ORIGINAL_ARTICLE Measuring Destructive effects of gamma radiation on the physical properties of steel In the present study, the most useful stainless steels of in nuclear industry, i.e. 304, 304L and 316L were provided and laser cut into 0.5*0.5 cm dimension. The effect of radiation on physical properties of samples were investigated. Gamma irradiation on samples was done with a 60Co radioisotope to the doses of 100 and 200 kGy. The resistance of the samples was measured through the Four-Probe technique, and also the special resistance and the electrical conductivity of the samples were measured from resistance. The conductivity of the samples was obtained through Widman-Frantz. The magnetic properties of the samples were also measured by the Vibrating Sample Magnetometer.  https://ijpr.iut.ac.ir/article_1366_6e0c39570e110ade8676ec88ffe7499d.pdf 2019-11-26 369 377 10.29252/ijpr.18.3.369 stainless steels Four-Probe Widman-Frantz Vibrating Sample Magnetometer Z Amirsardari zahra.amirsardari71@gmail.com 1 گروه فیزیک، دانشکده علوم، دانشگاه اصفهان، اصفهان LEAD_AUTHOR M R Abdi r.abdi@phys.ui.ac.ir 2 گروه فیزیک، دانشکده علوم، دانشگاه اصفهان، اصفهان AUTHOR 1. D T Liewellyn, “Stainless Steel”, Harrison (1992) 214. 1 2. W Smith, “Structure and Properties of Engineering Materials”, McGrau- Hill (1987) 23. 2 3. V Gann and O V Ogorodnikova, Journal of Nuclear Materials 460 (2015) 60. 3 4. J M K Wiezorek, Y Huang, F A Garner, P D Freyer, M Sagisaka, and Y Isobe, Journal of Iron and Steel, 6 (2014) 1822. 4 5. M V Peralta-Martinez, M J Assael, M J Dix, L Karagiannidis, and W A Wakeham, Ional Journal of Springer 2 (2006) 353. 5 6. C Alper Billur, E Gerçekcioglu, M Bozoklu, B Saatçi, M Ari and F. Nair, Journal of Alloys Thermal Conductivity Measurements 21 (2015) 1. 6 7. A Vieirada Rosa, “Fundamentals of Reneuable Energy Processes”, Elsevier Academic press (2009). 7 8. G Grosso and G P Parravicin,“Solid State Physics”, Academic Press (2009). 8 9. D Jiles, “Introduction to Magnetism and Magnetic Materials”, Chapman & Hall (1998). 9 10. S A Sebt and M Akhavan, Iranian Journal of Physics Research 3, 3 (2002) 199. 10 11. W Seog Ryu, D Gyu Park, U Sup Song, J Seok Park and S Bok Ahn, Journal of Nuclear Engineering and Technology 45 (2012) 219. 11 12. T W Shyr, S J Huang, and C S Wur, Journal of Magnetism and Magnetic Materials 419 (2016) 400. 12 13. B A Gurovich, E A Kuleshova, A S Frolov, D A Maltsev, K E Prikhodko, S V Fedotova, B Z Margolin, and A A Sorokin, Journal of Nuclear Materials 465 (2015) 565. 13 14. H Shokrollahi, Materials and Design 30 (2009) 3374. 14
ORIGINAL_ARTICLE Elastic scattering of 15N ions by 12C at 23 MeV Scattering of 15N ions with the energy of Elab = 23 MeV on the CH2(Au) target is investigated.  Elastic scattering of these ions in the angular range of 7°-19° was measured by employing the silicon strip detector, “LEDA”. Using the measured scattering data, deviation of ion beam, number of incident ions on the target and differential cross sections of the 12C(15N, 15N)12C elastic scattering in the angular range of 7°-19° were determined.  Moreover, by applying the optical model and using the Fresco software, the scattering cross sections in the angular range of 0°-60° in the laboratory framework were obtained by entering the extrapolated optical parameters.  The obtained cross section data were then compared with the experimental ones.  The theoretical cross section data resulting from the optical potential exhibit meaningful difference with the experimental data obtained in this research work in the covered angular range.   https://ijpr.iut.ac.ir/article_1367_7eccda9e2c79fe30924c3b788e5bae5a.pdf 2019-11-26 379 389 10.29252/ijpr.18.3.379 elastic scattering nucleus-nucleus collision 15N ion beam 12C target Optical Model LEDA Detector H Nanakar h_nanakar2006@yahoo.com 1 گروه فیزیک، دانشگاه پیام نور، تهران LEAD_AUTHOR O Kakuee 2 پژوهشکده فیزیک و شتابگرها، پژوهشگاه علوم و فنون هسته‌ای، تهران AUTHOR 1. M E Farid et al., Life Sci. J. 11 (2014) 208. 1 2. P E Hodgson, “Growth Points in Nuclear Physics”, Pergamon Press, Oxford (1980). 2 3. J C Blackman, Phys. Rev. C 72 (2005) 34606. 3 4. W Norenberg, “Basic Concept in the Description of Collisions Between Heavy Nuclei, in Heavy Ion Collisions”, ed. R Bock, North-Holland Publishing Company, Amsterdam (1980). 4 5. G R Satchler, “Introduction to Nuclear Reactions”, Mc Millan Press Ltd, London (1980). 5 6. A Aydın, “40Ar(p,p)40Ar Esnek Saçılmasının 22.6, 27.5, 30.0 ve 36.7MeV Proton Enerjilerinde Optiksel Model Analizi”, PhD Thesis, Ondokuz Mayıs Niversitesi, Fen Bilimleri Enstitüsü, Samsun (1997). 6 7. G R Satchler, “Direct Nuclear Reactions”, Oxford University Press, New York (1983). 7 8. M E Brandan and G R Satchler, Phys. Reports 285 (1997) 143. 8 9. I Boztosun, “Coupled-Channels Calculations for the Scattering of Deformed Light Heavy-Ions: A Challenge to the Standard Approach”, PhD thesis, Oxford University, UK (2000) 65. 9 10. Y Kondo, Y Sugiyama, Y Tomita, Y Yamamuchi, H Ikeoze, K Idenio, S Hamada, T Sugimutsu, M Hijiya, and H Fujita, Phys. Lett. B 365 (1996) 17. 10 11. M P Nicoli, F Freeman, R M Aissaou, N Beck, E Elanigue, A Noucier, R Morsad, A Szilner, S Basrak, M E Brandan, Nucl. Phys. A 654 (1999) 882. 11 12. D T Khoa, W von Ortezen, H G Bohlen, and F Nuoffer, Nucl. Phys. A 672 (2000) 387. 12 13. Y Kondo, B A Robson, and R Smith, Phys. Lett. B 227 (1989) 310. 13 14. Y Kondo, F Michel and G Reidemeister, Phys. Lett. B 242 (1990) 340. 14 15. M M Gonzalez and M E Brandan, Nucl. Phys. A 693 (2001) 603615. 15 16. M E Kürkçüoğlu and H Aytekin, Ind. J. of Phys. 80 (2006) 641. 16 17. M E Kürkçüoğlu, “16O+16O Esnek Saçılmasının Fenomenolojik ve Mikroskobik Potansiyeller ile Optik Model Analizleri”, PhD Thesis, Onguldak Karaelmas University, Fen Bilimleri Enstitüsü, Zonguldak, (2006) 227. 17 18. J cook, Nucl. Phys. A 388 (1982) 153. 18 19. O R Kakuee et al., Iranian J. phys. Res. 4, 1 (2003) 23. 19 20. W Von Ortzen and H G Bohlen, Phys. Rep. 19, (1975) 1. 20 21. L Auditore et al., Heavy Ion Phys. 17 (2003) 41. 21 22. A T Rudchik et al., Nucl. Phys. A 947 (2016) 161. 22 23. A Gurbich, Nucl. Instr. And Meth. B 266 (2008) 1193. 23 24. T Yamaya et al., Phys. Lett. B 417 (1998) 7. 24 25. A T Rudchik et al., Nucl. Phys. A 941 (2015) 167. 25 26. W Henning et al., Phys. Rev. C 15 (1977) 292. 26 27. S Bashkin et al., Phys. Rev. 114 (1959) 1543. 27 28. G Dearnaley et al., Phys. Lett. 1 (1962) 269. 28 29. M L Halbert, C E Hunting, and A Zucker, Phys. Rev. 117 (1960) 1545. 29 30. A T Rudchik, Nucl. Phys. A 958 (2017) 234. 30 31. T Davinson, Nucl. Instr. and Meth. In Phys. Research A 545 (2000) 350. 31 32. G F E Knoll, “Radiation Detection and Measurment”, Wiley (1979). 32 33. W R Leo, “Techniques for Nuclear and Particle Physics Experiments”, Springer-Verlag (1994). 33 35. K S Krane, “Introductory Nuclear Physics”, Wiley, New York (1988). 34 36. J Rahighi et al., Nucl. Instr. and Meth. In Phys. Research A 578 (2007) 185. 35 37. Y Kucuk and I Boztosun, Nucl. Phys. A 764 (2006) 160. 36
ORIGINAL_ARTICLE Design and fabrication of a heterodyne electrooptic modulator in lithium niobate In this research, design and fabrication of an integrated heterodyne electrooptic modulator in lithium niobate have been presented. In this modulator, the waveguide is made by using proton exchange process; to exert two high frequency signals, deposited electrodes with Mach-Zender arms between them are used. In this method, every electrical signal is applied on one of the Mach-Zender arms, so that it can be stimulated by one specific frequency; these two signals are united optically to create frequencies equal to sum and subtraction of the input signal frequencies in the output. Also, by using finite element method, the influence of proton diffusion scale in the output light mode, electrode dimension, and configuration in the overlap integral of the light mode and electrical field, as well as electrode impedance, is estimated. https://ijpr.iut.ac.ir/article_1368_2c032bf0011fae94e0371b399c20fbf2.pdf 2019-11-26 391 400 10.29252/ijpr.18.3.391 optical modulator heterodyne Lithium niobate waveguide proton diffusion H Dehghan nayeri hadi_dehghan_nayeri@yahoo.com 1 دانشکده برق و الکترونیک، دانشگاه صنعتی مالک اشتر، تهران LEAD_AUTHOR R Asadi 2 دانشکده برق و الکترونیک، دانشگاه صنعتی مالک اشتر، تهران AUTHOR M Khaje 3 دانشکده برق و الکترونیک، دانشگاه صنعتی مالک اشتر، تهران AUTHOR 1. D Sun, J Zhang, C Chen, M Kong, J Wang, and H Jiang, J. Lightwave Technol. 33, 10 (2015) 1937. 1 2. J Ferreira, A Alves, O L Coutinho, C D S Martins, W D S Fegadolli, J A J Ribeiro, V R D Almeida, and J E B Oliveira, J. Aero. Technol. Manag. 5, 2 (2013) 205. 2 3. B J Schmidt, A J Lowery, and J Armstrong, J. Lightwave Technol. 26, 1 (2008) 196. 3 4. A Karim and J Devenport, IEEE Photon. Technol. Lett. 19, 5 (2007) 312. 4 5. M García-Granda, H Hu, J Rodríguez-García, and W Sohler, J. Lightwave Technol. 27, 24 (2009) 5690. 5 6. C M Kim and R V Ramaswamy, J. Lightwave Technol. 7, 10 (1989) 581. 6 7. J M M M d Almeida, Opt. Eng. 46, 6 (2007) 64601. 7 8. C Xiong, W H Pernice, and H X Tang, Nano Lett. 12, 7 (2012) 3562. 8 9. K Sasagawa and M Tsuchiya, J. Lightwave Technol. 26, 10 (2008) 1242. 9 10. D B Cole, C Sorace-Agaskar, M Moresco, G Leake, D Coolbaugh, and M R Watts, Optics Let. 40, 13 (2015) 3097. 10 11. R Garg, L Bahl, and M Bozzi, “Microstrip Lines and Slotlines”, Artech House (2013). 11 12. O Mitomi, K Noguchi, and H Miyazawa, IEEE Proc. Optoelectron. 145 (1998) 360. 12
ORIGINAL_ARTICLE The effect of magnetic nickel nanowires structural parameterson the electrodeposition efficiency In this work, magnetic Ni nanowire arrays were ac-pulse electrodeposited into the anodic aluminum oxide (AAO) template fabricated by the common two-step anodization technique. The barrier layers at the  bottom of the pores were exponentially thinned in a non-equilibrium anodization process to 8, 12, 16 and 20 V. These were fabricated using the constant of 15 mA deposition current, 48 mS off-time between pulses, 10, 20 substrate temperatures, and 30°C electrolyte temperature. The effects of thinning voltage and substrate temperature on the electrodeposition efficiency and the magnetic quality of the Ni nanowires were investigated by a Vibrating sample magnetometer (VSM) and a scanning electron microscope (SEM). In this paper, we realized that the bed temperature of 10°C, by increasing the thickness of the barrier layer, reduced deposition efficiency and the temperature was 20 degrees backfired.   https://ijpr.iut.ac.ir/article_1369_15ad78b7553c037070ece92d0f89dc7a.pdf 2019-11-26 401 407 10.29252/ijpr.18.3.401 nickel nanowire arrays electrodeposition efficiency barrier layer temperature barrier layer thickness A Jokar jokar.azita@yahoo.com 1 باشگاه پژوهشگران جوان و نخبگان، واحد شیراز، دانشگاه آزاد اسلامی شیراز، شیراز LEAD_AUTHOR A Ramazani rmzn@kashanu.ac.ir 2 دانشکده فیزیک، دانشگاه کاشان، کاشان AUTHOR 1. H Abbasian, M Almasi Kashi, A Ramezani, and A Khayatian, Iranian Journal of Physics Research 13, 4 (2014) 341. 1 2. S R Hosseini, M Almasi Kashi, A A Ramazani, and F Eshaghi, Iranian Journal of Physics Research 11, 2 (2011) 181. 2 3. S Raviolo, F Tejo, N Bajales, and J Escrig, J. Mater. Res. Express 5, 1 (2018). 3 4. J Azevedo, C Sousa, A Mendes, and J Araújo, J. Nanosci. Nanotechnol. 12 (2012) 9112. 4 5. M Najafi, S Soltanian, H Danyali, R Hallaj, A Salimi, S M Elahi, and P Servati, J. Mater. Res. 27 (2012) 2382. 5 6. A Shirazi Tehrani, M Almasi Kashi, A Ramazani, and A H Montazer, Superlattices and Microstructures 95 (2016) 38. 6 7. R Golipour, A Khayyatian, A Ramazani, and M Almasi Kashi, Iranian Journal of Physics Research 7, 2 (2007) 73. 7 8. S Samanifar, M Alikhani, M Almasi Kasha, A Ramazani, and A H Montazer, J. Magn. Magn. Mater. 430 (2017) 6. 8 9. C Sousa, A Apolinario, D Leitao, A Pereira, J Ventura, and J Araujo, J. Mater. Chem. 22 (2012) 3110. 9 10. A Jokar, A Ramazani, M Almasi-Kashi, and A H Montazer, Materials Science 27 (2016) 3995. 10
ORIGINAL_ARTICLE A numerical study of the effect of the number of turns of coil on the heat produced in the induction heating process in the 3d model Computer modeling for the design of inductors for different applications in the induction heating process often seems to be necessary to save costs caused by the trial and error. In this paper, the effects of the number of loops in the induction heating process with the numerical solution of the Maxwell equations have been investigated using finite element method (FEM) and the COMSOL MULTIPHYSICS software package in three dimensions. Therefore, considering the effect of the number of coil turns on the amount and pattern of heat produced in the workpiece for special applications in the industry and technology is critical. This is because the number of coil turns is one of the important parameters in the design of induction heating systems. At first, a single turn coil is simulated in a three-dimensional model; then multi-turn coils with the turns number 2, 3, and 4 have been considered. The voltage of 200 V with the frequency of 1 KHz has been used, as applied to the coil, to serve as the source of electromagnetic fields. The results of numerical calculations show that the number of coil turns can have a significant effect on quantities such as distribution and intensity of magnetic flux density, eddy currents density in the workpiece, and the volume of heat produced in the coil and workpiece. https://ijpr.iut.ac.ir/article_1370_94082ad50239901dd10509891b83abb8.pdf 2019-11-26 408 419 10.29252/ijpr.18.3.408 induction heating process finite element method simulation A J shokri jabbar.shokri@gmail.com 1 گروه علوم پایه، دانشگاه پیام نور، تهران، تهران LEAD_AUTHOR M H Tavakoli 2 دانشکده فیزیک، دانشگاه بوعلی سینا، همدان، همدان AUTHOR A Sabouri Dodaran 3 گروه علوم پایه، دانشگاه پیام نور، تهران، تهران AUTHOR M S Akhondi Khezrabad 4 گروه علوم پایه، دانشگاه پیام نور، تهران، تهران AUTHOR 1. S Lupi, M Forzan, and A Aliferov, “Induction and Direct Resistance Heating”, Springer (2015) 1. 1 2. M Fisk, “Simulation of Induction Heating in Manufacturing”, Thesis, Luleå University of Technology (2008). 2 3. V Rudnev, D Loveles, R Cook, and M Black. “Handbook of Induction Heating”, Marcel Dekker, Inc, New York, NY (2003) 100. 3 4. C Chaboudez, S Clain, R Glardon, D Mari, J Rappaz, and M Swierkosz, IEEE Transactions on Magnetics, 33, 1 (1997) 739. 4 5. J Jang and Y Chiu, Appl. Therm. Eng. 27 (2007) 1883. 5 6. M H Tavakoli, H Karbaschi, F Samavat, and E Mohammadi-Manesh, Journal of Crystal Growth 312 (2010) 3198. 6 7. K Gao, X Qin, Z Wang, Sh Zhu, and Z Gan, J. Mater. Process. Technol. 23 (2016) 125. 7 8. H Khodamoradi, M H Tavakoli, and K Mohammadi, Journal of Crystal Growth 421 (2015) 66. 8 9. X Zhou, “Heat Transfer During Spray Water Cooling Using Steady Experiments,” MS. Thesis. University of Illinois, Urbana-Champaign (2009). 9 10. E Haye, “Industrial Solutions for Inductive Heating of Steels”, Thesis, Luleå University of Technology (2013). 10 11. L Zhang, “Numerical Modeling of Induction Assisted Subsurface Heating Technology”, Thesis, Worcester Polytechnic Institute (2012). 11 12. R E Haimbaugh,“Practical Induction Heat Treating,” Thesis, Materials Park (2001). 12 13. M H Tavakoli, Crystal Growth & Desig 8, 2 (2008) 483. 13 14. X Zhou, B G Thomas, C A Hernandez, A H Castillejos, and F A Acosta, Journal of Applied Mathematical Modeling, 37 (2013) 3181. 14 15. J R Reitz, F J Milford, and R W Christy, “Foundation of Electromagnetic Theory”, John Wiley & sons, New York (1992). 15
ORIGINAL_ARTICLE Raising flux pinning by Ni substitution in YBa2Cu3O7-δ The high-Tc Y1-xNixBa2Cu3O7-δ samples doped by Ni for Y atom, with x=0, 0.002, 0.004, 0.006 and 0.01 were synthesized by the standard solid-state reaction method. The XRD diffraction of samples showed no impurity phase in all samples. Magnetic susceptibility of the samples under two different magnetic fields of 0.8 and 400 A/m was measured. The results showed that by increasing nickel element to an optimum value, the intragranular connection and flux pinning were improved. https://ijpr.iut.ac.ir/article_1371_0875f445c633f1dc5bdd9e0aef89449e.pdf 2019-11-26 421 425 10.29252/ijpr.18.3.421 high-Tc superconductor magnetic susceptibility flux pinning B Hadisichani b.hadi@ph.iut.ac.ir 1 دانشکده فیزیک دانشگاه صنعتی اصفهان، اصفهان AUTHOR H Shakeripour hshakeri@cc.iut.ac.ir 2 دانشکده فیزیک دانشگاه صنعتی اصفهان، اصفهان LEAD_AUTHOR H Salamati salamati@cc.iut.ac.ir 3 دانشکده فیزیک دانشگاه صنعتی اصفهان، اصفهان AUTHOR 1. C Chu, L Deng, and B Lv, Physica C: Superconductivity and its Applications 514 (2015) 290. 1 2. G Blatter and M V Feigel'man et al., Reviews of Modern Physics 66, 4 (1994) 125. 2 3. I Obaidat and H Goeckner et al., Physica C Superconductivity 291, 1 (1997) 8. 3 4. S Ravi and V S Bai, Physical Review B 49, 18 (1994) 13082. 4 5. D X Chen and R B Goldfarb et al., Journal of Applied Physics 63, 3 (1988) 980. 5 6. D Dimos and P Chaudhari et al., Physical Review B 41, 7 (1990) 4038. 6 7. P Rani and R Jha et al., Journal of Superconductivity and Novel Magnetism 26, 7 (2013) 2347. 7 8. S Dadras and Y Liu et al., Physica C Superconductivity 469, 1 (2009) 55. 8 9. P Rani and A Pal et al., Physica C Superconductivity and its Applications 497 (2014) 19. 9 10. C N Van Huong and M Nicolas et al., Journal of Materials Science 28, 23 (1993) 6418. 10 11. H Shakeripour and M Akhavan, Superconductor Science and Technology 14 (2001) 234. 11 12. N Liyanawaduge and A Kumar et al., Journal of Superconductivity and Novel Magnetism 24, 6 (2011) 1893. 12 13. N Liyanawaduge and A Kumar et al., Journal of Superconductivity and Novel Magnetism 25, 1 (2012) 31. 13 14. N Liyanawaduge and S K Singh et al., Superconductor Science and Technology 25, 3 (2012) 035017. 14 15. N Liyanawaduge and S Kumar Singh et al., Journal of Superconductivity and Novel Magnetism 24, 5 (2011) 1599. 15 16. L Shlyk and G Krabbes et al., Physica C Superconductivity 377, 4 (2002) 437. 16 17. F Saeb and S Falahati et al., Iranian Journal of Physics Research 9, 1 (2009) 29. 17 18. R Wordenweber and K Heinemann et al., Superconductor Science and Technology 2, 4 (1989) 207. 18 19. E I Samuel and V S Bai et al., Superconductor Science and Technology 14, 7 (2001) 429. 19 20. N A Khan and A S Khan et al., Journal of Materials Science: Materials in Electronics 27, 11 (2016) 12178. 20 21. Z Chen and J Zhang et al., Physica C Superconductivity 434, 2 (2006) 161. 21 22. M El-Hofy and M El-Shahawy et al., Defect and Diffusion Forum 226 (2004) 197. 22 23. P Kameli and H Salamati et al., Solid State Communications 137 (2006) 30. 23 24. R V Sarmago and B G Singidas, Superconductor Science and Technology 17, 9 (2004) S578. 24 25. C T Wolowiec and B D White et al., Physica C Superconductivity and its Applications 514 (2015) 113. 25 27. H Shakeripour and M Akhavan Superconductor Science and Technology 14, 4 (2001) 213. 26 28. H Salamati and P Kameli, Solid State Communications 125, 7 (2003) 407. 27 29. B Hadi-Sichani and H Shakeripour et al., Physica C 550 (2018) 92. 28 30. A Bahgat and E Shaisha et al., Physica B Condensed Matter 3991 (2007) 70. 29 31. T Ishida and H Mazaki, Physical Review B 20, 1 (1979) 131. 30 32. H Salamati and P Kameli, Journal of Magnetism and Magnetic Materials 278, 1 (2004) 237. 31 33. S Celebi and U Kölemen et al., Physica Status Solidi (a) 194, 1 (2002) 260. 32 34. B Hadi-Sichani and H Shakeripour et al., Physica C 549 (2018) 81. 33
ORIGINAL_ARTICLE Investigation of pulse width effect on structural and optical properties of molybdenum oxide thin films deposited by HiPIMS In this study, molybdenum oxide thin films are deposited by using high power impulse magnetic sputtering (HiPIMS) at different pulses length of 60, 90, 120, 150 and 180 μs on glass substrates in a combination of reactive and non-reactive gases with a ratio of O2/Ar = 0.66. The structural and optical properties of these coatings are studied. The chemical composition of these metal oxides is determined by analyzing X-ray photoelectron spectroscopy (XPS), and are determined by MoOx stoichiometry with different x-values. By studying the optical properties, it is found that the oxygen deficiency with increasing pulse width cause to reduce the average of optical transmittance and also decrease the optical band gap of coatings. https://ijpr.iut.ac.ir/article_1372_655fec4ccdf7bc54d1aa20da55ac91b8.pdf 2019-11-26 427 435 10.29252/ijpr.18.3.427 magnetron sputtering thin film molybdenum oxide Optical properties H Najafi-Ashtiani h.najafi@velayat.ac.ir 1 دانشکده علوم پایه، دانشگاه ولایت، ایرانشهر LEAD_AUTHOR 1. R Ganesan et al., Journal of Applied Physics 121 (17) (2017). 1 2. S Rtimi et al., Surface and Coatings Technology 250 (2014) 14. 2 3. R Ganesan et al., Plasma Sources Science and Technology 24 (2015) 3. 3 4. A Aijaz et al., Solar Energy Materials and Solar Cells. 149 (2016) 137. 4 5. S Loquai et al., Solar Energy Materials and Solar Cells. 155 (2016) 60. 5 6. J Lin et al., Surface and Coatings Technology 204, 14 (2010) 2230. 6 7. K Sarakinos, J Alami, and S Konstantinidis, Surface and Coatings Technology, 204, 11 (2010) 1661. 7 8. J Alami et al., Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 23, 2 (2005) 278. 8 9. A P Ehiasarian, Pure and Applied Chemistry 82, 6 (2010) 1247. 9 10. E Kusiak-Nejman et al., The Journal of Physical Chemistry C 115, 43 (2011) 21113. 10 11. M D Tucker et al., Journal of Applied Physics 119, 15 (2016) 155303. 11 12. M Mickan et al., Solar Energy Materials and Solar Cells 157 (2016) 742. 12 13. M Aiempanakit et al., Surface and Coatings Technology 205, 20 (2011) 4828. 13 14. A Belosludtsev et al., Ceramics International, 43, 7 (2017) 5661. 14 15. S Rtimi et al., Royal Society of Chemistry Advances 3, 32 (2013) 22739. 15 16. R Ganesan et al., Journal of Physics D: Applied Physics 49, 24 (2016) 245201. 16 17. T Kubart et al., Plasma Processes and Polymers 4 (S1) 2007 S522. 17 18. M Hála et al., Journal of Physics D: Applied Physics 45, 5 (2012). 18 19. O Kamoun et al., Physical study of Eu doped MoO 3 Journal of Alloys and Compounds 687 (2016) 595. 19 20. B Dasgupta et al., The Journal of Physical Chemistry C: 119, 19 (2015) 10592. 20 21. W Dong et al., American Chemical Society Appl. Mater. Interfaces 8, 49 (2016) 33842. 21 22. G H Jung et al., Advanced Energy Materials 1, 6 (2011) 1023. 22 23. A Hojabri, F Hajakbari, and A E Meibodi, Journal of Theoretical and Applied Physics 9, 1 (2015) 67. 23 24. J M Pachlhofer et al., Vacuum 13, 1 (2016) 246. 24 25. P Delporte et al., Catalysis Today 23 (1995) 251. 25 26. S Y Sun, J L Huang, and D F Lii, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 22, 4 (2004) 1235. 26
ORIGINAL_ARTICLE Calculation of the Cluster Emission Half-Lives by Considering the Deformations and Relative Orientations of the Nuclei In this paper, the cluster emission half-lives have been calculated by using the WKB approximation and the proximity potential Prox77 as the nuclear potential part and considering the deformations and different relative orientations of the cluster and daughter nuclei. The calculated results are in good agreement with the experimental data and the results of the Liquid Drop Model, LDM. It is seen that with increasing the angle of the relative orientation, the systems under consideration, will be more stable against this phenomenon. https://ijpr.iut.ac.ir/article_1373_ef15e7ac755baf8871bc0fef028ef053.pdf 2019-11-26 437 443 10.29252/ijpr.18.3.437 half-life cluster emission proximity potential P Nazarzadeh p.nazarzadeh@aut.ac.ir 1 گروه فیزیک، دانشگاه تفرش، تفرش LEAD_AUTHOR R Bagheri 2 گروه فیزیک، دانشگاه تفرش، تفرش AUTHOR 1. K P Santhosh, B Priyanka, and M S Unnikrishnan, Nucl. Phys. A 889 (2012) 29. 1 2. A Sandulescu, D N Poenaru, and W Greiner, Sov. J. Part. Nucl. 11 (1980) 528. 2 3. H J Rose and G A Jones, Nature 307 (1984) 245. 3 4. S S Malik and R K Gupta, Phys. Rev. C 39 (1989) 1992. 4 5. D N Poenaru, M Ivascu, A Sndulescu, and W Greiner, Phys. Rev. C 32 (1985) 572. 5 6. C W de Jager, H de Vries, and C de Vries, At. Data Nucl. Data Tables 14 (1974) 479. 6 7. R K Gupta, N Singht, and M Manhas, Phys. Rev. C 70 (2004) 034608. 7 8. G G Adamian, N V Antonenko, R V Jolos, S P Ivanova, and O I Melnikova, Int. J. Mod. Phys. E 5 (1996) 191. 8 9. J Blocki, J Randrup, W J Swiatecki, and C F Tsang, Ann. Phys. (NY) 105 (1977) 427. 9 10. D N Poenaru et.al., At. Data Nucl. Data Tables 34 (1986) 423. 10 11. Y J Shi and W J Swiatecki, Nucl. Phys. A 464 (1987) 205. 11 12. R Bonetti and A Guglielmetti, Rom. Rep. Phys. 59 (2007) 301. 12 13. G Royer and R Moustachir, Nucl. Phys. A 683 (2001) 182. 13 14. P Moller and J R Nix, At. Data Nucl. Data Tables 59 (1995) 185. 14 15. L Zheng, G L Zhang, J C Yang, and W W Qu, Nucl. Phys. A 915 (2013) 70. 15 16. M Wang et al., Chin. Phys. C 36 (2007) 1603. 16
ORIGINAL_ARTICLE Dynamical study of emitted particles from exited nucleus using Langevin approach Using Langevin dynamics and the dissipative nature of the fission process, we have studied dynamical variations of nucleus from the formation of the compound nucleus to separation stage of two fission fragments. During this dissipative process, particles such as neutron, proton, alpha particle and gamma ray emit from the compound system. In the present work, the number of emitted particles using Langevin equation are calculated, dynamically. Obtained results for emitted alpha particles, protons and neutrons are compared with the experimental data. Also, we have studied the influence of the dissipative coefficient on these quantities. These results show that the dissipative coefficient affects the results, as well as the good agreement between the experimental data and theoretical results can be reproduced by using the dynamical approach.      https://ijpr.iut.ac.ir/article_1374_bea3fd7df118436702de5e73ee05db7c.pdf 2019-11-26 445 450 10.29252/ijpr.18.3.445 Langevin dynamics Monte Carlo simulation Compound Nucleus viscosity coefficient D Naderi d.naderi@razi.ac.ir 1 گروه فیزیک، دانشکده علوم پایه، دانشگاه رازی، کرمانشاه LEAD_AUTHOR A Farmani 2 گروه فیزیک، دانشکده علوم پایه، دانشگاه رازی، کرمانشاه AUTHOR 1. V Weisskopf, Phys. Rev. 52 (1937) 295. 1 2. A Gavron et. al., Phys. Lett. B 176 (1986) 312. 2 3. H A Weidenmuller, Nucl. Phys. A 471 (1987) 1c. 3 4. D J Hinde et. al., Nucl. Phys. A 452 (1986) 550. 4 5. J O Newton, D J Hinde, R J Charity, J R Leigh, J J M Bokhorst, A Chatterjee, G S Foote, and S Ogaza, Nucl. Phys. A 483 (1988) 126. 5 6. D J Hinde, Nucl. Phys. A 553 (1993) 255c. 6 7. S Hassani and P Grange, Phys. Lett. B 137 (1984) 281. 7 8. D J Hinde, D Hilscher and H Rossner, Nucl. Phys. A 502 (1989) 497c. 8 9. J P Lestone et.al., Phys. Rev. Lett. 67 (1991) 1078. 9 10. M Thoennessen, D R Chakrabarty, M G Hermann, R Butsch, and P Paul, Phys. Rev. Lett. 59 (1987) 2860. 10 11. W Ye, F Wu, and H W Yang, Phys. Lett. B 647 (2007) 118. 11 12. K Pomorskia, B Nerlo-Pomorska, A Surowiec, M Kowal, J Bartel, K Dietrich, J Richert,C Schmitt, B Benoit, E de Goes Brennand, L Donadille, and C Badimon, Nucl. Phys. A 679 (2000) 25. 12 13. D Naderi, Phys. Rev. C 90 (2014) 024614. 13 14. D Naderi, Int. J. Mod. Phys. E 23 (2014) 1450087. 14 15. S M Mirfathi and M R Pahlavani, Phys. Rev. C 78 (2008) 064612. 15 16. Y Jia and J-D Bao, Phys. Rev. C 75 (2007) 034601. 16 17. S Sohaili and E Ziaeiian, Iranian Journal of Physics Research 6, 2 (2006) 111. 17 18. M R Pahlavani, D Naderi and S M Mirfathi, Int. J. Mod. Phys. E 19 (2010)1451. 18 19. P Frobrich and I I Gontchar, Phys. Rep. 292 (1998) 131. 19 20. Yu A Anischenko, A E Gegechkori, and G D Adeev, Phys. Atom. Nucl. 74 (2011) 341. 20 21. D Naderi, J. Phys. G: Nucl. Part. Phys. 40 (2013) 125103. 21 22. J E Lynn, ed., “The Theory of Neutron Resonance Reactions”, Clarendon, Oxford (1968) 325. 22 23. V G Nedoresov, Y N Ranyuk, “Fotodelenie Yader za Gigantskim Rezonansom”, Kiev, Naukova Dumka (1989) (in Russian). 23 24. H Ikezoe, N Shikazono, Y Nagame, T Ohtsuki, Y Sugiyama, Y Tomita, K Ideno, I Kanno, H J Kim, B J Qi, and A Iwamoto, Nucl. Phys. A 538 (1992) 299c 24
ORIGINAL_ARTICLE Effect of Coupling Constant Correction on Equilibration Time We use gauge-gravity duality to study the effect of corrections to the coupling constant on equilibration time in field theory for scalar operators with Delta=2,3. We will show that for larger correction in coupling constant the equilibration time enhances and this behavior is independent of the method we use to make the system out of equilibrium. Interestingly we observe that for fast energy injection the rescaled equilibration time is independent of temperature of field theory.   https://ijpr.iut.ac.ir/article_1375_c2823304078fc4b69477c6958aa11086.pdf 2019-11-26 451 457 10.29252/ijpr.18.3.451 Gauge-gravity duality Equilibration time QCD QGP Coupling constant H Ebrahim 1 دانشکده فیزیک دانشگاه تهران، تهران AUTHOR M Ali-Akbari m_aliakbari@sbu.ac.ir 2 دانشکده فیزیک دانشگاه شهید بهشتی، اوین، تهران LEAD_AUTHOR 1. E V Shuryak, Nucl. Phys. A 750 (2005) 64. 1 2. M Luzum and P Romatschke, Phys. Rev. C 78 (2008) 034915. 2 3. J M Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231. 3 4. S S Gubser and I R Klebanov, Phys. Lett. B 428 (1998) 105 4 5. E Witten, Adv. Theor. Math. Phys. 2 (1998) 253. 5 6. J Casalderrey-Solana, H Liu, D Mateos, K Rajagopal, and U A Wiedemann, “Gauge/String Duality, Hot QCD and Heavy Ion Collisions”, Cambridge University Press (2014). 6 7. J McGreevy, Adv. High Energy Phys. 2010 (2010) 723105. 7 8. M Rangamani and V E Hubeny, Adv. High Energy Phys. 2010 (2010) 297916. 8 9. L G Yaffe and P M Chesler, Phys. Rev. Lett. 102 (2009) 211601. 9 10. P M Chesler and L G Yaffe, Phys. Rev. D 82 (2010) 026006. 10 11. M P Heller, D Mateos, W van der Schee and M Triana, Journal of High Energy Physics 1309 (2013) 026. 11 12. M P Heller, D Mateos, W van der Schee, and D Trancanelli, Phys. Rev. Lett. 108 (2012) 191601. 12 13. A Buchel, R C Myers, and A van Niekerk, Journal of High Energy Physics 1502 (2015) 017. 13 14. A Buchel, L Lehner, and R C Myers, Journal of High Energy Physics 1208 (2012) 049. 14 15. J Pawelczyk and S Theisen, Journal of High Energy Physics 9809 (1998) 010. 15 16. M Ali-Akbari, F Charmchi, H Ebrahim, and L Shahkarami, Phys. Rev. D 94, 4 (2016) 046008. 16 17. L Shahkarami, H Ebrahim, M Ali-Akbari, and F Charmchi, Phys. Lett. B 773 (2017) 91. 17 18. H Ebrahim, S Heshmatian, and M Ali-Akbari, Nucl. Phys. B 904 (2016) 527. 18
ORIGINAL_ARTICLE Enhancement of terahertz radiation from laser-bunched electron beam in a helical wiggler with axial magnetic field The generation of coherent Terahertz (THz) radiation is studied which is produced from moving the relativistic electron beam through a helical wiggler with axial magnetic field. The relativistic electron beam is modulated via interacts with the beat wave of two laser beams that have frequency difference in THz range. When the modulated relativistic beam of electrons go through the helical wiggler with axial magnetic field, it radiates coherent THz electromagnetic wave as an antenna. In addition, the numerical study has shown the maximum THz power increases with the increasing axial magnetic field power. https://ijpr.iut.ac.ir/article_1376_333f350e48607cb6618f1e26f1791849.pdf 2019-11-26 459 465 10.29252/ijpr.18.3.459 free electron laser helical wiggler axial magnetic field laser-bunched electron beam P Gomar peymangomar@gmail.com 1 گروه فیزیک اتمی و مولکولی و پژوهشکده پلاسما، دانشکده فیزیک، دانشگاه خوارزمی، تهران LEAD_AUTHOR A Hasanbeigi 2 گروه فیزیک اتمی و مولکولی و پژوهشکده پلاسما، دانشکده فیزیک، دانشگاه خوارزمی، تهران AUTHOR H Mehdian 3 گروه فیزیک اتمی و مولکولی و پژوهشکده پلاسما، دانشکده فیزیک، دانشگاه خوارزمی، تهران AUTHOR 1. J Faist, F Capasso, D L Sivco, C Sirtori, A L Hutchinson, and A Y Cho, Science 264 (1994) 553. 1 2. R Köhler, A Tredicucci, F Beltram, H E Beere, E H Linfield, A G Davies, D A Ritchie, R C Iotti, and F Rossi, Nature 417 (2002) 156. 2 3. J M Byrd, Z Hao, M C Martin, D S Robin, F Sannibale, R W Schoenlein, A A Zholents, and M S Zolotorev, Phys. Rev. Lett. 96 (2006) 164801. 3 4. H P Freund J M Antonsen, “Principles of Free-Electron Lasers”, London: Chapman and Hall (1992). 4 5. M Esmaeilzadeh, H Mehdian, and J E Willett, J. Plasma phys. 70 (2004) 9. 5 6. H Mehdian, A Hasanbeigi, and S Jafari, Phys. Plasmas 7 (2015) 073103. 6 7. A Hasanbeigi and H Mehdian, Chinese Phys. B 22 (2013) 075205. 7 8. P R Ribic and G Margaritondo, Phys. Status Solidi B 249 (2012) 1210. 8 9. D Gordon, C E Clayton, T Katsouleas, W B Mori, and C Joshi, Phys. Rev. E 57 (1989) 1035. 9 10. S Tochitsky, C Joshi, C Pellegrini, S Reiche, J B Rosenzweig, and C Sung, “Laser Beat-Wave Microbunching of Relativistic Electron Beam in the THz Range”, Proceedings of LINAC, Knoxville, Tennessee (2006) 100. 10 11. M Kumar and V K Tripathi, Phys. Plasmas 19 (2012) 073109. 11
ORIGINAL_ARTICLE Investigation of electrostatic potential of a helical biomolecule in the Debye-Huckel regime by considering the dielectric inhomogeneity Inside living cells, many essential processes involve deformations of charged helical molecules and the interactions between them. Actin filaments and DNA molecules are important examples of charged helical molecules. In this paper, we consider an impermeable double stranded charged molecule in the solvent. According to the nature, the dielectric constant of the molecule is considerably different from that of the bulk. In order to calculate the electrostatic potential in the problem in the Debye-Huckel regime, we find the proper Debye-Huckel Green function for the problem. Using this Green function, we calculate the electrostatic potential in the system. Furthermore, we study the dependence of the electrostatic potential on  the dielectric inhomogeneity, structural parameters and the salt concentration. This study could shed some light on the role of electrostatic interactions in many essential processes involving charged helical molecules such as actin filaments and DNA molecules https://ijpr.iut.ac.ir/article_1377_586be345231b535837a2f382c67c0002.pdf 2019-11-26 467 475 10.29252/ijpr.18.3.467 biomolecule DNA Green function Debye-Huckel regime electrostatic interaction dielectric inhomogeneity A Rezaie Dereshgi 1 دانشکده فیزیک، دانشگاه تحصیلات تکمیلی علوم پایه زنجان، زنجان AUTHOR F Mohammad-Rafiee farshid@iasbs.ac.ir 2 دانشکده فیزیک، دانشگاه تحصیلات تکمیلی علوم پایه زنجان، زنجان LEAD_AUTHOR 1. H Lodish et al., “Molecular Cell Biology”, 5th ed. Freeman, New York (2000). 1 2. J N Israelachvili, “Intermolecular and Surface Forces”, 3rd ed. Academic Press (2011). 2 3. V A Bloomfield, D M Crothers, and I Tinco Jr., “Nucleic Acids: Structure, Properties, and Functions”, University Science Books, Sausalito, CA (2000). 3 4. J Howard, “Mechanics of Motor Proteins and the Cytoskeleton”, Sinauer Associates, Sunderland, MA, (2001). 4 5. T Odijk, J. Polym. Sci. Polym. Phys. Ed. 15 (1977) 477. 5 6. M Fixman and J Skolnick, J. Phys. Chem. B 114 (1977) 3185. 6 7. G S Manning, Biophys. J. 91 (2006) 3607. 7 8. P J Hagerman, Biopolymers 22 (1983) 811. 8 9. M D Wang, H Yin, R Landick, J Gelles, and S M Block, Biophys. J. 72 (1997) 1335. 9 10. C G Baumann, S B Smith, V A Bloomfield, and C Bustamante, Proc. Natl. Acad. Sci. 94 (1997) 6185. 10 11. K Wagner, E Keyes, T W Kephart, and G Edwards, Biophys. J. 73 (1997) 21. 11 12. A Noy, and R Golestanian, J. Phys. Chem. B 114 (2010) 8022. 12 13. W H Taylor and P J Hagerman, J. Mol. Biol. 212 (1990) 363. 13 14. F Mohammad-Rafiee and R Golestanian, Phys. Rev. E 69 (2004) 061919. 14 15. A Rezaie-Dereshgi and F Mohammad-Rafiee, J. Chem. Phys. 148 (2018) 135101. 15 16. W Pezeshkian, N Nikoofard, D Norouzi, F Mohammad-Rafiee, and H Fazli, Phys. Rev. E 85 (2012) 061925. 16 17. A Naji, D S Dean, J Sarabadani, R R Horgan, and R Podgornik, Phys. Rev. L 104 (2010) 060601. 17 18. J D Jackson, “Classical Electrodynamics”, 3rd ed. John Wiley and Sons, (2007). 18 19. J L Barrat and J F Joanny, Adv. Chem. Phys. 94 (1996) 1. 19
ORIGINAL_ARTICLE Passively Q-switched LED-pumped Ce: Nd:YAG laser The experimental study of passively Q-switched, LED-pumped Ce:Nd:YAG laser is reported. The active medium is a 3 mm diameter laser rod with 60 mm length; it is optically pumped with four segments of blue LEDs at 460 nm, with each segment consisting of 32 single LEDs. The 14 cm length optical resonator with 2 dielectric mirrors and the reflectivity of 99 and 93 percent at 1064 nm produced more than 200 micro-joules laser spikes at the free-running mode of operation. By using a passive optical switch with 96% initial transmission and 0.6 J electrical pumping energy, the single Q-switch (QS) laser pulse with 240 ns pulse-width and 17 micro-joules optical energy was produced. By increasing the pumping energy to 1.2 J, two nearly similar QS laser pulses were generated. Moreover, we have proposed a method for decreasing the pulse-width and increasing the energy of single QS laser pulse that is based on controlling the pumping rate by shaping the current of LEDs https://ijpr.iut.ac.ir/article_1378_caa388182ec979f34ffb5530f0bf5dc2.pdf 2019-11-26 477 484 10.29252/ijpr.18.3.477 passive Q-switch LED pumping Ce: Nd: YAG laser M Tarkashvand 1 پژوهشکده پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، تهران. دانشکده علوم، دانشگاه پیام نور، تهران AUTHOR A H Farahbod afarahbod@aeoi.org.ir 2 پژوهشکده پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، تهران LEAD_AUTHOR S A Hashemizadeh 3 دانشکده علوم، دانشگاه پیام نور، تهران AUTHOR 1. J Bhardwaj, G Guth, J M Cesaratto, O B Shchekin, W A Soer, W Götz, R Bonné, Z F Song, and J Breejen, Devices and Applications for Solid State Lighting XXI (2017) 1012417. 1 2. A Barbet, F Balembois, A Paul, J P Blanchot, A L Viotti, J Sabater, F Druon, and P Georges, Opt. Lett. 39 (2014) 6731. 2 3. B Villars, E S Hill, and C G Durfee, Opt. Lett. 40 (2015) 3049. 3 4. K Y Huang, C K Su, M W Lin, Y C Chiu, and Y C Huang, Opt. Express 24 (2016) 12043. 4 5. J Chen and J N Chen, Optical Review 13, 6 (2006) 427. 5 6. C Y Cho, C C Pu, K W Su, and Y F Chen, Opt. Lett. 42, 12 (2017) 2394. 6 7. P Pichon, A Barbet, D Blengino, P Legavre, T Gallinelli, F Druon, J P Blanchot, F Balembois, S Forget, S Chénais, and P Georges, Optics and Laser Technology 96 (2017) 7. 7 9. M Tarkashvand, A H Farahbod, and S A Hashemizadeh, Laser Physics 28 (2018) 055801. 8 10. Y Kalisky, A Ben-Amar Baranga, Y Shimony, and M R Kokta, Optical Materials 8 (1997) 129. 9 11. W Koechner, “Solid-State Laser Engineering”, 6 th Edition, Chap.8, Springer (2006). 10 12. A H Farahbod and F Tahsildaran Fard, Iranian Journal of Physics Research 11, 2 (2011) 117. 11 13. X Zhang, S Zhao, Q Wang, Q Zhang, L Sun, and S Zhang, IEEE Journal of Quantum Electron. 33, 12 (1997) 2286. 12 14. J Dong, Optics Communications 226 (2003) 337. 13
ORIGINAL_ARTICLE Quantum generalization of the Appleton- Hartree formulation Abstract The purpose of this paper is to present a new generalized form of the Appleton-Hartree formulation. To that end, we use a system of linearized quantum plasma equations to include quantum corrections due to the quantum force produced by the density fluctuations of electrons. Dispersion relations and their modifications resulting form quantum effects are derived for both quasi-parallel and quasi- perpendicular wave modes. In comparison to the previous studies, the results show that quantum effects modify the dispersion of the whistler, helicon, left-handed, ordinary and extraordinary waves. Furthermore, the analysis of results, in particular cases, confirms those of previous studies and, in limiting cases, leads to known relationships in classical plasma physics. https://ijpr.iut.ac.ir/article_1379_f505203f3db6a8d94ba69037857c6126.pdf 2019-11-26 485 489 10.29252/ijpr.18.3.485 quantum plasma quantum force electromagnetic waves B Rajabi 1 گروه فیزیک، دانشکده علوم پایه، دانشگاه بین المللی امام خمینی (ره)، قزوین AUTHOR A Mehramiz mehramiz@sci.ikiu.ac.ir 2 گروه فیزیک، دانشکده علوم پایه، دانشگاه بین المللی امام خمینی (ره)، قزوین LEAD_AUTHOR 1. M Marklund, B Eliasson, and P K Shukla, Physical Review E 76, 6 (2007) 067401. 1 2. P K Shukla, Physics Letters A 352, 3 (2006) 242. 2 3. P K Shukla, Physics Letters A 369, 4 (2007) 312. 3 4. B Shokri and A A Rukhadze, Phys. Plasmas 6 (1999) 4467. 4 5. M Shahmansouri and B Farokhi, Journal of Science 19 (2009) 71. 5 6. M Shahmansouri, Journal of Research on Many-body Systems 7 (2017) 13. 6 7. M R Rouhani, A Akbarian, and Z Mohammadi, Iranian Journal of Physics Research 16, 3 (2016) 91. 7 8. A Mehramiz, J Mahmoodi, and S Sobhanian, Physics of Plasmas 17, 8 (2010) 082110. 8 9. H Ren, Z Wu, and P K Chu, Physics of Plasmas 14, 6 (2007) 062102. 9 10. D A Gurnett and A Bhattacharjee, “Introduction to Plasma Physics with Space and Laboratory Applications”, Cambridge University Press (2005). 10 11. E V Appleton, J. Inst. Elec. Engrs 71 (1932) 642. 11 12. P Bellan, “Fundamentals of Plasma Physics”, Cambridge University Press (2006). 12 13. F F Chen, “Introduction to Plasma Physics and Controlled Fusion”, Switzerland, Springer International Publishing (2016). 13
ORIGINAL_ARTICLE Carbon K edge structures of molecular crystals from first-principles: A comparison between phenanthrene and anthracene By means of ab-initio calculations on the basis of the FPLAPW method, we compared the energy loss near edge structure (ELNES) of carbon K edges in crystalline phenanthrene and its isomer, anthracene. In these two organic compounds, different non-equivalent carbon atoms can result in distinct K edge spectra due to the different carbon-carbon bond lengths, as a characteristic behavior of the molecular crystals. The smaller bond lengths push the ELNES features to the higher energies. In anthracene, the energy position of the edge-onset appears at lower energies due to its smaller electronic band gap. At the onset of the  C K edge of anthracene, the strong splitting of the π* peak into two peaks is observable. Compared to the  C K edge in anthracene, due to the slightly larger C–C bond length in phenanthrene, the peak position of the main σ structure has a red shift. The ELNES spectrum of crystalline phenanthrene includes electron transition of 1s carbon orbital to π* and σ* states. In anthracene, the first two intense features have contributions of π* orbitals. Consideration of the core-hole approximation by means of super-cells and the collection of semi-angles at magic value are essential to obtain reasonable ELNES spectra. https://ijpr.iut.ac.ir/article_1380_72a46e40af112e11a57cb007d4f7325a.pdf 2019-11-26 490 490 10.29252/ijpr.18.3.490 organic molecular crystals phenanthrene anthracene ELNES density functional theory H Nejatipour nejatipour.h@lu.ac.ir 1 گروه فیزیک، دانشکده علوم پایه، دانشگاه لرستان، خرم‌آباد، لرستان AUTHOR M Dadsetani dadsetani.m@lu.ac.ir 2 گروه فیزیک، دانشکده علوم پایه، دانشگاه لرستان، خرم‌آباد، لرستان LEAD_AUTHOR 1. C K Chiang, C R Fincher, Jr., Y W Park, A J Heeger, H Shirakawa, E J Louis, S C Gau, and A G MacDiarmid, Phys. Rev. Lett. 39 (1977) 1098. 1 2. A Kadyshevitch and R Naaman, Phys. Rev. Lett. 74 (1995) 3443. 2 3. E A Silinsh and V Capek, “Organic Molecular Crystals”, AIP Press, New York (1994). 3 4. J D Wright, “Molecular Crystals”, 2nd ed., Cambridge Univ. Press, UK (1995). 4 5. S R Forrest, Nature (London) 428 (2004) 911. 5 6. T W Kelly, P F Baude, Ch Gerlach, D E Ender, D Muyres, M A Hasse, D E Vogel, and S D Theiss, Chem. Matter. 16 (2004) 4413. 6 7. M Bendikov, F Wudl, and D F Perepichka, Chem. Rev. 104 (2004) 4891. 7 8. K Hummer and P Puschnig, C Ambrosch-Draxl, Phys. Rev. Lett. 92 (2004) 147402. 8 9. K Hummer, C. Ambrosch-Draxl, Phys. Rev. B 71 (2005) 081202. 9 10. K Hummer, C Ambrosch-Draxl, Phys. Rev. B 72 (2005) 205205. 10 11. S F Nelson, Y Y Lin, D J Gundlach, and T N Jackson, Appl. Phys. Lett. 72 (1998) 1854. 11 12. Y Kan, L Wang, H Yunchuan, W Guoshi, and Q Yong, Appl. Phys. Lett. 84 (2004) 1513. 12 13. I Shiyanovkaya, K D Singer, V Percec, T K Bera, Y Miura, and M Glodde, Phys. Rev. B 67 (2003) 035204. 13 14. M Oehzelt, R Resel, and A Nakayama, Phys. Rev. 66 (2002)174104. 14 15. K Hummer, P Puschnig, C Ambrosch-Draxl, Physica Scripta. T109 (2004) 152. 15 16. M T Bhatti, M Ali, S G N., and M Saleh, Turk. J. Phys. 24 (2000) 673. 16 17. X F Wang, R H Liu, Z Gui, Y L Xie, Y J Yan, J J Ying, X G Luo, and X H Chen, Nature. Commun. 1115 (2011) 1. 17 18. M Dadsetani, H Nejatipour, and A Ebrahimian, J. Phys. Chem. Solids 80 (2015) 67. 18 19. M Dadsetani, A Ebrahimian, and H Nejatipour, J. Materials Science in Semiconductor Processing, in press. 19 20. R F Egerton, “Electron Energy-Loss Spectroscopy in the Electron Microscope”, 2nd ed. Plenum (1996). 20 21. G A Botton, G Y Guo, W M Temmerman, and C J Humphreys, Phys. Rev. B 54 (1996) 1682. 21 22. T Mizoguchi, I Tanaka, S Yoshioka, M Kunisu, T Yamamoto, and W Y Ching, Phys. Rev. B 70 (2004) 045103. 22 23. P Blaha, K Schwarz, G Madsen, D Kvasicka, and J Luitz, “WIEN2k, An Augmented Plane Wave + Local Orbital Program for Calculating Crystal Properties”, Technical Universitat, Wien, Austria (2001). 23 24. C Hébert, J Luitz, and P Schattschneider, Micron 34 (2003) 219. 24 25. J T Titantah and D Lamoen, Phys. Rev. B 70 (2004) 075115. 25 26. H Nejati and M Dadsetani, Micron 67 (2014) 30. 26 27. J Luitz, M Maier, C Hébert, P Schattschneider, P Blaha, K Schwarz, and B Jouffrey, Eur. Phys. J. B 21 (2001) 363. 27 28. M Klues, K Hermann, and G Witte, J. Chem. Phys. 140 (2014) 014302. 28 29. M L Gordon, D Tulumello, G Cooper, A P Hitchcock, P Glatzel, O C Mullins, S P Cramer, and U Bergmann, J. Phys. Chem. A 107 (2003) 8512. 29 30. A L Pitman, J A Mcleod, E K Sarbisheh, E Kurmaev, J Müller, and A Moewes, J. Phys. Chem. C 117 (2013) 19616. 30 31. J P Perdew, K Burke, and M Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. 31 32. V Blum, R Gehrke, F Hanke, P Havu, V Havu, X Ren, K Reuter, M Scheffler, Computer Physics Communications 180 (2009) 2175. 32 33. H A Bethe, Ann. Phys. 5 (1930) 325. 33 34. M Nelhiebel, P H Louf, P Schattschneider, P Blaha, K Schwarz, and B Jouffrey, Phys. Rev. B 59(1999) 12807. 34 35. D W Jones and J Yerkess, J. Cryst. Mol. Struct. 1 (1971) 17. 35 36. V C Sinclair, J Monteath Robertson, and A M Mathieson, Acta Cryst. 3 (1950) 251. 36 37. P L de Andres, A Guijarro, and J A Vergés, Phys. Rev. B 84 (2011) 144501. 37 38. K Hummer, P Puschnig, and C Ambrosch-Draxl, Phys. Rev. B 67 (2003) 184105. 38 39. G Vaubel and H Baessler, Phys. Lett. 27 (1968) 328. 39 40. E A Silinsh, “Organic Molecular Crystals”, Springer-Verlag, Berlin, Heidelberg, New York (1980). 40 41. P J Bounds and W Siebrand, Chem. Phys. Lett. 75 (1980) 414. 41 42. L Hedin, Phys. Rev. 139 (1965) 796. 42 43. J T Titantah and D Lamoen, Phys. Rev. B 72 (2005) 193104. 43
ORIGINAL_ARTICLE Effect of ultrasonic waves on morphology and electrical treatment of graphene It is important to examine the factors that determine the properties of graphene. Various factors affect the properties of graphene nanosheets that can revolutionize the use of graphene. One such factor is ultrasonic waves, which have significant effects on graphene properties. In this research, we studied the effect of ultrasonic waves with different power levels (35, 50, 360, and 420 W) on four graphene samples. in this research all the samples fabricated by electrochemical exfoliation. In this method, ammonium sulfate nonorganic salt was used for producing solution and used electrodes PT and graphite where +10 volt was applied to the electrodes Ultrasonic waves are used to homogenize the electrolyte for samples. And samples were analyzed using scanning electron microscope (SEM) imaging and Fourier transform infrared spectroscopy (FTIR) spectroscopy to determine their structure and electrical properties. The I-V curves of the samples were measured after spraying the glass substrate. Then, FTIR spectra and I-V characteristics were studied. Our results showed that with increasing ultrasonic power, FTIR spectra did not change, however conductivity of grown graphene increases. https://ijpr.iut.ac.ir/article_1381_eb1600df4013422a2cfecfd38e7e9720.pdf 2019-11-26 491 491 10.29252/ijpr.18.3.491 graphene electrochemical ultrasonic wave FTIR SEM R Sabet Dariani 1 دانشکده فیزیک- شیمی، دانشگاه الزهرا، تهران AUTHOR R Bakhshandeh r.bakhshandeh@student.alzahra.ac.ir 2 دانشکده فیزیک- شیمی، دانشگاه الزهرا، تهران LEAD_AUTHOR H Haghi 3 دانشکده فیزیک- شیمی، دانشگاه الزهرا، تهران AUTHOR 1. S Narendar and S Gopalakrishnan, Physica E Low-Dimensional Systems and Nanostructures 42, 5 (2010) 1601. 1 2. S Narendar, D R Mahapatra, and S Gopalakrishnan, Computational Materials Science 49, 4 (2010) 734. 2 3. P Khaled, Z S Wu, R Li, X Liu, R Graf, X Feng, and K Müllen, Journal of the American. Society 136 (2014) 6083. 3 4. C Wu, Q Cheng, K Wu, G Wu, and Q Li, Analytica Chimica Acta 825 (2014) 26. 4 5. L Bing, X Zhang, P Xinghua et al., Royal Society of Chemistry Advances 4, 5 (2014) 2404. 5 6. C Kunfeng and D Xue, Journal of Materials Chemistry A 4, 20 (2016) 7522. 6 7. K I Mikhail, Materials Today 10, 1 (2007) 20. 7 8. T Prashant, C Ravi Prakash, M A Shaz, and O N Srivastava. arXiv preprint arXiv:1310.7371. 8 9. P Khaled, S Y Xinliang Feng, and K Müllen, Synthetic Metals 210 (2015) 123. 9 10. M Kasturi, R Geetha Bai, I B Abubakar, S M Sudheer, H N Lim, H-S Loh, N M Huang, C Hua Chia, and S Manickam, International Journal of Nanomedicine 10 (2015) 1505. 10 11. Q Mildred, K Spyrou, M Grzelczak, W R Browne, P Rudolf, and M Prato, American Chemical Society Nano 4, 6 (2010) 3527. 11 12. L Sen, J Tian, L Wang, and X Sun, Carbon 49, 10 (2011) 3158. 12 13. Y EunJoo, J Kim, E Hosono, H shen Zhou, T Kudo, and I Honma, Nano Letters 8, 8 (2008) 2277. 13 14. P Michaela, A Kouloumpis, D Gournis, P Rudolf, and H Stamatis, Sensors 16, 3 (2016) 287. 14 15. J Liu, L Cui, and D Losic, Acta Biomaterialia 9, 12 (2013) 9243. 15 16. L Sen, J Tian, L Wang, and X Sun, Carbon 49, 10 (2011) 3158. 16 17. M Roberto and C Gómez‐Aleixandre, Chemical Vapor Deposition 19, 10-11-12 (2013) 297. 17 18. R Bakhshandeh and A Shafiekhani, Materials chemistry and physics 212 (2018) 95. 18 19. Z Yonglai, L Guo, S Wei, Y He, H Xia, Q Chen, H Bo Sun, and F Shou Xiao, Nano Today 5, 1 (2010) 15. 19 20. C Ji, B Yao, C Li, and G Shi, Carbon 64 (2013) 225. 20 21. J Changwook, P Nair, M Khan, M Lundstrom, and M A Alam, Nano Letters 11, 11 (2011) 5020. 21 22. L Xuesong, Y Zhu, Weiwei Cai, M Borysiak, B Han, David Chen, R D Piner, L Colombo, and R S Ruoff, Nano Letters 9, 12 (2009) 4359. 22
ORIGINAL_ARTICLE Frequency–driven chaos in the electrical circuit of Duffing-Holmes oscillator and its control Accurate detection of weak periodic signals within noise and possibility of secure messaging have made Duffing oscillator (DO) highly important in the field of communication. Investigation on the properties of DO is thus ardently sought for. An elegant approach to accomplish the same is to fabricate electronic circuit simulating DO non-linear equation and to study the effect of input signal amplitude (Vin) and frequency (f), disentangling each other.   Recently, Vin-driven chaotic dynamics was studied by constructing a simple Duffing-Holmes (DH) oscillator circuit. However, the f-driven characteristics of the oscillator remain unknown at constant Vin. The present work is based on the MATLAB simulation of f-driven chaotic dynamics of the DH equation. Similar output, mixed with chaos and non-chaos, is obtained by constructing the circuit, both in lab and PSPICE simulation. The circuit moves into complete chaos at f=270 Hz, while period-2 bifurcation appears at f=680 Hz for constant Vin 0.9V.  The chaos control is also achieved by two simple methods. In the first method, the variation of circuit parameter (capacitance) induces chaos control. In the second method, synchronization is achieved by coupling two similar oscillators. These two methods, though apparently simple, could be highly beneficial for using DH in secure communication. https://ijpr.iut.ac.ir/article_1382_a2d509feab952b2eb3ee103eb5785835.pdf 2019-11-26 492 492 10.29252/ijpr.18.3.492 nonlinear dynamics chaos Duffing-Holmes oscillator electronic circuit MATLAB PSPICE chaos control M. D Moinul Islam 1 دانشکده فیزیک،کالج دولتی باراسات، کلکته، W.B، هند AUTHOR S Basu 2 بخش مشاوره و فیزیک رادیولوژیکی، مرکز اتمی بهابا، مومبایی، هند AUTHOR D Halder 3 دانشکده فیزیک، موسسه آموزشی کینگستون، کلکته، هند AUTHOR A De 4 کالج دخترانه رانیگانج، بوردوان، W.B، هند AUTHOR S Bhattacharya srijit.bha@gmail.com 5 دانشکده فیزیک،کالج دولتی باراسات، کلکته، W.B، هند LEAD_AUTHOR 1. R C Hilborn, “Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers”, 2nd Ed, Oxford University Press (2001). 1 2. E N Lorenz, J. Atmos. Sci. 20 (1963) 130-141. 2 3. S H Strogatz, “Nonlinear Dynamics and Chaos”, Perseus Books Publishing: Cambridge, MA (2000). 3 4. S W Shaw and B Balachandran, J. Sys. Des. Dyn. 2 (2008) 611. 4 5. R Lifshitz and M C Cross, “Nonlinear Dynamics of Nanomechanical and Micromechanical Resonators”, Eds. G Radons, B Rumpf, and H G Schuster Wiley-VCH, Weinheim (2010). 5 6. M van Noort, M A Porter, Y Yi, and S N Chow, J. Nonlinear Saiens 17, 1 (2007) 59. 6 7. V P Chua and A P Mason, Int. J. Bif. Chaos. 16 (2006) 945. 7 8. R Almog, S Zaitsev, O Shtempluck, and E Bucks, App. Phys. Lett. 90 (2007) 013508. 8 9. W Song, D Shen, Y Jianguo, and C Qiang, Math. Prob. Eng. 2008 (2008) 1. 9 10. E Tamaseviciute, Tamasevicius, G Mykolaitis, S Bumeliene, and E Lindberg, Nonlin. Anal. Mod. Cont. 13 (2008) 241. 10 11. S Boccaletti, C Grebogi, YC Lai, H Mancini, and D Maza, Phys. Rep. 329 (2000) 103. 11 12. L M Pecora and T L Caroll, Phys. Rev. Lett. 64, 8 (1990) 821. 12 13. S Rajasekar, S Murali, and M Lakshmanan, Chaos Solitons & Fractals 8, 9 (1997) 1545. 13 14. J Wang, Z Duan, and L Huang, Phys. Lett. A 351 (2006) 143 14 15. B Liu, S Li, and Z Zheng, Int. J. Nonlin. Sci. 18 (2014) 40. 15 16. E Tamaseviciute, G Mykolaitis, and S Bumeliene, Lith. J. Phys. 47, 3 (2007) 235. 16 17. K Briggs, Math. Comp. 57 (1991) 435. 17 18. A Wolf, J B Swift, H L Swinney, and J A Vastano, Physica D 16 (1985) 285. 18 19. V Gintautus, http: // guava. Physics. uiuc. edu/ ~nigel/courses/569/Essays_Spring2006/files/gintautas.pdf. (2006). 19 20. H Fotsin, S Bowong, and J Daafouz, Chaos Solitons & Fractals 26 (2005) 215. 20 21. V V Ashtakov, A N Silchenko, G I Strelkova, A V Shabunin, and V S Anishchenko, J. Comm. Tech. Elec. 41, 14 (1996) 1323. 21
ORIGINAL_ARTICLE The electrical transport properties in ZnO bulk, ZnMgO/ZnO and ZnMgO/ZnO/ZnMgO heterostructures p { margin-bottom: 0.1in; direction: rtl; line-height: 120%; text-align: right; }a:link { color: rgb(0, 0, 255); } In this paper, the reported experimental data related to electrical transport properties in bulk ZnO, ZnMgO/ZnO and ZnMgO/ZnO/ZnMgO single and double heterostructures were analyzed quantitavely and the most important scattering parameters on controlling electron concentration and electron mobility were obtained. Treatment of intrinsic mechanisms includes polar-optical phonon scattering, piezoelectric scattering and acoustic deformation potential scattering. For extrinsic mechanisms, ionized impurity, dislocation scattering and strain induced fields are included. For bulk ZnO, the reported experimental data were corrected for removing the effects of a degenerate layer at the ZnO/sapphire interface via a two – layer Hall – effect model. Also, donor density, acceptor density and donor activation energy were determined via the charge balance equation. This sample exhibits hopping conduction below 50K and dislocation scattering controls electron mobility closely. Obtained results indicate that enhancement of electron mobility in double sample as compared with single one can be attributed to reduction of dislocation density, two dimensional impurity density in the potential well due to background impurities and/or interface charge and strain induced fields which can be related to better electron confinement in the channel and enhancement in sheet carrier concentration of 2DEG in this sample. https://ijpr.iut.ac.ir/article_1383_c60775341bbd22829d48f67e988ca55e.pdf 2019-11-26 493 493 10.29252/ijpr.18.3.493 ZnMgO/ZnO/ZnMgO ZnO/sapphire interface heterostructures scattering mechanisms M Amirabbasi m.amirabbasi@ph.iut.ac.ir 1 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان LEAD_AUTHOR E Abdolhosseini Sarsari 2 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان AUTHOR 1. J Dai, X Han, Z Wu, Y Fang, H Xiong, Y Tian, C Yu, Q He, and C Chen, Journal of Electronic Materials 40, 4 (2011) 466. 1 2. L Meng, L Zheng, L Cheng, G Li, L Huang, and Y Gu, J. Materials Chemistry 21, 30 (2011) 11418. 2 3. K Park and H Hwang, J Seo, and W-S Seo, Energy 54 (2013) 139. 3 4. C Pholnak, S Suwanboon, and C Sirisathitkul, J. Materials Science: Materials in Electronics, 24 (2013) 12 5014. 4 5. H Morkoc and U Ozgur, “Zinc Oxide Fundamentals, Materials and Device Technology”, Wiley-Vch (2009). 5 6. C Wang, R Boa, K Zhao, T Zhang, and L Dong, Nano Energy 14 (2015) 364. 6 7. H Wang, Y Zhao, C Wu, X Dong, B Zhang, G Wu, Y Ma, and G Du, J. Luminescence 158 (2015) 6. 7 8. J Kwon, Y K Hong, H-J Kwon, Y Park, B Yoo, J Kim, C P Grigoropoulos, M S Oh and S Kim, Nanotechnology 26 (2015) 035202. 8 9. L Guoa, H Zhanga, and D Zhaoa, B Lia, Z Zhanga, M Jianga, and D Shen, Sensors and Actuators B: Chemical 166-167 (2012) 12. 9 10. Z F Shi, Y T Zhang, X J Cui, S W Zhuang, B Wu, X W Chu, X Dong, B L Zhang, and G T Dou, Phys. Chem. Chemical Physics 17 (2015) 13813. 10 11. M Szymański, H Teisseyre, and A Kozaneck, Physica Status Solidi (a) 211 (2014), 2105. 11 12. J Bian, X Kou, Z Zhang, Y Zhang, J Sun, F Qin, W Liu, and Y Luo, Materials Science in Semiconductor Processing 16 (2013) 1684. 12 13. L Sang, S Y Yang, G P Liu, G J Zhao, B C Liu, C Y Gu, H Y Wei, X L Liu, Q S Zhu, and Z G Wang, IEEE Trans. Electron Devices 60 (2013) 2077. 13 14. H C Wang, C H Liao, Y L Chueh, C C Lai, L H Chen, and R C C Tesiang, Optical Materials Express 2 (2013) 237. 14 15. P Kuznetsov, V Lusanov, G Yakushcheva, V Jitov, L Zakharov, I Kotelyanskii, and V Kozlovsky, Physica Status Solidi C 7 (2010) 1568. 15 16. P Barquinha, E Fortunato, A Goncalves, A Pimmentel, A Marques, L Pereira, and R A Martins, Adv. Mater. Forum. 68 (2006) 514. 16 17. M Amirabbasi, Modern Phys. Lett. B 27 (2013) 1350170. 17 18. X Ji, Y Zhu, M Chen, L Su, A Chen, X Gui, R Xiang, and Z Tang, Scientific Reports 4 (2014) 4185. 18 19. L Meng, J Zhang, Q Li, and X Hou, Journal of Nanomaterial 2015, 26 (2015) 1. http:// dx.doi. org/ 10.1155/2015/694234. 19 20. J Ye, S T Lim, M Bosman, S Gu, Y Zheng, H Tan, C Jagadish, X Sun, and K L Teo, Sci. Rep. 2 (2012) 533. 20 21. D C Look, “Electrical Characterization of GaAs Material and Devices”, John Wiley (1998). 21 22. D C Look, D C Reynolds, J R Sizelove, R L Jones, C W Litton, G Cantwell, and W C Harsch, Solid State Commun. 105 (1998) 339. 22 23. E Furno, F Bertazzi, M Goano, G Ghione, and E Belloti, Solid State Electronics 52 (2008)1796. 23 24. D L Rode, Low-field Electron Transport, Semiconductors and Semimetals 10 (1975) 1. 24 25. D A Anderson and N Aspley, Semicond., Sci. Technol. 1 (1986) 187. 25 26. H Ehrenreich, J. Phys. Chem. and Solids 8 (1995) 130. 26 27. H Brooks, Phys. Rev. 83 (1951) 879. 27 28. H Tang, W Kim, A Botchkarev, G Popovici, F Hamdani, and H Morkoc, Solid State Electronics 42 (1998) 839 28 29. B Podor, Phys. Status Solidi 16 (1966) K167. 29 30. D C Look and R J Monlar, Appl. Phys. Lett. 70 (1997) 3377. 30 31. B K Ridley, J. Phys. C 15 (1982) 5899. 31 32. K Hirakawa and H Sakaki, Phys. Rev. B 33 (1986) 8297. 32 33. K Lee, M S Shur, T J Drummond, and H Morkoc, J. Appl. Phys. 54 (1983) 6432. 33 34. P K Basu and B R Nag, Phys. Rev. B 22 (1980) 4849. 34 35. J P Price, Ann. Phys. 133 (1981) 217. 35 36. P J Price and J Vac, Sci. Technol. 19 (1981) 599. 36 37. K Hess, Appl. Phys. Lett. 35 (1979) 484. 37 38. C T Sah, T H Ning, and L L Tscopp, Surf. Sci. 32 (1972) 561. 38 39. S D Sarma and F Stern, Phys. Rev. B 32 (1985) 8442. 39 40. J H Davies, “The Physics of Low Dimensional Semiconductors”, Cambridge University Press (1998). 40 41. D C Look, R L Jones, J R Sizelove, N Y Garces, N C Giles, and L E Halliburton, Phys. Status Solidi a 195 (2003) 171. 41 42. F Vigue, P Vennegues, C Deparis, S Vezian, M Laugt, and J P Faurie, J. Appl. Phys. 90, 10 (2001) 5115. 42 43. J A Davis and C Jagadish, Laser Photon. Rev. 3 (2008) 85. 43 44. N G Weimann, L F Eastma, D Doppalapudi, H M Ng, and T D Maustakus, J. Appl. Phys. 83 (1998) 3656. 44 45. T Ando, A B Fowler, and F Stren, Rev. Mod. Phys. 54 (1982) 437. 45
ORIGINAL_ARTICLE Double Langmuir probe measurement of plasma parameters in a dc glow discharge In this paper, plasma main characteristics such as electron mean temperature, electron number density, and oscillation frequency have been measured experimentally using the double Langmuir probe diagnostic system. In our experiment, the plasma was generated by applying the low pressure dc glow discharge in several common gases. The experimental results indicated the highest plasma density and oscillation frequency for the plasma originating from Argon and the highest mean value of temperature for Hydrogen plasma. The experimental results were then confirmed by COMSOL simulator, showing reasonable consistency with the simulations. The data were then used to compare the degree of ionization with the measured plasma parameters. https://ijpr.iut.ac.ir/article_1384_190c69d1498eabc47dad83969a54c122.pdf 2019-11-26 494 494 10.29252/ijpr.18.3.494 double Langmuir probe glow discharge COMSOL simulator S A Ghasemi abo.ghasemi@gmail.com 1 پژوهشکده پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، تهران LEAD_AUTHOR A Mazandarani 2 پژوهشکده پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، تهران AUTHOR S Shahshenas 3 دانشکده فیزیک، دانشگاه آزاد اسلامی واحد شبستر، شبستر AUTHOR 1. B Ghimire et al., Journal of science, Engineering and Technology 10 (2014) 20. 1 2. A Bogaerts et al., Spectro Chimica Acta, B 57 (2002) 609. 2 3. J Reece Roth, “Industrial Plasma Engineering”, Institute of Physics Publishing, Bristol and Philadelphia (1995). 3 4. A Brockhaus et al., Plasma Sources Science and Technology, 3 (1994) 4. 4 5. E O Johnson and L Malter, Physical Review 80 (1950) 58. 5 6. L S Pilling et al., Review of Scientific Instruments, 74 (2003) 7. 6 7. F F Chen, “Electric Probe Plasma Diagnostic Techniques”, Edited by Huddleston and Leonard, Academic Press, New York (1965). 7 8. S Mijovic et al., Publ. Astron. Obs. Belgrade 84 (2008) 313. 8 9. D Akbar and S Bilikmen, Chin. Phys. Lett. 23 5 (2006) 1234. 9 10. A K Shrestha et al., “Double Langmuir Probe for Plasma Parameters Measurement”, Proceedings of the International Conference on Plasma Science and Applications 10, II (2014) 6. 10 11. J R Patterson et al., “A Langmuir Probe Diagnostic for Use in Inhomogeneous, Time-Varying Plasmas Produced by High-Energy Laser Ablation”, LLNL-CONF-554371, (2012) May 6, 2012 through May 10, (2012). 11 12. M B Hopkins, J. Res. Natl. Inst. Stand. Technol. 100, 4 (1995) 415. 12 13. H Jin Yoon et al., Jpn. J. Appl. Phys. 38, 12 (1999) 6890. 13 14. S S Pradhan, et al., Journal of Physical Sciences 10 (2006) 158. 14 15. T K Popov et al., Plasma Sources Sci. Technol. 25 (2016) 033001. 15 16. “COMSOL Multiphysics Reference Guide”, Protected by U.S. Patents (2012), 7, 519, 518; 7, 596, 474; and 7, 623, 991. COMSOL 4.3a. 16
ORIGINAL_ARTICLE The effect of material nonlinearity on the band gap for TE and TM modes in square and triangular lattices In this article, by using the method of finite difference time domain (FDTD) and PML boundary conditions, we have studied the photonic band gaps for TE and TM modes in square and triangular lattices consisting of air holes in dielectric medium and compared the results. In addition, the effect of nonlinearity of the photonic crystal background on the photonic band gaps and comparison with the results of the linear case (holes in a background medium with linear dielectric constant) has been presented. Comparison of the transmission spectrums in linear and nonlinear cases shows a red shift in minimum transmission for both triangular and square lattices. https://ijpr.iut.ac.ir/article_1385_d9b20430f4ce86b08f08c1b278ea5578.pdf 2019-11-26 495 495 10.29252/ijpr.18.3.495 photonic crystals nonlinear materials band gaps TE and TM modes M Mokari-Behbahan mokari@bkatu.ac.ir 1 گروه فیزیک، دانشگاه صنعتی خاتم الانبیاء(ص) بهبهان، بهبهان LEAD_AUTHOR Y Shahamat 2 گروه فیزیک، دانشگاه شیراز، شیراز AUTHOR M H Alamatsaz 3 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان AUTHOR A A Babaei-Brojeny 4 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان AUTHOR H Moeini 5 دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان AUTHOR 1. J D Joannopoulus, R D Meade, and J N Winn, “Photonic Crystals: Molding the Flow of Light.”, Princeton University Press, Princeton, NJ. (1995). 1 2. R M De La Rue and T F Krauss, Progress in Quantum Electron. 23 (1999) 51. 2 3. R M De La Rue, Optical and Quantum Electronics 34 (2002) 417. 3 4. P Yu, J Topolancik, and P Bhattacharya, IEEE Journal of Quantum Electronics 40 (2004) 1417. 4 5. K Yasumoto, “Electromagnetic Theory and Applications for Photonic Crystals”, Taylor & Francis, Boca Raton, FL. (2006). 5 6. S John, Phys. Rev. Lett. 58 (1987) 2486. 6 7. E Yablonovoitch, Phys. Rev. Lett. 58 (1987) 2059. 7 8. I S Maksymov and L F Marsal, Opt. Commun 248 (2005) 469. 8 9. R M Joseph and A Taflove, IEEE Trans. on Antennas Propagation 45, 3 (1997) 364. 9 10. H Y Ryu et al., Phys. Rev. B 59 (1999) 5463. 10
ORIGINAL_ARTICLE Measurement and simulation of magnetic field strenght in the nano magnetic abrasive finishing process Magnetic abrasive finishing can be classified as a non-traditional super finishing method for finishing surfaces with different shapes and working materials like flat plates, shafts, bearings parts, screws, tubes and many other mechanical parts that need good surface finishing properties. MAF is effective in polishing, cleaning, deburring and burnishing metal parts. The most important parameter affecting the performance of this method, such as surface roughness, is the magnetic force. The magnetic force is obtained from a permanent Magnet or a DC magnet. In this article, the magnetic field strength, magnetic flux density and magnetic force in different states are studied using simulation with some finite element method software (Maxwell). The shapes of magnets, various sizes and the material of fixture are studied. The magnetic properties of the material of the work piece are simulated too. To verify the simulation results, the situation is also measured by a Gauss meter. The intensity of the magnetic field required for the micro chipping is obtained for different geometric shapes and various materials of work piece in the magnetic abrasive finishing process. The results show that increasing the distance from the magnet surface results in a decrease in the magnetic flux density and significance of the edge phenomenon effect. The effect of work piece material, work piece fixture material, and the interaction of them were is shown to be significant on magnetic flux density. To concentrate the magnetic abrasive powder in the polishing process of non-ferromagnetic parts, the ferromagnetic fixture for these parts can be provided https://ijpr.iut.ac.ir/article_1386_357f6a731262724f82ab92930e3745f3.pdf 2019-11-26 496 496 10.29252/ijpr.18.3.496 magnetic abrasive finishing design of experiments simulation magnetic flow density teslameter M Vahdati vahdati@kntu.ac.ir 1 مهندسی مکانیک، دانشگاه صنعتی خواجه نصیر الدین طوسی، تهران LEAD_AUTHOR S Rasouli sarasouli@mail.kntu.ac.ir 2 مهندسی مکانیک، دانشگاه صنعتی خواجه نصیر الدین طوسی، تهران AUTHOR 1. V Jain, Journal of Materials Processing Technology 209, 20 (2009) 6022. 1 2. N Jain, V Jain, and S Jha, The International Journal of Advanced Manufacturing Technology 34, 11-12 (2007) 1191. 2 3. S Jha and V Jain, “Nanofinishing Techniques, in: Micromanufacturing and Nanotechnology”, Eds. Springer (2006) 171. 3 4. V Ganguly, T Schmitz, A Graziano, and H Yamaguchi, Force Measurement and Analysis for Magnetic Field–Assisted Finishing, Journal of Manufacturing Science and Engineering 135, 4 (2013) 041016. 4 5. Y M Hamad, Al-Khwarizmi Engineering Journal 6, 4 (2010) 10. 5 6. R S Mulik and P M Pandey, Journal of Manufacturing Science and Engineering 134, 5 (2012) 051008. 6 7. S Jayswal, V Jain, and P Dixit, The International Journal of Advanced Manufacturing Technology 26, 5-6 (2005) 477. 7 8. D K Singh, V Jain, and V Raghuram, Journal of Materials Processing Technology 149, 1 (2004) 22. 8 9. D K Singh, V Jain, and V Raghuram, The International Journal of Advanced Manufacturing Technology, 30, 7-8 (2006) 652. 9 10. V Mishra, H Goel, R S Mulik, and P Pandey, Journal of Manufacturing Processes 16, 2 (2014) 248. 10 11. L D Yang, C T Lin, and H M Chow, The International Journal of Advanced Manufacturing Technology 42, 5-6 (2009) 595. 11 12. J S Kwak and H S Kang, “Assessment on Magnetic Flux Density of Magnetic Array Table in Magnetic Abrasive Polishing Process”, Proceeding of the International Multi‐Conference of Engineering and Computer Scientists (IMECS), Hong Kong, Vol. ІІ, (2011). 12 13. J S Kwak, Journal of Machine Tools and Manufacture 49, 7 (2009) 613. 13
ORIGINAL_ARTICLE Bulk viscous string cosmological models in Saez – Ballester theory of gravitation Spatially homogeneous Bianchi type-II, VIII and IX anisotropic, as well as isotropic cosmological models can be obtained in a scalar tensor theory of gravitation proposed by Saez and Ballester (1986) when the source for energy momentum tensor is a bulk viscous fluid containing one-dimensional cosmic strings. All the models obtained and presented here are expanding, non-rotating and accelerating. Also, some important features of the models thus obtained have been discussed. https://ijpr.iut.ac.ir/article_1387_7c0a711f87ce0bcbb64add584e8e1995.pdf 2019-11-26 497 497 10.29252/ijpr.18.3.497 Bianchi type - II VIII and IX metrics Bulk viscosity cosmic strings Saez – Ballester theory V U M Rao umrao57@hotmail.com 1 دانشکده ریاضی کاربردی، دانشگاه آندرا، ویساخاپاتنام، هند LEAD_AUTHOR M Vijaya Santhi 2 دانشکده ریاضی کاربردی، دانشگاه آندرا، ویساخاپاتنام، هند AUTHOR K V S Sireesha 3 دانشکده ریاضی مهندسی، دانشگاه فناوری و مدیریت گاندی، ویساخاپاتنام، هند AUTHOR N Sandhya Rani 4 دانشکده ریاضی کاربردی، دانشگاه آندرا، ویساخاپاتنام، هند AUTHOR 1. J D Barrow, Phys. Lett. B 180 (1986) 335 1 2. T Padmanabhan and S M Chitre, Phys. Lett. A 120 (1987) 433. 2 3. D Pavon, J Bafluy, and D Jou, Class. Quantum gravity. 8 (1991) 347 3 4. R Martens, Class. Quantum gravity. 12 (1995) 1455 4 5. J A S Lima, A S M Germano, and L R W Abrama, Phys. Rev. D 53 (1993) 4287. 5 6. X X Wang, Chin. Phys. Lett. 21 (2004) 1205. 6 7. X X Wang, Chin. Phys. Lett. 22 (2005) 29. 7 8. X X Wang, Chin. Phys. Lett. 23 (2006) 1702. 8 9. R Bali and S Dave, Astrophys. Space Sci. 282 (2002) 461. 9 10. R Bali and A Pradhan, Chin. Phys. Lett. 24, 2 (2007) 585. 10 11. S K Tripathy, S K Nayak, S K Sahu, and T R Routray, Astrophys. Space Sci. 321 (2009) 247. 11 12. S K Tripathy, D Behera, and T R Routray, Astrophys. Space Sci. 325 (2010) 93. 12 13. V U M Rao, G Sree Devi Kumari, and K V S Sireesha, Astrophys. Space sci. 302 (2011) 157. 13 14. V U M Rao and K V S Sireesha, Int. J. Theor. Phys. 51 (2012a) 3013. 14 15. V U M Rao and K V S Sireesha, Eur. Phys. J. plus 127 (2012b) 49. 15 16. V U M Rao, M Vijaya Santhi, and T Vinutha, Astrophys. Space sci. 314 (2008a) 73. 16 17. D Saez and V J Ballester, Phys. Lett. A 113 (1986) 467. 17 18. V U M Rao, K V S Sireesha, and M Vijaya Santhi, ISRN Math. Phys. DOI: 10.5402/2012/341612 (2012). 18 19. V U M Rao and Y V S S Sanyasi Raju, Astrophys. Space Sci. 187 (1992) 113. 19 20. Y V S S Sanyasi Raju and V U M Rao, Astrophys. Space Sci. 189 (1992) 39. 20 21. V U M Rao, K V S Sireesha, and D Neelima, ISRN Astronomy and Astrophysics DOI: 10.1155/2013/924834 (2013a). 21 22. D R K Reddy, B M Patrudu, and R Venkateswarlu, Astrophys. Space Sci. 204 (1993) 155 22 23. Raj Bali and S Dave, Praman J. of Phys. 56, 4 (2001) 513. 23 24. Raj Bali and M K Yadav, Pramana J. Phys. 64, 2 (2005) 187. 24 25. F Rahaman, S Chakraborthy, N Begum, M Hossian, and M Kalam, Pramana J. Phys. 60 (2003) 1153. 25 26. D K Sen, Phys. 149 (1957) 311. 26 27. G Lyra, Mathemastische Zeitschrift 54 (1951) 52. 27 28. R L Naidu, B Satyanarayana, and D R K Reddy, Astrophys. Space sci. 338 (2012) 351. 28 29. M S Bermann, Nuovo Cimento B 74 (1983) 182. 29 30. V U M Rao, D Neelima, and P Suneetha, Afr. Rev. Phys. 8 (2013c) 0008. 30 31. V U M Rao, K V S Sireesha, and D Ch Papa Rao, Eur. Phys. J. Plus. 129 (2014a) 17. 31 32. V U M Rao, B J M Rao, and M Vijaya Santhi, Prespacetime Journal, 5 (2014b) 758. 32 33. K Bamba, S Capozziello, S Nojiri, and S D Odintsov, Astrophys Space Sci. 342 (2012) 155. 33 34. V U M Rao, T Vinutha, and K V S Sireesha, Astrophys. Space sci. 323 (2009) 401. 34 35. V U M Rao, M Vijaya Santhi, and T Vinutha, Astrophys. Space sci. 317 (2008b) 27. 35 36. V U M Rao, M Vijaya Santhi, and T Vinutha, Astrophys. Space sci. 317 (2008c) 83. 36 37. V U M Rao, and D Neelima, J.Theor. App. Phys., 7 (2013) 50. 37