 [۶]V. Aroutiounian, S. Petrosyan, A. Khachatryan, Solar Energy Materials & Solar Cells 89 (2005) 165. 6 [۷] S. Datta, “Electronica Transport in Mesoscopic System”, Cambrige University Press (1995). 7 [۸] M. Luisier, “Quantum Transport Beyond the Effective Mass Approximation”, PhD Thesis, Swiss Federal Institute of Technology, Zurich (2007). 8 [۹]A. Luque, A. Panchak, A. Mellor, A. Vlasov, A. Martí, V. Andreev, Solar Energy Materials & Solar Cells 141 (2015) 39. 9 [۱۰] A Buin , A Verma, and S Saini, J. Appl. Phys. 114 (2013) 033111.. 10 [1۱] N Garcia-Castello, S Illera, R Guerra, J Daniel Prades, S Ossicini, and A Cirera, Phys. Rev. B 88 (2013) 075322. 11 [1۲] A Berbezier and F Michelini, Optical and Quantum Electronics, 45, 7 (2013) 693. 12 [1۳] U. Aeberhard, Optical and Quantum Electronics 44 (2012) 133. 13 [1۴] M. Ogawa et al., Solid-State Electronics 44 (2000) 1939. 14 [1۵] A. Kletsov, Y. Dahnovsky, J. V. Ortiz, J. Chem. Phys. 126 (2007) 134105. 15 [1۶] R. Lake et al., J. Appl. Phys. 81 (1997) 7845. 16 [1۷] G. Grosso and G. P. Parravicini, “Solid State Physics ”, Academic Press (2014). 17 [۱۸] M T Asefppour, "Transport in quantum well diodes using Non-equilibrium Green function approach", Master Thesis, Isfahan University of Technology, Isfahan, Iran (2014). 18
ORIGINAL_ARTICLE Design of electronic devices based on carbon nanotubes heterojunction contacts to Zn ring layers In recent years, due to electron transport properties of nanostructures based on carbon nanotubes, a lot of attention to design electronic devices in the field of nanotechnology has attracted. There are three types of carbon nanotubes in zigzag, armchair and chiral (asymmetrical) forms. Since the types of armchair are electrically conductive, by a combination with a metal such as zinc can be achieved by various means distinct applications. In this respect, we select different layers of circular connectors on the number of atoms of 10, 20 and 30, respectively, in the systems A-Zn10-A, A-Zn20-A and A-Zn30-A, where (A: armchair). Our calculations are based on the Green's function method within tight-binding approximation in the nearest neighbors in the framework of Landauer. The results are able to predict that devices with different functions such as quantum conductor wire, negative differential resistance and rectifier design. The results may be useful in the design of electronic devices at the nanometer scale. https://ijpr.iut.ac.ir/article_1281_dd4abe321cb6cfd2f5e734c2537644a6.pdf 2019-11-26 465 472 10.18869/acadpub.ijpr.17.3.465 electrical transport tight-binding Green's function carbon nanotube Zn ring layers A Shokri aashokri@pnu.ac.ir 1 گروه فیزیک، دانشگاه پیام‌نور، تهران LEAD_AUTHOR E Yazdi 2 گروه فیزیک، دانشگاه پیام‌نور، تهران AUTHOR 1. J C Charlier and X Blasé and S Roche, Rev. Mode. Phys. 79 (2007) 677. 1 2. S Iijima, Nature 354 (1991) 56. 2 3. P Harrison, “Quantum Wells, Wires and Dots”, Wiley, New York (2000). 3 4. S Datta, “Quantum Transport Atom to Transistor”, Cambridge University Press (2005). 4 5. L Dai, Pure Appl. Chem. 74 (2002) 1753. 5 6. M S Ferreira, T G Dargam, R B Muniz and A latge, Phys. Rev. B 62 (2000) 16040. 6 7. N N Greenwood and A Earnshaw, “Chemistry of the Elements”, Butterworth-Heinemann (1997). 7 8. A D Christopher and J M Tour, Phys. Chem. A 108 (2004) 11151. 8 9. A Jorio, G Dresselhaus, and M S Dresselhaus, “Carbon Nanotubes, Advanced Topics in the Synthesis, Structure, Properties and Applications”, Springer-Verlag (2008). 9 10. M Khazaei, S U Lee, F Pichierri, and Y Kavazaoe, American Chemial Society Nano. 2 (2008) 939. 10 11. M Khazaei and S U Lee, F Pichierri, and Y Kavazaoe, J. Phys. Chem. C 111 (2007) 12175. 11 12. S U Lee, M Khasaei, F Pichierri, and Y Kavazaoe, Phys. Chem. Chem. Phys. 10 (2008) 5225. 12 13. T C Li and S-P Lu, Phys. Rev. B 77 (2008) 085408. 13 14. M B Nardelli, Phys. Rev. B 60 (1999) 7828. 14 15. S Reich, C Thomsen, and J Maultzsch, “Carbon Nanotubes”, Wiley–VCH, Weinheim (2004). 15 16. R Saito, M Fujita, G Dresselhaus, and M S Dresselhaus, Phys. Rev. B 46 (1992) 1804. 16 17. R Saito, “Physical Properties of Carbon Nanoyubes”, Imperial College Press (1998). 17 18. A A Shokri and Z Karimi, Iranian Journal of Physics Research 13, 2 (2013) 169. 18 19. A A Shokri, M Mardaani, and K Esfarjani, Physica E 27 (2005) 325 19
ORIGINAL_ARTICLE Observation of cosmic rays by Alborz -1 array The first phase of the Alborz Observatory Array (Alborz-1) consists of 20 plastic scintillation detectors each one with surface area of 0.25  spread over an area of  realized to the study of Extensive Air Showers around the knee at the Sharif University of Technology campus. The first stage of the project including construction and operation of a prototype system has now been completed and the electronics that will be used in the array instrument has been tested under field conditions. In order to achieve a realistic estimate of the array performance, a large number of simulated CORSIKA showers have been used. In the present work, theoretical results obtained in the study of different array layouts and trigger conditions are described. Using Monte Carlo simulations of showers the rate of detected events per day and the trigger probability functions, i.e., the probability for an extensive air shower to trigger a ground based array as a function of the shower core distance to the center of array are presented for energies above 1 TeV and zenith angles up to . Moreover, the angular resolution of the Alborz-1 array is obtained. For experimental study of the array, Alborz-1 sub-array consists of 5 detectors on a pentagon configuration similar to the central cluster of the Alborz-1 array have been collecting data since 2014 February for 14 month in 4th floor of physics department at Sharif University of Technology. Alborz-I, made of 20 scintillation detectors is set up in a cluster layout to study the cosmic ray spectrum in the energy range of 1012 to 1016 eV. . This paper reveals the zenith angle distribution function of detected air showers by this sub-array. https://ijpr.iut.ac.ir/article_1282_baf285af337a65ad81d8f1b52855539f.pdf 2019-11-26 473 484 10.18869/acadpub.ijpr.17.3.473 extensive air shower ground based detector array trigger probability angular resolution Mahmud Bahmanabadi bahmanabadi@sharif.edu 1 دانشگاه صنعتی شریف LEAD_AUTHOR 1. M Bahmanabadi, M Khakian Ghomi, J Samimi, and D Purmohammad; Experimental Astronomy 15 (2003) 13. 1 3. Y Pezshkian et al., Nuclear Instruments & Methods in Physics Research A 773 (2015)117. 2 5. M Amenomori et al., The Astrophysical Journal 461 (1996) 408. 3 6. M Bahmanabadi et al., Experimental Astronomy 13 (2002) 39. 4
ORIGINAL_ARTICLE Tunneling conductance in a graphene-insulator-superconductor junction with Corbino disk structure. We study tunneling conductance of a graphene based normal metal-insulator-superconductor (NIS) junction with Corbino disk structure. Solving Dirac-Bogolioubov- De Gennes (DBdG) equation in different regions of the junction and employing scattering approach we obtain normal and Andreev reflection coefficients of the junction. Using Blonder-Tinkham-Klapwijk (BTK) formula we calculate tunneling conductance of the junction as a function of the barrier strength of insulating region. The obtained results show that tunneling conductance of the junction oscillates as a function of the barrier strength as in the planar structure case. The tunneling conductance shows maximums at resonances which have a pi/2  phase shift with respect to the planar structure. https://ijpr.iut.ac.ir/article_1283_7b6236629d2357c9bd4e692e99cf4ff4.pdf 2019-11-26 485 489 10.18869/acadpub.ijpr.17.3.485 graphene Tunneling conductance superconductor Corbino disk Andreev reflection Thin Barrier Hosniye Khatami 1 دانشگاه زنجان AUTHOR Elham Moomivand elham.moomivand@gmail.com 2 دانشگاه زنجان AUTHOR Babak Abdollahipour b-abdollahi@tabrizu.ac.ir 3 دانشگاه تبریز AUTHOR Ramin Mohammadkhani rmkhani@znu.ac.ir 4 دانشگاه زنجان LEAD_AUTHOR 1. K.S. Novoselov et al., “Electric Field Effect in Atomically Thin Carbon Films”; ‎Sciencs‎ ‎306‎‎, 666-669 (2004‎). 1 2. K.S. Novoselov et al., “Two-dimensional gas of massless Dirac fermions in grapheme”; Nature 438, 197 (2005). 2 3. C.W.J. Beenakker, “Specular Andreev reflection in graphene” Phys. Rev. Lett 97, 067007 (2006). 3 4. .M. Titov and C.W.J. Beenakker, “Josephson effect in ballistic graphene” Phys. Rev. B 74, 041401(R) (2006). 4 5. Ali G. Moghaddam, M. Zareyan, “Josephson effect in mesoscopic graphene strips with finite width” Phys. Rev. B 74, 241403(R) (2006). 5 6. Ali. G. Moghaddam and M. Zareyan “Graphene based superconducting quantum point contacts” 6 Appl. Phys. A 89, 579-585 (2007). 7 7. J. Gonzalez, and E. Perfetto, “Critical currents in graphene Josephson junctions” J. Phys.: Condens. Matter 20, (2008). 8 8. Xu Du, Ivan Skachko, and Eva Y. Andrei, “Josephson current and multiple andreev reflections in graphene sns junctions” Phys. Rev. B 77, 184507 (2008). 9 9. F. Miao, S. Wijeratne, Y. Zhang, et al., “Phase-Coherent Transport in Graphene Quantum Billiards” Science 317, 1530 (2007). 10 10. Subhro Bhattacharjee and K.Sengupta, “Tunneling conductance of graphene nis junctions” Phys. Rev. Lett 97, 217001 (2006). 11 11. Babak Abdollahipour and Elham Moomivand “Magnetopumping current in graphene Corbino pump” Physica E 86, 204–209 (2017). 12 12. P. Recher, B. Trauzettel, A. Rycerz, M. Blanter, C.W.J. Beenakker and A.F. Morpurgo, “Aharonov-Bohm effect and broken valley degeneracy in graphene rings” Phys. Rev. B 76, 235404 (2007). 13 13. G.E. Blonder, M. Tinkham, and T. M. Klapwijk, “Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion” Phys. Rev. B 25, 4515 (1982). 14
ORIGINAL_ARTICLE Molecular dynamics simulation of phase transition of boron nitride single walled nanotube The melting of zigzag, armchair and chiral single walled boron nitride nanotubes (SWBNs) investigated using molecular dynamics (MD) simulation based on Tersoff-like many body potential. The MD simulation has been employed in the constant pressure, constant temperature (NPT) ensemble. The temperature and pressure of the system were controlled by Nose-Hoover thermostat and Berendsen barostat, respectively. We have computed the variation of the melting temperature with the radius of BN nanotube. The results show that the melting temperature of nanotubes increase with increasing in the size of radii, but this dependence is not the same for the various chiral angle of nanotubes. The relation of the melting point with radius for three types of nanotubes i.e. zigzag, armchair and chiral obtained. Moreover, our results show that the melting temperature of nanotubes approach a constant value at larger radii. https://ijpr.iut.ac.ir/article_1284_a2aaed6fa4b8fd280ba0bfe1b204ce60.pdf 2019-11-26 491 497 10.18869/acadpub.ijpr.17.3.491 molecular dynamics simulation melting temperature boron nitride nanotube Tersoff-like potential Jamal Davoodi jdavoodi@znu.ac.ir 1 دانشگاه زنجان LEAD_AUTHOR Rogaieh Yousefi roqaieh.yousefi@znu.ac.ir 2 دانشگاه زنجان AUTHOR 1. W H Moon, H J Hwang, Physic E 23 (2004) 26. 1 2. T H Ferreira, P R O da Silva, R G dos Santos, E M B de Sousa, J. of Biomaterials 2 and Nanobiotechnology 2 (2011) 426. 3 3. V Nirmala, P Kolandaivel, Theochem 817 (2007) 137. 4 4. D Golberg, Y Bando, C C Tang, C Y Zhi, Advanced-materials 19 (2007)2413. 5 5. M Zheng, X Chen, I T Bae, C Ke, C W Park, M Smith, K Jordan, small 8 (2012) 116. 6 6. W H Moon, H J Hwang, Nanotechnology 15 (2004) 431. 7 7. A RUBIO, J L CORKILL, M L COHEN, Phys. Rev. B 49 (1994) 5081. 8 8. W Sekkaly, B Bouhafsy, H Aouragy and M Certierz, J. Phys.: Condens. Matter 10 (1998) 4975. 9 9. E S Oh, Met. Mater. Int. 17 (2011) 21. 10 10. H Koga, Y Nakamura, S Watanabe, T Yoshida, Science and Technology of Advanced Materials 2 (2001) 349. 11 11. V Verma, V K Jindal and K Dharamvir, Nanotechnology 18 (2007) 435711. 12 12. Y Xiao, X H Yan, J X Cao, J W Ding, Y L Mao and J Xiang, PHYSICAL REVIEW B 69 (2004) 205415. 13 13. W H Moon, H J Hwang, Physics Letters A 320 (2004) 446. 14 14. W H Moon, H J Hwang, Nanotechnology 15 (2004) 431. 15 15. J Davoodi, L Mehri, Iranian Journal of Physics Research 10 (2010) 239. 16 16. J Davoodi, M Asgarikhah, Iranian Journal of Physics Research 11 (2011) 161. 17 17. S. M. Huseini, S. M. Amini. Iranian Journal of Physics Research 2 (2001) 277. 18 18. M Peyvasteh, S Setayeshi, M Vaez Zadeh, R Afzal Zadeh. Iranian Journal of Physics Research 14 (2014) 187. 19 19. J M Haile, “Molecular Dynamics Simulation”, Johan Wiley and Sons, New York (1992). 20 20. M P Allen and D J Tildesly, “Computer Simulation of Liquids”, Oxford Science Publications, Oxford (1996). 21 21. J Tersoff, Phys. Rev. B 39 (1989) 5566. 22 22. J Zang, O Aldas-Palacios, and F Liu, Commun. Comput. Phys. 2 (2007) 451. 23 23. D Y Sun and X G Gong, J. Phys.: Condens. Matter. 14 (2008) L487. 24 24. H J C Berendsen, J P M Postma, W F Van Gunsteren, A Dinola, J R Hakk, J. Chem. Phys. 81 (1984) 3684. 25 25. S Nose, J. Chem. Phys. 81 (1984) 511. 26 26. W G Hoover, Phys. Rev. A 31 (1985) 1695. 27 27. K K Nada, S N Sahu, and S N Behera, Phys. Rev. A 66 (2002) 013208-1. 28 28. S K Nayak, J N Khanan, B K Rao and P Jena, Phy. Condens. Matter 10 (1998) 10853. 29
ORIGINAL_ARTICLE Co-sensitization of quantum dot sensitized solar cells composed of TiO2 nanocrystalline photoanode with CdS and PbS nanoparticles and effect of PbS on the performance of solar cells In this research, CdS and PbS quantum dots were applied as the light sensitizers in TiO2 based nanostructured solar cells. The PbS quantum dots could absorb a wide range of the sunlight spectrum on earth due to their low bandgap energy. As a result, the cell sensitization is more effective by application of both CdS and PbS quantum dots sensitizers. The TiO2 nanocrystals were synthesized through a hydrothermal process and deposited on FTO glass substrates as the photoanode scaffold. Then PbS quantum dots were grown on the surface of this nanocrystalline layer by a successive ionic layer adsorption and reaction (SILAR) method. The CdS quantum dots were over-grown in the next step through a similar deposition method. Finally this sensitized layer was applied as the photoelectrode of the corresponding quantum dot sensitized solar cells. The results demonstrated that the maximum efficiency was achieved for the cell with a photoanode made of co-sensitization through 2 and 6 cycles of PbS and CdS deposition, respectively. The photovoltaic parameters of this cell were measured as Jsc of 10.81 mA/cm2, Voc of 590 mv and energy conversion efficiency of 2.7±0.2% https://ijpr.iut.ac.ir/article_1285_fc18351dae8f4ec62179d97e738a0dc2.pdf 2019-11-26 499 507 solar cells PbS quantum dots TiO2 nanoparticles F Ahangarani Farahani 1 گروه فیزیک، دانشکده علوم پایه، دانشگاه اراک، اراک AUTHOR M Marandi 2 گروه فیزیک، دانشکده علوم پایه، دانشگاه اراک، اراک LEAD_AUTHOR 1. B O’Regan and M Grätzel, Nature 353 (1991) 353. 1 2. R Ross and A Nozik, J. Appl. Phys. 53 (1982) 3813. 2 3. A Nozik, Annu. Rev. Phys. Chem. 52 (2001) 193. 3 4. M Eskandari, V Ahmadi, M Yousefi Rad, and S Kohnehpoushi, Physica E: Low-dimensional Systems and Nanostructures 14 (2014)1386. 4 5. J Kim, H Choi, CH Nahm, J Moon, CH Kim, S Nam, D R Jung, and B Park, Journal of Power Sources 196 (2011) 10526. 5 6. Y Zhang Shen, L Wei Zhang, Y Zhang Fuyuan, Q Shuyao Wu, Q Ting Feng, and X Ming Song, Electrochimica Acta 150 (2014)167. 6 7. H Shang Rao, W QiangWu, Y Liu, Y F Xu, B X Chen, H Y Chen, D B Kuang, and C Y Su, Nano Energy 8 (2014) 1. 7 8. Y Lai, Z Lin, D Zheng, L Chi, R Du, and C Lin, Electrochimica Acta 79 (2012) 175. 8 9. J W Lee, D Y Son, T K Ahn, H W Shin, Y Kim, S Hwang, M Ko, S Sul, H Han, N G Park, Scientific Reports 3 (2013) 1050. 9 10. N Zhou, G Chen, X Zhang, L Cheng, Y Luo, D Li, Q Meng, Electrochemistry Communications 20 (2012) 97. 10 11. V González-Pedro, C Sima, G Marzari, P P Boix, S Giménez, Q Shen, T Dittrich, and I Mora-Seróe, Physical Chemistry Chemical Physics 15 (2013) 4283 11 12. S R hle, M Shalom, and A Zaban, Chem. Phys. Chem. 11 (2010) 2290. 12 13. Y Zhu, R Wang, W Zhang, and H Ge, Applied Surface Science 315 (2014) 149. 13 14. S Acharya, B Das, U Thupakula, K Ariga, D D Sarma, J Israelachvili, and Y Golan, Nano Lett. 13 (2013) 409. 14 15. D Dimitrakopoulos and R L Malenfant, Advanced Materials 14 (2002) 99. 15 16. M Marandi, S Feshki, M Naeimi Sani Sabet, Z Anajafia, and N Taghavinia, RSC Advances 4 (2014) 58064. 16 17. R Zhou, Q Zhang, E Uchaker, J Lan, M Yin, and G Cao, Journal of Materials Chemistry A 2 (2014) 2517 17