ORIGINAL_ARTICLE A review on fiber optic sensor used in electronics industry, internet of things, and new generation optical communications networks Fiber-optic sensors available in the market used to measure physical quantities such as electrical and magnetic fields, electrical current, temperature, pressure, acceleration, flow of liquids and gases, and measurement of fluid levels in various industries. As of today, due to the growing use of fiber optics, manufacturers of many machineries and control systems have been keen on using these sensors in manufacturing products. In this paper, due to the increasing importance of optical sensors, especially in wireless sensor networks, in the Internet of things, and in optical fiber networks, these types of sensors have been widely studied over the past decades to date, and in terms of technical and their applications, have been reviewed and reported. The results of this article can be used for designers of these sensors in various industries and universities at undergraduate, post-graduate students, and senior physics and engineering departments. https://ijpr.iut.ac.ir/article_1569_ae077dcd2c080aec2e3bc84af7766f6c.pdf 2020-02-20 659 672 10.47176/ijpr.19.4.5711 optical fiber sensors electronic industry physical quantity optical communication networks IoT WSNs F Esmaili Seraji feseraji@itrc.ac.ir 1 Department of Optical Telecommunication, Institute of Communication Technology, Tehran, Iran LEAD_AUTHOR M Ghanbarisabagh m.ghanbarisabagh@um.edu.my 2 Faculty of Electrical Engineering and Computer Sciences, Islamic Azad University North Tehran Branch, Tehran, Iran AUTHOR ِD Ranjbar Rafi ranjbar@itrc.ac.ir 3 دانشکدة فنی و مهندسی، دانشگاه آزاد اسلامی، تهران AUTHOR H Osturberg, Phys. Proc. NAS 15 (1929) 892. 1 F Ansari (Ed.), “Applications of Fiber Optic Sensors in Engineering Mechanics”, Am. Soc. Civil Engineers, New York, USA (1993). 2 V Ramamurthy and K S Schanze, “Optical Sensors and Switches”, Marcel Dekker, Inc., New York (2001). 3 M Raymond Measures, “Structural Monitoring with Fiber Optic Technology”, Academic Press, London, UK (2001). 4 Jose Miguel Lopez-Higuera, “Handbook of Optical Fibre Sensing Technology”, John Wiley & Sons, New York, USA (2002). 5 F T S Yu, S Yin (Eds.), “Fiber Optic Sensors”, Marcel Dekker Inc., New York (2002). 6 S Yin, P B Ruffin, F T S Yu, “Fiber Optic Sensors” (Eds.), 2nd Ed., CRC Press, Taylor & Francis Group, New York, USA (2008). 7 G Rao (Ed.), “Optical Sensor Systems in Biotechnology”, Springer-Verlag Berlin Heidelberg (2009). 8 J Haus, “Optical Sensors: Basics and Applications”, Wiley-VCH Verlag GmbH & Co, Germany (2010). 9 S Soloman, “Sensors and Control Systems in Manufacturing”, (2nd Ed.), McGraw-Hill Inc., New York, USA (2010). 10 L K Bandyopadhyay, S K Chaulya, P K Mishra, “Wireless Communication in Underground Mines: RFID-Based Sensor Networking”, Springer, New York, USA (2010). 11 Jin U Kang, “Fiber Optic Sensing and Imaging”, Springer Science+Business, New York, USA (2013). 12 D Krohn, MacDougall, A Mendez, “Fiber optic sensors: fundamentals and applications”, 4th Ed., Society of Photo-Optical Instrumentation Engineers (SPIE), Washington, USA (2014). 13 J L Santos and F Farahi, “Handbook of Optical Sensors”, CRC Press, Taylor & Francis Group, New York, USA (2015). 14 M Yasin, S W Harun and H Arof, “Optical Sensors New Developments and Practical Applications”, Published by AvE4EvA (2014). 15 H C Lefèvre, “The Fiber-Optic Gyroscope”, 2nd Ed., Artech House, Boston, USA (2014). 16 I Meglinski (Ed.), “Biophotonics for Medical Applications”, Woodhead Publishing Limited (Elsevier), Amsterdam, Holland (2015). 17 B D Gupta, S K Srivastava. R Verma, “Fiber Optic Sensors Based On Plasmonics”, World Scientific Publishing Co. Pte. Ltd, Singapore (2015). 18 S Pissadakis and S Selleri (Eds.), “Optofluidics, Sensors and Actuators in Microstructured Optical Fibers”, Woodhead Publishing (Elsevier), Amsterdam, Holland (2015). 19 A Brahme (Ed.), “Comprehensive Biomedical Physics”, Elsevier, Amsterdam, Netherlands (2014). 20 CISCO Paper release, “CISCO Visual Network Index: Forecast and Methodology, 2015-2020” (2016). 21 S Jankowski, J Covello, H Bellini, J Ritchie, and D Costa, “The Internet of Things: Making sense of the next mega-trend”, Goldman Sachs (2014). 22  A Al-Fuqaha, M Guizani, M Mohammadi, M Aledhari, and Ayyash, "Internet of things: A survey on enabling technologies, protocols, and applications", IEEE Commun. Surveys & Tutorials 17, 4 (Fourth Quarter) 2015 (2015) 2347. 23 L Atzori, A Iera, and Morabito, Computer net. 54 (2010) 2787. 24 L Atzori, A Iera, G Morabito, IEEE Commun Lett. 15 (2011)1193. 25 I Padron (Ed.), “Interferometry-Research and Applications in Science and Technology”, ITexLi 2nd Ed., USA, (2016). 26 E Harris, Y Li, L Chen, and X Bao, Appl. Opt. 49, 29 (2010) 5682. 27 G Weihs; M Reck, H Weinfurter, A Zeilinger, Opt. Lett. 21, 4 (1996) 302. 28 W E Williams, “Applications of Interferometry”, (5th Ed.), John Wiley & Sons, New York, USA (1950). 29 B Culshaw and I P Giles, J. Phys. E: Sci. Instrum. 16 (1983) 5. 30 G Bertocchi, O Alibart, D B Ostrowsky, S Tanzilli, P Baldi, J. Phys. B: At. Mol. Opt. Phys. 39 (2006) 1011. 31 G Pascoli, Comptes Rendus Physique 18 (2017) 563. 32 Li-Peng Sun, J Li, L Jin, Y Ran, Bai-Ou Guan, Sensors and Actuators B: Chemical 231 (2016) 696. 33 A Smirnov, E Rostova, G Dietler, S Sekatskii, "Long-life plastic optical fiber probes for scanning near-field optical microscope", Proceeding of SPIE 10711 Biomed. Imag. Sensing Conf., 107110P (2018), Yokohama, Japan. 34 J L Plawsky, T A Hatton, Appl Opt. 27, 20 (1988) 4200. 35 Y T Yang, D Heh, P K Wei, W S Fann, M H Gray and J W P Hsu, J. Appl. Phys. 81 (1997) 1623. 36 J T Motz, M Hunter, L H Galindo, J A Gardecki, J R Kramer, R R Dasari, and M S Feld, Appl. Opt. 43, 3 (2004) 542. 37 A Smirnov, V M Yasinskii, D S Filimonenko, E Rostova, G Dietler, and S K Sekatskii, Hindawi Scanning (2018) Article ID 3249189. 38 https://doi.org/10.1155/2018/3249189. 39 G Allwood, G Wild, and S Hinckley, Electronics 6, 92 (2017) 1. 40 R Willsch; W Ecke; G Schwotzer, "Spectrally encoded optical fibre sensor systems and their application in process control, environmental and structural monitoring", Proceeding of SPIE Cong. Opt. and Optoelectron., Warsaw, Poland (2005) 59520I. 41 R Willsch, W Ecke, H Bartelt, “Optical fiber sensor research and industry in Germany: Review and outlook”, Proceeding of SPIE 21st Int. Conf. Optical Fibre Sensors, Ottawa, ON, Canada (2011) 775302. 42 B Culshaw, A Kersey, IEEE J. Lightwave Technol. 26 (2008) 1064. 43 B Culshaw,“Fibre optics in sensing and measurement-achievements and opportunities”, Proceeding of 2nd Int. Conf. Opto-Electron. Appl. Opt. (IEM OPTRONIX), Vancouver, Canada (2015) 1. 44 O Esteban, M Cruz-Navarrete, A Gonza´ lez-Cano, and E Bernabeu, Appl. Opt. 38, 25 (1999) 5267. 45 D H McMahon, A R Nelson, and W B Spillman Jr. IEEE Spectrum 18 (1981) 24. 46 S Campopiano, A Cutolo, A Cusano, M Giordano, G Parente, G Lanza, and Laudati, Sensors 9 (2009) 4446. 47 C-L Tien, C-C Hwang, H-W Chen, W F Liu, and S- Lin, IEEE Transac. Magnetics 42, 10 (2006) 3285. 48 F E Seraji, Jpn J. Appl. Phys. 32, 4, Part 1, (1993) 1661. 49 G Wang, K Pran, G Sagvolden, G B Havsgård, Smart Mater. Structure 10 (2001) 472. 50 H-E Joe, H Yun, S-H Jo, M B G Jun, and B-K Min, Int. J. Precision Eng. Manufact. Green Technol. 5, 1 (2018) 173. 51 W Wang, N Wu, Y Tian, C Niezrecki, and X Wang, Opt. Exp. 18, 9 (2010) 9006. 52 Z Fang, K K Chin, R Qu, H Cai, “Fundamentals of Optical Fiber Sensors”, John Wiley & Sons, New Jersey, USA, (2012). 53 K T V Grattan and B T Meggitt, “Optical Fiber Sensor Technology: Fundamentals”, Springer Science+Business Media New York, USA (2000). 54 Z Wang, M Jiang, H Xu, R Du, Procedia Eng. 29 (2012) 4234. 55  Q Wu, Y Semenova, P Wang, A M Hatta, and G Farrell, Meas. Sci. Technol. 22 (2011) 025203. 56 J W Berthold III, J. Lightwave Technol. 13, 7 (1995) 1193. 57 I Padron (Ed.), “Interferometry: Research and Applications in Science and Technology”, (2nd Ed.) ITexLi Publisher (2016). 58 T-H Lee, F-T Hwang, W-T Shay, and C-T Lee , Microwave and Opt. Technol. Lett. 48, 9 (2006) 523. 59 E Reyes-Vera, C Jiménez-Durango, M Varon, "Fourier Scheme for the Fiber Loop Mirror Temperature Sensor Based on Indium-filled Side-hole Photonic Crystal Fiber" Int. Conf. Electromagnetics Advan. App. (ICEAA) 2018, Cartagena des Indies, Colombia (2018). 60 Y Yang, Y Wang, Y Zhao, J Jiang, X He, W Yang, Z Zhu, W Gao, and L Li, Opt. Exp. 25, 26 (2017) 33291. 61 C Okawara and K Saijyou, Acoust. Sci. & Tech. 29, 3 (2008) 232. 62 R Sato and S Saito, Jpn J. Appl. Phys. 52 (2013) 012501. 63 N Lagakos, W J Trott, T R Hickman, J H Cole, and J A Bucaro, IEEE J. Quant. Electron. QE-18, 10 (1982) 1633. 64 T G Giallorenzi et al, IEEE J. Quant. Electron. QE-18, 4 (1982) 626. 65 R Main, Sensor Review 5, 3 (1985) 133. 66 R A Berg et al, IEEE J. Lightwave Technol. LT-2 (1984) 91. 67 B Y Kim et al., IEEE Spectrum (1986) 54. 68 J A Bucaro, H D Dardy, and E F Carome, Appl. Opt. 16 (1977) 1761. 69 A M Scheggi, “Optical Fibres in Medicine”, Proceeding of 2nd Intl Optical Fiber Sensor Conf., Berlin: VDE-Verlag GmbH, (1984) 93. 70 F E Seraji, G S Pandian, Institute of Engineers J. -EL (India) 72 (1991) 83. 71 E Udd, W B Spillman, Jr “Fiber Optic Sensors: An Introduction for Engineers and Scientists”, John Wiley & Sons, New Jersey, USA (2011). 72 B D Gupta, “Fiber Optic Sensors: Principles and pplications” New India Publishing, New Delhi, India (2006). 73 J U Kang (Editor), “Fiber Optic Sensing and Imaging”, Springer New York, USA (2013). 74 D Krohn, T MacDougal, A Mendez, “Fiber optic sensors: Fundamentals and Applications”, SPIE Press, Washington, USA (2014). 75 M Yasin, S W Harun and H Arof (Editors), “Optical Sensors: New Developments and Practical Applications”, AvE4EvA MuViMix Records (2014). 76 Y Zhao, Y Jin, J Wang, X Dong, Optik 124, 18 (2013) 3771. 77 W Han, Z Tong, Y Cao, Opt Commun. 321 (2014) 134. 78 Z Wang, Z Tan, R Xing, L Liang, Y Qi, S Jian, Opt. & Laser Technol. 84 (2016) 59. 79 P Nath, P Datta, K Ch Sarma, Microwave Opt. Technol. Lett. 50, 7 (2008) 1982. 80 R W  Boyd, J H Heebner, Appl Opt. 40 (2001) 5742. 81 L Junqing, L Li, Z Jiaqun, L Chunfei, Opt Commun. 256, 4-6 (2005) 319. 82 O Schwelb, Opt. Commun. 265, 1 (2006) 175. 83 S L McCall, A F J Levi, R E Slusher, S J Pearton, R A Logan. Appl. Phy. Lett. 60 (1992) 289. 84 S Hao, C Jian-Ping, L Xin-Wan, W Yi-Ping, Opt. Commun. 262, 2 (2006) 200. 85 Y Dumeige, C Arnaud, and P Féron, Opt. Commun. 250, 4- 6 (2005) 376. 86 F E Seraji and F. Asghari, Opt. & Laser Technol. 42 (2010) 115. 87 F E Seraji, Prog. Quant. Electron. 33, 2-4 (2009) 110. 88 F E Seraji, Progress Quant. Electron. 33, 1 (2009) 1. 89 K Shalmashi, F E Seraji, and M R Mersagh, Eur. Phys. J. Appl. Phys. 58 (2012) 20502. 90 X Zhao, J M Tsai, H Cai, X M Ji, J Zhou, M H Bao, Y P Huang, D L Kwong, and A Q Liu, Opt. Exp. 20, 8 (2012) 8535. 91 F Xu, V Pruneri, V Finazzi, and G Brambilla, Opt. Exp. 16, 2 (2008) 1062. 92 N Lin, L Jiang, S Wang, L Yuan, and Q Chen, Chin. Opt. Lett. 10, 5 (2012) 052802. 93 K T V Gratttan and B T Meggitt, “Optical Fiber Sensor Technology”, Kluwer Acad. Publishers, The Netherlands (2000). 94 M E Seraji, F E Seraji, H Golnabi, Int. J. Opt. App. 2, 5 (2012) 76. 95
ORIGINAL_ARTICLE Holographic complexity for R2 and R3 gravities In this paper, the second and third order corrections of the curvature tensor to the holographic complexity of a temperature state in the coherent field theory are studied. Dual geometry of  this  temperate state  is Schwarzschild's anti deSitter black hole geometry. The calculations made in this paper show that considering these new sentences will only appear as a constant coefficient in the final result, that is the rate of complexity growth over long periods of time. https://ijpr.iut.ac.ir/article_1570_e90e25c721e876663a3e5d68f43a6437.pdf 2020-02-20 673 681 10.47176/ijpr.19.4.36651 AdS / CFT duality quantum complexity black hole A Naseh naseh@ipm.ir 1 پژوهشگاه دانش های بنیادی ، پژوهشکده ذرات و شتابگرها LEAD_AUTHOR Gh Jafari ghjafari@ipm.ir 2 پژوهشگاه دانش های بنیادی ، پژوهشکده ذرات و شتابگرها AUTHOR H Zolfi hamed.zolfi@physics.sharif.edu 3 پژوهشگاه دانش های بنیادی ، پژوهشکده ذرات و شتابگرها و دانشگاه صنعتی شریف،دانشکده فیزیک AUTHOR N Margolus and L B Levitin, Physica D 120 (1998) 188. 1 S Lloyd, Nature 406 Aug (2000), quant-ph/9908043. 2 J D Bekenstein, Lett. Nuovo Cim. 4, (1972) 737. 3 J D Bekenstein, Phys. Rev. D 7 (1973) 2333. 4 J D Bekenstein, Phys. Rev. D 9 (1974) 3292. 5 M Van Raamsdonk, “Gen. Rel. Grav. 42 (2010) 2323. 6 L Susskind, Fortsch. Phys. 64 (2016) 49 7 W Cottrell and M Montero, Complexity is Simple, arXiv:1710.01175. 8 D Carmi, S Chapman, H Marrochio, R C Myers and S Sugishita, Journal of High Energy Physics1711, 188 9 10. A R Brown, D A Roberts, L Susskind, B Swingle and Y Zhao, Phys. Rev. Lett. 116 (2016) 191301. 10 11. A R Brown, D A Roberts, L Susskind, B Swingle and Y Zhao, Phys. Rev. D 93 (2016) 086006. 11 12. A B Zamolodchikov, “Expectation value of composite-eld T-T in two-dimensional quantum”,-eld theory, hep-th/0401146 [INSPIRE]. 12 13. F A Smirnov and A B Zamolodchikov, Nucl. Phys. B 915 (2017) 363. 13 14. L McGough, M Mezei, and H Verlinde, Journal of High Energy Physics 04 (2018) 010. 14 15. M Alishahiha, A Faraji Astaneh, A Naseh and M H Vahidinia, Journal of High Energy Physics 1705 (2017) 009. 15 16. L Lehner, R C Myers, E Poisson and R D Sorkin, Phys. Rev. D 94, 8 (2016) 084046. 16 17. T Padmanabhan, Mod. Phys. Lett. A 29, 08 (2014) 1450037. 17 J D Brown and J W York, Phys. Rev. D 47:1407 (1993). 18
ORIGINAL_ARTICLE Hydrophobic and oleophilic cotton fabrics for efficient oil-water separation through low-pressure plasma polymerization In recent years, the increase of industrial effluents in the petrochemical sector, in particular, the leakage of oil and the draining of industrial effluents in rivers, has created serious environmental hazards and huge economic losses in the world. In the past decade, the use of hydrophobic and oleophilic fabrics has been considered as a way to clean up contaminants through the absorption and separation of pollutants from industrial effluents. In this research, the low-pressure plasma polymerization method based on eco-friendly materials like Polydimethylsiloxane was used to fabricate hydrophobic and oleophilic cotton fabric. Also a low-pressure oxygen plasma pre-treatment was performed before plasma polymerization to improve bonding between created layer and cotton fabric Contact angle test and absorption capacity test was used to represent hydrophobicity of coated fabric and to measure the absorbance ability of different oils. Also scanning electron microscopy (SEM) was used to observe morphological changes on the surface of cotton fibers and Infrared Fourier transform (FTIR-ATR) spectroscopy to detect the chemical bonds created on the surface of fibers. Water-oil separation efficiency test and laundering test have been conducted to determine the separation rate and to represent durability of coated cotton, respectively. The water contact angle of coated cotton fabric was 143±3 and approximately this high hydrophobicity behavior remained after 10 cycle laundering. Also SEM results showed that the surface of fibers was covered by a random distribution of several microscale structures or a hierarchical surface structure like the lotus leaf. Our Water-oil separation tests demonstrated that coated fabrics had separation efficiency between 80 until 100 percent for most of the industrial oil, even after 15 cycles at 250 c and 900 c. These results indicate that coated cotton fabrics with plasma polymerization method has a high potential for application in water-oil separation and selective oil absorption. The fabrics are promising for the development an environmental friendly and recyclable separation of oil from water. https://ijpr.iut.ac.ir/article_1571_f1a408d2f296b66565c31f3bd1ec184b.pdf 2020-02-20 683 690 10.47176/ijpr.19.4.29461 polydimethylsiloxane plasma polymerization hydrophobic-oleophilic fabrics water-oil separation L Ghorbani leilaghorbani42@yahoo.com 1 Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran LEAD_AUTHOR A Khatibi a_khatibi@sbu.ac.ir 2 . Faculty of Physics, Shahid Beheshti University, Tehran, Iran AUTHOR B Shokri b-shokri@sbu.ac.ir 3 Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran. Faculty of Physics, Shahid Beheshti University, Tehran, Iran AUTHOR D Caschera, B Cortese, A Mezzi, M Brucale, G Maria Ingo, G Gigli, and G Padelettiet. “Ultra Hydrophobic/ Superhydrophilic Modi fi ed Cotton Textiles through Functionalized Diamond-Like Carbon Coatings for Self- Cleaning Applications”, Langmuir 29 (2013) 2775. 1 B Cortese, D Caschera, F Federici, G M Ingo, and G Gigli, J. Mater. Chem. A 2, 19 (2014) 6781. 2 F Liu, M Ma, D Zang, Z Gao, and C Wang, Carbohydr. Polym. 103, 1 (2014) 480. 3 J H Shin, J Heo, S Jeon, J H Park, S Kim, and H Kang, J. Hazard. Mater. 365 (2019) 494. 4 S A Stout and J R Payne, Marine Pollution Bulletin. 111, 1–2 (2016) 365. 5 J Wang, F Han, B Liang, and G Geng, “Journal of Industrial and Engineering Chemistry 54 (2017) 174. 6 J Zhang and S Seeger, Adv. Funct. Mater. 21, 24 (2011) 4699. 7 C Yeom and Y Kim, Journal of Industrial and Engineering Chemistry Purification of oily seawater 40 (2016) 47. 8 N J Shirtcliffe, G Mchale, M I Newton, and C C Perry, Advanced Material. 104, 13 (2003) 7777. 9 A Chaudhary and H C Barshilia, J. Phys. Chem. C 115, 37 (2011) 18213. 10 S S Latthe, A B Gurav, C S Maruti, and R S Vhatkar, 2012, 4 (2012) 76. 11 L Feng et al., Angew. Chemie - Int. Ed. 43, 15 (2004) 2012. 12 13. Y Jin, P Jiang, Q Ke, F Cheng, Y Zhu, and Y Zhang, J. Hazard. Mater. 300 (2015) 175. 13 ف ناصح‌نیا، ب گنجی‌پور، ا یوسف‌نژاد، س ش مهاجرزاده، س ا ‌م میری، ع ا ارضی، مجلة پژوهش فیزیک ایران. ۴، 2 (۱۳۸۳) 103. 14 Q Zhu, Y Chu, Z Wang, N Chen, L Lin, F Liu, and Q Pan. J. Mater. Chem. A 1 (2013) 5386 15 M Patowary, R Ananthakrishnan, and K Pathak, Journal of Environmental Chemical Engineering. 2, 4 (2014) 2078. 16 A Zille, F R Oliveira, and A P Souto, Plasma Process. Polym. 12, 2 (2015) 98. 17 A Sabbah, A Youssef, and P Damman, Appl. Sci. 6, 5 (2016) 152. 18
ORIGINAL_ARTICLE Investigation of Lambda p invariant mass spectrum in K^--d --->Lambda p pi reaction In the present work, the in-flight kaon interaction on the deuteron target at incident  momentum of  is investigated in the channel by a phenomenological potential model. By considering the effect of  resonance in the  invariant mass spectra comes fromreaction, and a comparison between theoretical spectra and Braun’s data, we found the best theoretical spectrum fitted to the experimental data. The energy and width of  resonance state are respectively extracted  and  from the fitting process. https://ijpr.iut.ac.ir/article_1572_9e973990f241fbe6646adc5c1c035b94.pdf 2020-02-20 691 697 10.47176/ijpr.19.4.8195 kaonic nuclei interaction and resonance state M Daneshmand Dizicheh saaghi70@yahoo.com 1 Department of Physics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran AUTHOR J Esmaili jesmaili@ph.iut.ac.ir 2 Department of Physics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran LEAD_AUTHOR S Marri s.marri@ph.iut.ac.ir 3 Department of Physics, Isfahan University of Technology, Isfahan, Iran AUTHOR ج اسماعیلی، تعیین جرم و پهنای  از طریق جذب تشدیدی کائون منفی متوقف شده در هسته‌های سبک و بررسی سیستم هسته‌ای  با استفاده از روش فدیف، دانشگاه صنعتی اصفهان (1390). 1 Y Akaishi, and T Yamazaki, Phys. Rev. C 65 (2002) 044005. 2 T Yamazaki, and Y Akaishi, Phys. Lett. B 535 (2002) 70. 3 J Esmaili, Y Akaishi, and T Yamazaki, Phys. Lett. B 686 (2010) 23. 4 J Esmaili, Y Akaishi, and T Yamazaki, Phys. Rev. C 83 (2011) 055207. 5 S Marri, and S Z Kalantari, Eur. Phys. J. A 52 (2016) 282. 6 S Marri, S Z Kalantari, and J Esmaili, Eur. Phys. J. A 52 (2016) 361. 7 S Marri, S Z Kalantari, and J Esmaili, Chin. Phys. C 43 (2019) 064101.  8 S Marri, and J Esmaili, Eur. Phys. J. A 55 (2019) 43. 9 10. A. Naderi, J Esmaili, and M. Mohseni, Int. J. Mod. Phys. E 28 (2019) 1950003. 10 11. S Marri et al., Iranian J. Phys.Res. 18 2 (2018) 291. 11 11. س مری و همکاران، مجلة پژوهش فیزیک ایران ۱8، 2 (1397) 291. 12 12.  S Marri et al., Iranian J. Phys.Res. 18, 4 (2019) 539. 13 12. س مری و همکاران، مجلة پژوهش فیزیک ایران ۱8، 4 (1397) 539. 14 13. J Esmaili, and N Yahyaei, Iranian J. Phys.Res. 19, 1 (2019) 167. 15 13. ج اسماعیلی و ن یحیائی، مجلة پژوهش فیزیک ایران ۱9، 1 (1398) 167. 16 14. J Esmaili et al., Iranian J. Phys.Res. 12, 2 (2012) 137. 17 14. ج اسماعیلی و همکاران، مجلة پژوهش فیزیک ایران ۱۲، 2 (1391) 137. 18 15. M Agnello, et al., Phys. Rev. Lett. 94 (2005) 212303. 19 16. T Yamazaki, et al., Phys. Rev. Lett. 104 (2010) 132502. 20 17. N K Glendenning, and C Kettner Astron. Astrophys. 353 (2000) L9. 21 18.  (LEPS collaboration) J K Ahn, Nucl. Phys. A 721 (2003) C715. 22 19.  (CLAS collaboration) K Moriya, et al., Phys. Rev. C 88 (2013) 035206. 23 20.  (HADES collaboration) G Agakishiev, et al., Phys. Rev. C 87 (2010) 025201. 24 21. H Noumi, J-PARC proposal E31. See http:// 25 j-parc.jp/NuclPart/Proposal. 26 22. A Braun et al., Nucl. Phys. B 124 (1977) 45. 27 23. R H Dalitz, and A. Deloff, Czech. J. Phys. B 32 (1982) 1021. 28 24. A Deloff, Il. Nuovo. Cimento. 102 (1989) 217. 29 25. H Feshbach, Ann. Phys. 5 (1958) 357, H Feshbach, Ann. Phys. 19 (1962) 287. 30 26. Y Yamaguchi, and Y Yamaguchi, Phys. Rev. 95 (1954) 1628, Phys. Rev. 95 (1954) 1365. 31 27. K A Olive et al.,(Particle Data Group), Chin. Phys. C 38 (2014) 090001. 32 28. S M Flatte, Phys. Lett. 63 B (1976) 224. 33 29. م حسنوند، مجلة پژوهش فیزیک ایران ۱6، 1 (1395) 75. 34 29. M Hassanvand, Iranian J. Phys.Res. 16, 1 (2016) 75. 35
ORIGINAL_ARTICLE The thermodynamics of the FRW universe in scalar-twist gravitational theories In this paper, we study the validity of the laws of thermodynamics in the form of a far parallel gravitational theory with an incomplete coupling between curves and scalar fields. To this end, we consider the FRW flat world, showing  that the first and second laws of thermodynamics lie in its dynamic apparent horizon. We further assume that the universe is enclosed by the cosmological event horizon, such  that in this case the first law of thermodynamics is valid, but the second law of thermodynamics is applied to the selected incomplete model, depending on  the energy-momentum tensor components derived. https://ijpr.iut.ac.ir/article_1573_4483da280cdbb98b23207b49fb7d353f.pdf 2020-02-20 699 706 10.47176/ijpr.19.4.37001 cosmology modified gravity far parallel gravity incomplete coupling thermodynamics T Azizi t.azizi@umz.ac.ir 1 Department of Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran LEAD_AUTHOR D N Spergel, et al., Astrophys. J. Suppl. 170 (2007) 377. 1 S Perlmutter, et al., Astrophys. J. 598 (2003) 102. 2 E Hawkins, et al., Mon. Not. Roy. Astron. Soc. 346 (2003) 78. 3 D J Eisentein, et al., Astrophys. J. 633 (2005) 560. 4 B Jain and A Taylor, Phys. Rev. Lett. 91 (2003) 141302. 5 E J Copeland, M Sami and S Tsujikawa, Int. J. Mod. Phys. D 15 (2006) 1753. 6 T P Sotiriou and V Faraoni, Rev. Mod. Phys. 82 (2010) 451. 7 A Einsteinz, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 217 (1928) 224. 8 K Hayashi and T Shirafuji, Phys. Rev. D. 19 (1979) 3524. 9 E V Linder, Phys. Rev. D. 81 (2010) 127301. 10 R Ferraro and F Fiorini, Phys. Rev. D. 75 (2007) 084031. 11 G R Bengochea and R Ferraro, Phys. Rev. D. 79 (2009) 124019 . 12 P Wu and H Yu, Phys. Lett. B 692 (2010) 176. 13 P Wu and H Yu, Eur .Phys. J. C 71 (2011) 1552. 14 م عطازاده و ع اقبالی، مجلة پژوهش فیزیک ایران 18 1 (۱۳۹۷) ۲۳. 15 15. M Atazadeh and A Eghbali, Iranian J. Phys. Res. 18 1 (2018) 23. 16 M R Setare and N Mohammadipour, JCAP 1211 (2012) 030. 17 Sh Chen, J B Dent, Sourish Dutta and E N Saridakis, Phys. Rev. D. 83 (2011) 023508. 18 C -Q Geng, C -C Lee, E N Saridakis and Y -P Wu, Phys. Lett. B 704 (2011) 384. 19 G Otalora, JCAP 1307 (2013) 044. 20 G Otalora, Phys. Rev. D. 88 (2013) 063505. 21 C -Q Geng, J -A Gu and C -C Lee, Phys. Rev. D. 88 (2013) 024030. 22 H M Sadjadi, Phys. Rev. D. 87 (2013) 064028. 23 S W Hawking, Com. Math. Phys. 43 (1975) 199. 24 J D Bekenstein, Phys. Rev. D. 7 (1973) 2333. 25 T Jacobson, Phys. Rev Lett. 75 (1995) 1260. 26 R G Cai and S P Kim, JHEP 02 (2005) 050. 27 M Akbar and R G Cai, Phys. Rev. D. 75 (2007) 084003. 28 C Eling, R Guedens and T Jacobson, Phys. Rev. Lett. 86 (2006) 121301. 29 A Sheykhi, B Wang and R-G Cai, Nucl. Phys. B. 779 (2007) 1. 30 M Akbar and R G Cai, Phys. Lett. B. 648 (2007) 243. 31 Y Gong and A Wang, Phys. Rev. Lett. 99 (2007) 211301. 32 A Sheykhi, JCAP 05 (2009) 019. 33 K Bamba and C Q Geng, Phys. Lett. B 679 (2009) 282. 34 K Karami and S Ghaffari, Phys. Lett. B 688 (2010) 125. 35 م آقائی آبچویه، ب میرزا و ح نادی، مجلة پژوهش فیزیک ایران 14 4 (۱۳۹3) ۲9۳. 36 35. M Aghaei Abchouyeh, B Mirza, B Mirza, and H Nadi, Iranian J. Phys. Res. 14 4 (2015) 293. 37 T Azizi and N Borhani, Astrophys. Space Sci. 357 (2015) 146. 38 T Azizi and N Borhani, Adv. High Energy Phys. 2017 (2017) 6839050. 39 B Wang, Y. Gong and E. Abdalla, Phys. Lett. B. 624 (2005) 141. 40 N Mazumder and S Chakraborty, Class. Quant. Grav. 26 (2009) 195016. 41 N Mazumder and S Chakraborty, Gen. Rel. Grav. 42 (2010) 813. 42 S A Hayward, Class. Quant. Grav. 15 (1998) 3147. 43 F Q Tu and Yi Xin. Chen, EPJC 76 (2016) 28. 44
ORIGINAL_ARTICLE Investigating the diameter effect of gold and silver nanoshells with specific outsider diagonal on localized surface pasmon resonance by the FDTD method In this research, localized surface plasmon resonance spectra for single spherical gold nanoparticles with radius between 20 to 55nm in environments of different refractive indices between 1 and 1.8 has been studied by Finite Different Time Domain method. In this simulations, plasmon resonance frequency is determined for each nanoparticle with optimized mesh size, and is compared with the results of Mie theory. Moreover, using these results, plasmonic propertis of gold nanoshells of various diameters were studied in air (n=1) and water (n=1.33). Plasmon resonance has been calculated for nanoshells and it was concluded that in different environments, gold nanoshells with outer radius of 20 nanometers and diameter of 12 nanometers have their plasmonic spectrum are associated on gold nanosphere with the same outer radius.  frequency for nanoshells has been calculated. The plasmon resonance peak shift for various nanoparticles is plotted versus refractive indices. Finally, the most sensitive and most insennitive of nanoparticles to the refractive index of the environment has been discussed for sensing applications. https://ijpr.iut.ac.ir/article_1584_0edfe61adcfd7e3534ca5998bf71eba1.pdf 2020-02-20 707 719 10.47176/ijpr.19.4.4874 surface plasmons gold nanoparticles nanosensors finite different time domain method H Zafari h.zafari@ph.iut.ac.ir 1 Department of Physics, Isfahan University of Technology, Isfahan, Iran AUTHOR P Sahebsara sahebsara@cc.iut.ac.ir 2 Department of Physics, Isfahan University of Technology, Isfahan, Iran LEAD_AUTHOR Mehdi Torabi mehdi.torabi@ph.iut.ac.ir 3 Department of Physics, Isfahan University of Technology, Isfahan, Iran AUTHOR M Ranjbar ranjbar@cc.iut.ac.ir 4 Department of Physics, Isfahan University of Technology, Isfahan, Iran AUTHOR D N Spergel, et al., Astrophys. J. Suppl. 170 (2007) 377. 1 S Perlmutter, et al., Astrophys. J. 598 (2003) 102. 2 E Hawkins, et al., Mon. Not. Roy. Astron. Soc. 346 (2003) 78. 3 D J Eisentein, et al., Astrophys. J. 633 (2005) 560. 4 B Jain and A Taylor, Phys. Rev. Lett. 91 (2003) 141302. 5 E J Copeland, M Sami and S Tsujikawa, Int. J. Mod. Phys. D 15 (2006) 1753. 6 T P Sotiriou and V Faraoni, Rev. Mod. Phys. 82 (2010) 451. 7 A Einsteinz, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 217 (1928) 224. 8 K Hayashi and T Shirafuji, Phys. Rev. D. 19 (1979) 3524. 9 10. E V Linder, Phys. Rev. D. 81 (2010) 127301. 10 11. R Ferraro and F Fiorini, Phys. Rev. D. 75 (2007) 084031. 11 12. G R Bengochea and R Ferraro, Phys. Rev. D. 79 (2009) 124019 . 12 13. P Wu and H Yu, Phys. Lett. B 692 (2010) 176. 13 14. P Wu and H Yu, Eur .Phys. J. C 71 (2011) 1552. 14 15. م عطازاده و ع اقبالی، مجلة پژوهش فیزیک ایران 18 1 (۱۳۹۷) ۲۳. 15 15. M Atazadeh and A Eghbali, Iranian J. Phys. Res. 18 1 (2018) 23. 16 16. M R Setare and N Mohammadipour, JCAP 1211 (2012) 030. 17 17. Sh Chen, J B Dent, Sourish Dutta and E N Saridakis, Phys. Rev. D. 83 (2011) 023508. 18 18. C -Q Geng, C -C Lee, E N Saridakis and Y -P Wu, Phys. Lett. B 704 (2011) 384. 19 19. G Otalora, JCAP 1307 (2013) 044. 20 20. G Otalora, Phys. Rev. D. 88 (2013) 063505. 21 21. C -Q Geng, J -A Gu and C -C Lee, Phys. Rev. D. 88 (2013) 024030. 22 22. H M Sadjadi, Phys. Rev. D. 87 (2013) 064028. 23 23. S W Hawking, Com. Math. Phys. 43 (1975) 199. 24 24. J D Bekenstein, Phys. Rev. D. 7 (1973) 2333. 25 25. T Jacobson, Phys. Rev Lett. 75 (1995) 1260. 26 26. R G Cai and S P Kim, JHEP 02 (2005) 050. 27 27. M Akbar and R G Cai, Phys. Rev. D. 75 (2007) 084003. 28 28. C Eling, R Guedens and T Jacobson, Phys. Rev. Lett. 86 (2006) 121301. 29 29. A Sheykhi, B Wang and R-G Cai, Nucl. Phys. B. 779 (2007) 1. 30 30. M Akbar and R G Cai, Phys. Lett. B. 648 (2007) 243. 31 31. Y Gong and A Wang, Phys. Rev. Lett. 99 (2007) 211301. 32 32. A Sheykhi, JCAP 05 (2009) 019. 33 33. K Bamba and C Q Geng, Phys. Lett. B 679 (2009) 282. 34 34. K Karami and S Ghaffari, Phys. Lett. B 688 (2010) 125. 35 35. م آقائی آبچویه، ب میرزا و ح نادی، مجلة پژوهش فیزیک ایران 14 4 (۱۳۹3) ۲9۳. 36 35. M Aghaei Abchouyeh, B Mirza, B Mirza, and H Nadi, Iranian J. Phys. Res. 14 4 (2015) 293. 37 36. T Azizi and N Borhani, Astrophys. Space Sci. 357 (2015) 146. 38 37. T Azizi and N Borhani, Adv. High Energy Phys. 2017 (2017) 6839050. 39 38. B Wang, Y. Gong and E. Abdalla, Phys. Lett. B. 624 (2005) 141. 40 39. N Mazumder and S Chakraborty, Class. Quant. Grav. 26 (2009) 195016. 41 40. N Mazumder and S Chakraborty, Gen. Rel. Grav. 42 (2010) 813. 42 41. S A Hayward, Class. Quant. Grav. 15 (1998) 3147. 43 F Q Tu and Yi Xin. Chen, EPJC 76 (2016) 28 44
ORIGINAL_ARTICLE Surface plasmon-polariton modes polygonal chiral thin films In this research, the surface plasmon-polariton modes at interface of a metal and a polygonal chiral thin film in Kretschman configuration theoretically have been studied. With depiction of optical absorption spectra for P-linear polarized incident light, the surface plasmonic modes from the waveguide modes have been distinguished. The effect of structural parameters such as the thickness of polygonal chiral thin film, the thickness of metallic thin film and the growth angle of chiral columns on the propagation of plasmonic modes has been investigated. The results showd that more than one plasmonic mode can be excited at interface of a polygonal chiral thin film and a metal. https://ijpr.iut.ac.ir/article_1574_43f83e6461c7b108971303f3ea313ab6.pdf 2020-02-20 721 727 10.47176/ijpr.19.4.28254 surface plasmon- polariton polygonal chiral thin film F Babaei fbabaei@qom.ac.ir 1 Department of Physics, Faculty of Science, Qom University, Qom, Iran LEAD_AUTHOR V Bikdelo bigdelo_vahid@yahoo.com 2 Department of Physics, Faculty of Science, Qom University, Qom, Iran AUTHOR J A Polo Jr and A Lakhtakia, Proc. R. Soc. A 465 (2009) 87. 1 A Lakhtakia, Opt. Commun 279, 2 (2007) 291. 2 R H Ritchie, Phys. Rev. 106 (1957) 874. 3 S E Swiontek, D P Pulsifer, and A Lakhtakia, Proc. SPIE 8833 (2013) 883309. 4 J A Polo Jr, T G Mackay, and A Lakhtakia, J. Opt. Soc. Am. B 28, 11 (2011) 2656. 5 K Robbie, M J Brett, and A Lakhtakia, Nature 384 (1996) 616. 6 K Robbie,and M J Brett, J. Vac. Sci .Tech A. 15, 3 (1997) 1460. 7 H Savaloni, F Babaei, S Song,and F Placido, App. Sur. Sci. 255, 18 (2009) 8041. 8 H Savaloni, F Babaei, S Song, and F Placido, Vacuum 85, 7 (2011) 776. 9 K Robbie, J C Sit , and M J Brett, J. Vac. Sci. Technol. B 16, 5 ( 1998) 1115. 10 A C van Popta, M J Brett, and J C Sit, J. Appl. Phys. 98, 8 (2005) 083517 . 11 F Babaei, J. Mod. Opt 60, 16 (2013) 1370. 12 F Babaei, J. Mod.Opt 60,11 (2013) 886. 13 F Babaei, and S Shafiian-Barzoki, Plasmonics 9, 3(2014) 595. 14 F Babaei, and S Shafiian-Barzoki, Plasmonics 9, 6(2014) 1481. 15 م حسینیان، م س حسینیان، س خوشنویس و ف کاشانیان، مجلۀپژوهشفیزیکایران 15، 4 (1394) 441. 16 16. M Hoseinian, M Hoseinian, S Khoshnevis, and F Kashanian, Iranian J. Phys. Res. 15, 4 (2016) 441. 17 م شریفی، ح پ عدل، ح تجلی و ع بهرامپور، مجلۀپژوهش فیزیکایران 16، 2 (1395) 133. 18 17. M Sharifi, H Pashaei Adl, and H Tajalli, A Bahrampour, Iranian J. Phys. Res. 16, 2 (2016) 133. 19 م مرادبیگی، ن دانشفر و ط ناصری، مجلۀ پژوهش فیزیک ایران 17، 5 (1396) 709. 20 18. N Daneshfar, M Moradbeigi, and T Naseri, Iranian J. Phys. Res. 17, 5 (2018) 709. 21 M Faryad, J A Polo Jr, and A Lakhtakia, J. Nanophoton 4, 1 (2010) 043505. 22 M Faryad and A Lakhtakia, J. Opt. 12 (2010) 085102. 23 S E Swiontek and A Lakhtakia, J. Nanophoton 10, 3 (2016) 033008. 24 S E Swiontek, D P Pulsifer, and A Lakhtakia, Sci. Rep. 3 (2013) 1409. 25 A Lakhtakia, Y J Jen, C-F Lin, J. Nanophoton 3, 1 (2009) 033506. 26 S H Hosseininezhad and F Babaei, Plasmonics 13, 6(2018) 1867. 27 I Hodgkinson, Q H Wu, and J Hazel, Appl.Opt 37, 13(1998) 2653. 28 A Lakhtakia,Opt.Commun. 261, 2(2006) 213. 29 M Faryad and A Lakhtakia, Phy. Rev. A 83 (2011) 013814. 30
ORIGINAL_ARTICLE Study of the collection solid angle of doubly curved crystals An approach to obtain a maximum solid angle is the use of curved crystals. Therefore, in order to make these crystals useful in X-ray spectrometry, it is necessary to design them in such a way that they have high solid angle and reflectivity. In this paper, a nearly exact general equation for calculating the solid angle and area factor on the surface of several curved crystal geometries is extracted and compared with the previous results. Wittry and Sun's shortcut method for calculating the solid angle, and also, its trial and error method for maximizing the solid angle and introducing exact point-focusing crystal geometry is reviewed, and it is shown that for some crystal geometries are not responsive. By writing an algorithm for calculating the solid angle and the area factor for ​​all of the crystal geometries, we show that they are in agreement with the results of the analytical method.   https://ijpr.iut.ac.ir/article_1575_fc22487d71704e40036f5dd311eb04e8.pdf 2020-02-20 729 744 10.47176/ijpr.19.4.34752 collection solid angle toroidally bent X-ray diffractors effective scattering area on the crystal surface point-focusing crystal geometry S J Pestehe 1 Department of Physics, University of Tabriz, Tabriz, Iran AUTHOR Gh Askari Germi rezaasgari693@gmail.com 2 Department of Science, Azerbaijan Shahid Madani University, Tabriz, Iran LEAD_AUTHOR A R Rastkar Ebrahimzadeh 3 Department of Science, Azerbaijan Shahid Madani University, Tabriz, Iran AUTHOR D B Wittry and S. Sun, J. Appl. Phys. 67 (1990) 1633. 1 D B Wittry and S.Sun, J. Appl. Phys. 68 (1990) 387. 2 م هـ ملکی، م امیرحمزه تفرشی، ر امرالهی و س پ عباسی، کنفرانس فیزیک ایران (دانشگاه لرستان) (1384). 3 ع حسین زاده، غ اطاعتی، ن وثوقی، بیست و یکمین کنفرانس هسته­ای ایران (دانشگاه اصفهان) 1 (1394). 4 ا غلام پورآژیر، س امیری، ح خسروآبادی، ج رحیقی و م لامعی رشتی، مجلة پژوهش فیزیک ایران 15،2 (1394) 197. 5 5. A Gholampour Azhir, S Amiri, H Khosroabadi, J Rahighi, and M Lamehi Rachti, Iranian J. Phys. Res. 15, 2, 59 (2015) 197. 6 D B Wittry and W Z Chang, J. Appl. Phys., 72 (1992) 3440. 7 D B Wittry and N C Barbi, Microsc. Microanal 7 (2001) 124. 8 W Z Chang and D B Wittry, J. Appl. Phys. 74 (1993) 2999. 9 D B Wittry and S Sun, J. Appl. Phys. 71 (1992) 564. 10 S J Pestehe and G Askari, J. Opt. Soc. Am. A 29 (2012) 68. 11 S J Pestehe and G Askari, J. Appl. Cryst. 45 (2012) 890. 12 S Sun, University of Southern California, PhD thesis (1992). 13 S Seshadri, University of Southern California, PhD thesis (1998). 14 D B Wittry and D M Golijanin, J. Appl. Phys. Lett. 52 (1988) 1381. 15 D M Golijanin and D B Wittry, “Microbeam Analysis”, San Francisco Press, San Francisco(1988) 397. 16 D B Wittry and S Sun, J. Appl. Phys. 69 (1991) 3886. 17 D B Wittry, W Z Chang, and L RY, J. Appl. Phys. 74 (1993) 3534. 18 W Z Chang, University of Southern California, PhD Thesis (1992). 19 Z Chen, University of Southern California, PhD Thesis (1997). 20 غ عسکری و س ج پسته­ای، هفدهمین گردهمایی فیزیک ماده چگال تحصیلات تکمیلی علوم پایه زنجان، خرداد (1390)، 225. 21 غ عسکری و س ج پسته­ای، پنجمین همایش ملی فیزیک دانشگاه پیام نور تبریز، مهر (1390) 168. 22 س ج پسته­ای و غ عسکری، پنجمین همایش ملی فیزیک دانشگاه پیام نورتبریز مهر (1390) 180. 23 غ عسکری، س ج پسته­ای و ع راستکار ابراهیم زاده، پنجمین همایش ملی گوهرشناسی و بلورشناسی ایران، زنجان (1397). 24 س ج پسته­ای و غ عسکری، پنجمین همایش ملی فیزیک، دانشگاه پیام نورتبریز، مهر (1390) 174. 25 س ج پسته­ای و غ عسکری، هجدهمین کنفرانس اپتیک و فوتونیک ایران، تبریز، بهمن (1390) 391. 26 غ عسکری و س ج پسته­ای، پنجمین همایش ملی فیزیک، دانشگاه پیام نورتبریز، مهر (1390) 836. 27 س ج پسته­ای و غ عسکری، کنفرانس فیزیک ایران، دانشگاه یزد، شهریور (1391) 2690. 28 G Askari, S J Pestehe, and A Rastkar Ebrahimzadeh, J. Appl. Cryst. 50 (2017) 1. 29 ع راستکار ابراهیم زاده، غ عسکری و س ج پسته­ای، انجمن همایش ملی گوهرشناسی و بلور شناسی ایران، زنجان (1397). 30 س ج پسته­ای، غ عسکری و ع راستکار ابراهیم زاده، پنجمین همایش ملی گوهرشناسی و بلور شناسی ایران، زنجان (1937). 31 غ عسکری، س ج پسته­ای و ع راستکار ابراهیم زاده، پنجمین همایش ملی گوهرشناسی و بلور شناسی ایران، زنجان (1397). 32
ORIGINAL_ARTICLE Studying the dynamic parameters of the plasma pellet produced by helium jet in the presence of different ambient gases In this paper, dynamical parameters of a plasma bullet (guided ionization wave) were studied in different gases such as oxygen, nitrogen and dry air. The dynamics of a plasma bullet, which is generated by a 30 kHz atmospheric pressure helium plasma jet, was measured using a high-speed ICCD camera from the starting moment of propagation at the end of the jet’s capillary to the vanishing point in the surrounding gas. The plasma bullet has different propagation velocity, diameter and propagation length in different surrounding gases. The velocity of the plasma bullet is higher in oxygen and dry air compared to nitrogen and reaches up to 18 km/s. The maximum propagation length is 12 mm in nitrogen and dry air. The spectroscopic emission of helium plasma jet was also measured to investigate the chemical species in different surrounding gases. The result of this study shows the influence of the surrounding gas on the propagation of plasma bullets and especially the role of oxygen in the propagation mechanism. https://ijpr.iut.ac.ir/article_1585_08ba081890935305ca8c2e5b67a25a85.pdf 2020-02-20 745 754 10.47176/ijpr.19.4.35831 plasma pellet plasma jet guided ionizing wave ultrafast camera ambient gas emission length H Ghomi h-gmdashty@sbu.ac.ir 1 Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran LEAD_AUTHOR S Razavizadeh s_razavizadeh@sbu.ac.ir 2 Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran AUTHOR G Fridman, G Friedman, A Gutsol, A B Shekhter, V N Vasilets and A Fridman, Applied plasma medicine Plasma Processes and Polymers 5 (2008) 503. 1 M Laroussi, Plasma Sci. 37 (2009) 714–25 2 M Laroussi, Plasma Sci. 43 (2015) 703. 3 F Sohbatzadeh, M Bagheri, and S Motallebi, Iran. J. Phys. Res. 16, 4 (2017) 291. 4 4. ف صحبت‌زاده، م باقری و س مطلبی، مجلة پژوهش فیزیک ایران 16 4 (1395) 291. 5 M Teschke, J Kedzierski, E G Finantu-Dinu, D Korzec and J Engemann, Plasma Sci.c 33 (2005) 310. 6 E Karakas, M A Akman, and M Laroussi, Plasma Sources Science and Technology. 21, 3 (2012) 034016. 7 SN Siadati, F Sohbatzadeh, and SK Alavi, Electrical and optical investigations of plasma bullets driven by different. Physica Scripta. 90, 8 (2015) 085602. 8 X Lu and M Laroussi, J. Appl. Phys. 100 (2006) 063302. 9 X Lu, M Laroussi and V Puech, Plasma Sources Science and Technology 21 (2012) 034005 10 X Lu, G V Naidis, M Laroussi and K Ostrikov, Phys. Rep. 540 (2014) 123. 11 Y Xian, P Zhang, X Pei and X Lu, IEEE Trans. Plasma Sci. 42 (2014) 2448. 12 A Schmidt-Bleker, S A Norberg, and J Winter, E Johnsen, S Reuter, K D Weltmann, and M J Kushner, Plasma Sources Science and Technology 24 (2015) 035022. 13 Y Xian, X Lu, J Liu, S Wu, D Liu, and Y Pan, Plasma Sources Science and Technology 21 (2012) 034013. 14 S Wu, Q Huang, Z Wang, and X Lu, IEEE Trans. Plasma Sci. 39 (2011) 2286. 15 M A Akman and M Laroussi, IEEE Trans. Plasma Sci. 41 (2013) 839. 16 J Y Won and P F Williams, J. Phys. D: Appl. Phys. 35 (2002) 205. 17 T M Briels, E M Van Veldhuizen and U Ebert, IEEE Trans. Plasma Sci. 36 (2008) 906. 18 D Breden, K Miki, and L L Raja, Self-consistent two-dimensional modeling of cold atmospheric-pressure plasma jets / bullets Plasma Sources Science and Technology 21 (2012) 034011. 19 E Slikboer, O Guaitella, and A Sobota, Time-resolved electric field measurements during and after the initialization of a kHz plasma jetrom streamers to guided streamers, Plasma Sources Science and Technology 25 (2016) 03LT04. 20 E Slikboer, E Garcia-Caurel, O Guaitella, and A Sobota, Charge transfer to a dielectric target by guided ionization waves using electric field measurements Plasma Sources Science and Technology 26 (2017) 035002. 21 GB Sretenović, O Guaitella, A Sobota, IB Krstić, VV Kovačević, BM Obradović, MM Kuraica, Electric field measurement in the dielectric tube of helium atmospheric pressure plasma, Journal of Applied Physics. 2017 Mar 28;121(12):123304. 22 Z Xiong, E Robert, V Sarron, J-M Pouvesle, and M J Kushner, J. Phys. D: Appl. Phys. 45 (2012) 275201. 23 A Sobota, O Guaitella, and A Rousseau, Plasma Sources Science and Technology 23 (2014) 025016. 24 A Begum, M Laroussi, and M R Pervez, Atmospheric pressure He-air plasma jet: breakdown process and propagation phenomenon AIP Adv. 3 (2013) 062117. 25 V Poenariu, M R Wertheimer, and R Bartnikas, Spectroscopic diagnostics of atmospheric pressure helium dielectric barrier discharges in divergent fields Plasma Processes and Polymers 3 (2006) 17. 26 J J Liu and M G Kong, J. Phys. D: Appl. Phys. 44 (2011) 345203. 27 R Ono and T Oda, J. Phys. D: Appl. Phys. 36 (2003) 1952. 28 GM Thomas and TM Helliwell, “Journal of Quantitative Spectroscopy and Radiative Transfer”, 10, 5 (1970) 423. 29
ORIGINAL_ARTICLE Holographic complexity growth in dissipative QFTs We study the growth rate of holographic complexity in dissipative quantum field theories using the gauge/gravity duality. To do so we employ the complexity equals action proposal for computing the holographic complexity.  We show that although in the late time regime the rate of growth of complexity approaches a constant value which is consistent with the Lloyd's bound, the constant is approached from above. We find that increasing the value of the dissipative parameters enhances the Lloyd's bound violation. We also investigate the dependence of critical time on dissipative parameters.   https://ijpr.iut.ac.ir/article_1582_2e6e76259721c6fadb6702788e000dcf.pdf 2020-02-20 755 762 10.47176/ijpr.19.4.35131 gauge/gravity duality holographic complexity Lloyd's bound K Babaei Velni babaeivelni@guilan.ac.ir 1 Faculty of Physics, University of Guilan, Guilan, Iran LEAD_AUTHOR M R Mohammadi Mozaffar mmohammadi@guilan.ac.ir 2 Faculty of Physics, University of Guilan, Guilan, Iran AUTHOR 1.       J M Maldacena, Int. J. Theor. Phys. 38 (1999) 1113. 1 2.       کاظم بی تقصیر فدافن، سحر مجرد لمن جویی، مجلة پژوهش فیزیک ایران، 18، 2 (1397) 190. 2 2. K Bitaghsir Fadafan and S Mojarad Laman jouee, Iranian J. Phys. Res. 18, 2 (2018) 190. 3 3.       هـ ابراهیم و م ع اکبری، مجلة پژوهش فیزیک ایران 18، 3 (1397) 451. 4 3. Ebrahim H, Ali-Akbari M. IJPR. 18, 3 (2018) 451. 5 4.       S Ryu and T Takayanagi, Phys. Rev. Lett. 96 (2006) 181602. 6 5.       L Susskind, J. Math. Phys. 36 (1995) 6377. 7 6.       T Faulkner, M Guica, T Hartman, R C Myers and M Van Raamsdonk, Journal of High Energy Physics 1403 (2014) 051. 8 7.       L Susskind, Fortsch. Phys. 64 (2016) 49. 9 8.       R Jefferson and R C Myers, Journal of High Energy Physics 1710 (2017) 107. 10 9.       S Chapman, M P Heller, H Marrochio and F Pastawski, Phys. Rev. Lett. 120, 12 (2018) 121602. 11 L Susskind, Fortsch. Phys. 64 (2016) 24. 12 A R Brown, D A Roberts, L Susskind, B Swingle and Y Zhao, Phys. Rev. Lett. 116,19 (2016) 191301. 13 M Alishahiha, Phys. Rev. D 92, 12 (2015) 126009. 14 M Alishahiha, A Faraji Astaneh, Phys. Rev. D 96, 8 (2017) 086004 15 M Alishahiha, K Babaei Velni, M R Mohammadi Mozaffar, Phys. Rev. D 99 12 (2019) 126016. 16 G W Gibbons and S W Hawking, Phys. Rev. D 15 (1977) Phys.Rev. D 15 (1977) 2752. 17 K Parattu, S Chakraborty, B R Majhi and T Padmanabhan, Gen. Rel. Grav. 48, 7 (2016) 94. 18 L Lehner, R C Myers, E Poisson and R D Sorkin, Phys. Rev. D 94, 8 (2016) 084046. 19 G Hayward, Phys. Rev. D 47 (1993) 3275, Phys. Rev. D 47. 3275. 20 T Andrade and B Withers, Journal of High Energy Physics 1405 (2014)101. 21 D Carmi, S Chapman, H Marrochio, R C Myers and S Sugishita, Journal of High Energy Physics 1711 (2017) 188. 22 W Pan and Y Huang, Phys. Rev. D 95, 12 (2017) 126013.  23 M Alishahiha, A Faraji Astane, A Nase, M H Vahidinia, Journal of High Energy Physics 1705 (2017) 009. 24
ORIGINAL_ARTICLE Ghost dark energy model in the presence of a linear, sign-changeable interaction In the present work we consider to generalized ghost dark energy in presence of a sign changeable interaction term. We obtain evolving cosmic parameters and plot them. We find a good agreement between the model and observations in primary analysis. The plots reveal that decreasing b, the universe enters acceleration phase earlier while decreasing 𝜉  leads a delay in enterance to the acceleration phase. Next we present a stability analysis according to squared sound speed and find that increasing  the model can achieve positive domain for squared sound speed which shows signs of stability. Finaly we discuss the statefinder analysis and see the model can catch {r=1,s=0} at late time. https://ijpr.iut.ac.ir/article_1588_bfeb4b3d5006a501765be9766c978d35.pdf 2020-02-20 763 773 10.47176/ijpr.19.4.35251 cosmology dark energy interacting ghost dark energy stability E Ebrahimi eebrahimi@uk.ac.ir 1 Physics Faculty, Shahid Bahonar University of Kerman, Kerman, Iran AUTHOR H Taghipour 2 Physics Faculty, Shahid Bahonar University of Kerman, Kerman, Iran LEAD_AUTHOR A G Riess et al., Astron. J. 116 (1998) 1009. 1 2. P Astier and R Pain, C. R. Physique 13 (2012) 521. 2 3. S Perlmutter et al., Astrophys. J. 598 (2003) 102. 3 4. P de Bernardis et al., Nature 404 (2000) 955. 4 5. D N Spergel et al., Astrophys. J. Suppl. 148 (2003) 5 6. D N Spergel et al., Astrophys. J. Suppl. 170 (2007) 6 7. M Tegmark et al., Phys. Rev. D 69 (2004) 103501. 7 8. M Tegmark et al., Astrophys. J. 606 (2004) 702. 8 9. S Capozziello, S Carloni and A Troisi, Recent Res. 9 Dev. Astron. Astrophys.1 (2003) 625. 10 10. S Capozziello et al., Int. J. Mod. Phys. D 12 (2003) 11 11. S M Carroll et al., Phys. Rev. D 70 (2004) 043528. 12 12. G Dvali, G Gabadadze and M Porrati, Phys. Lett. B 13 485 (2000) 208. 14 13. M Carena et al, Phys. Rev. D 75 (2007) 026009. 15 14. M Minamitsuji, Phys. Lett. B 684 (2010) 92. 16 15. A Sheykhi, B Wang and N Riazi, Phys. Rev. D 75 17 (2007) 123513. 18 16. L Amendola, S Tsujikawa, “Dark Energy Theory and 19 Observation”, United States of America by 20 Cambridge University Press, New York, (2010). 21 17. E J Copeland, M Sami and S Tsujikawa, Int. J. Mod. 22 Phys D. 15, 11 (2006) 1753. 23 18. T Padmanabhan, Phys. Rev. D 66 (2002) 021301. 24 19. J S Bagla, H K Jassal and T Padmanabhan, Phys. 25 Rev. D 67 (2003) 063504. 26 20. L R W Abramo and F Finelli, Phys. Lett. B 575 27 (2003) 165. 28 21. J M Aguirregabiria and R Lazkoz, Phys. Rev. D 69 29 (2004) 123502. 30 22. Z K Guo and Y Z Zhang, J Cosmol. Astropart. Phys. 31 0408 (2004) 010. 32 23. E J Copelan d et al., Phys. Rev. D 71 (2005) 043003. 33 24. C Wetterich, Nucl. Phys. B. 302 (1988) 668. 34 25. B Ratra and J Peebles, Phys. Rev. D 37 (1988) 321. 35 26. T Chiba, T Okabe and M Yamaguchi, Phys. Rev. D 36 62 (2000) 023511. 37 27. C Armendariz-Picon, V Mukhanov and P J 38 Steinhardt, Phys. Rev. Lett. 85 (2000)4438. 39 28. C Armendariz-Picon, V Mukhanov and P J 40 Steinhardt, Phys. Rev. D 63 (2001)103510. 41 29. R R Caldwell, M Kamionkowski, and N N Weinberg, 42 Phys. Rev. Lett. 91 (2003) 071301. 43 30 . ع جمالی، ر روح الهی، و م واعظ، مجلۀ پژوهش فیزیک 44 .163 (1397) ایران 1 18 45 30. A Banijamali, R Roohollahi, and M vaez, Iranian J. 46 Phys. Res. 18 1 (2018) 163. 47 31. D Pavon and W Zimdahl, Phys. Lett. B 628 (2005) 48 32. B Wang, Y Gong and E Abdalla, Phys. Lett. B 624 49 (2005) 141. 50 33. A Sheykhi, Class. Quantum Grav. 27 (2010) 025007. 51 34. A Sheykhi, Phys. Lett. B 681 (2009) 205. 52 35. R G Cai, Phys. Lett. B 657 (2007) 228. 53 36. H Wei and R G Cai, Phys. Lett. B 660 (2008) 113. 54 37. A Sheykhi, Phys. Lett. B 680 (2009) 113. 55 38. A Sheykhi, Phys. Lett. B 682 (2010) 329. 56 39. A Sheykhi, Phys. Rev. D 81 (2010) 023525. 57 40. K Kawarabayashi and N Ohta, Nucl . Phys. B 175 58 (1980) 477. 59 41. E Witten, Nucl. Phys. B 156 (1979) 269. 60 42. G Veneziano, Nucl. Phys. B 159 (1979) 213. 61 43. C Rosenzweig, J Schechter and C G Trahern, Phys. 62 Rev. D 21 (1980) 3388. 63 44. P Nath and R L Arnowitt, Phys. Rev. D 23 (1981 64
ORIGINAL_ARTICLE Optical properties of C60 molecules: A quasi-static approximation In this paper, the optical properties of a C60 molecule is studied within the framework of the quasi-static approximation. To do this, a C60 molecule is modeled by an infinitesimally thin spherical shell of the π and σ electrons and electronic excitations of this shell is described by means of the two-dimensional two-fluid hydrodynamic theory. At the first, general expression for polarizability of the system is obtained, by solving Laplace and hydrodynamic equations with appropriate boundary conditions. Then, by using the polarizability formula, the extinction spectrum of system is investigated which is in quite agreement with the result of the Mie theory. Also, the Maxwell-Garnett theory for the effective medium approximation of composite materials is developed to study the dielectric response of a composite of C60 molecules. https://ijpr.iut.ac.ir/article_1576_66056c385a305c703d0c584a497977ff.pdf 2020-02-20 775 782 10.47176/ijpr.19.4.37561 C60 molecule quasi-static approximation Maxwell-Garnett theory A Moradi a.moradi@kut.ac.ir 1 Department of Engineering Physics, Kermanshah University of Technology, Kermanshah, Iran LEAD_AUTHOR H W Kroto, J R Health, S C O’Brian, R F Curl, and R E Smalley, Nature 318 (1985) 162. 1 G F Bertsch, A Bulgac, D Tomanek, Y Wang, Phys. Rev. Lett. 67 (1991) 2690. 2 G Barton and C Eberlein, J. Chem. Phys. 95 (1991) 1512. 3 M Michalewicz and M P Dos, Solid State Commun. 84 (1992) 1121. 4 D Ostling, P Apell, and A Rosen, Europhys. Lett. 21 (1993) 539. 5 D Tomanek, Comments on Atomic and Molecular Physics 31 (1995) 337. 6 P Long, and S M Bose, Solid State Commun. 97 (1996) 857. 7 C Yannouleas, E N Bogachek, and U Landman, Phys. Rev. B 53 (1996) 10225. 8 A Moradi, Solid State Commun. 192 (2014) 24. 9 A Moradi, Phys. Plasmas 23 (2016) 062120. 10 ن دانش­فر، ط ناصری و م مرادبیگی، مجلۀ پژوهش فیزیک ایران 18، 4 (1397) 697. 11 11. N Daneshfar, T Naseri, and M Moradbeigi, Iranian J. Phys. Res. 18, 4 (2019) 697. 12 12. S Raza, ‎W‎ ‎Yan‎, ‎N‎ ‎Stenger‎, ‎M‎ ‎Wubs‎, ‎and N‎ ‎A‎ ‎Mortensen‎, Opt. Express 21 (2013) 27344. 13 G B Smith, J. Phys. D: Appl. Phys. 10 (1977) 39. 14 A Moradi, Phys. Plasmas 22 (2015) 042105. 15 D A Gorokhov, R A Suris, and V V Cheianov, Phys. Lett. A 223 (1996) 116. 16 C Z Li, Z L Miskovic, F O Goodman, and Y N Wang, J. Appl. Phys. 113 (2013) 184301. 17
ORIGINAL_ARTICLE Generation of the desired arrays of a perfect vortex beam - In this paper, we introduce a novel diffraction element for generating any desired arrays of the vortex and perfect vortex beam. The method is based on combining radially phase shifted spiral zone plate with different gratings. We show that the element has a great potential in generating a variety of arrays with desired vortex ring radius and topological charges. We can assemble various vortex and perfect vortex beams not only in a lattice array but also in a tilted lattice or circular arrays. Reported vortex arrays are in the group of vortices having the same topological charge p so the total topological charge of MP which M the number of elements. The experimental results are in good agreement with the simulation predictions.   https://ijpr.iut.ac.ir/article_1577_2531bb118659d214c2e75b521a57245e.pdf 2020-02-20 783 793 10.47176/ijpr.19.4.29942 diffraction Fresnel zone plate vortex beam perfect vortex beam A Sabatyan a.sabatyan@urmia.ac.ir 1 Department of Physics, Science Faculty, Urmia University, Urmia, Iran LEAD_AUTHOR Z Behjat 2 Department of Physics, Science Faculty, Urmia University, Urmia, Iran AUTHOR J E Curtis and D G Grier, Phys. Rev. Lett. 90 (2003) . 133901. 1 G A Swartalander, E L ford, R S Abdul Malik, L M Close, M A peters, D M.Palacios and D W Wilson, Opt. express 16 (2008) 10200. 2 G Foo, D M Palacios and G A Swartalander, Opt. Lett. 30 (2005) 3308. 3 L Allen, M W Beijersbergen, R J C. Spreeuw, and J P Woerdman, Physical Review A 45 (1992) 8185. 4 L Paterson, M P MacDonald, J Arlt, W Sibbett, P E Bryant, and K Dholakia, Science 292 (2001) 912. 5 D G Grier, Nature 424 (2003) 810. 6 J Wang, J Y Yang, I M Fazal, N Ahmed, Y Yan, H Yan, H Huang, Y Ren, Y Yue, S Dolinar, M Tur and A E Willner, Nature Photonics 6 (2012) 488. 7 A Mair, A Vaziri, G Weihs, and A Zeilinger, Nature 412 (2001) 313. 8 M Ritsch-Marte, Philos. Trans. R. Soc. A. Math. Phys. Eng. Sci. 375 (2017) 20150437. 9 D Hebri, S Rasouli, and A Mardan Dezfouli, J. Opt. Soc. Am. A 36 (2019) 839. 10 C Brunet, B Ung, LWang, Y Messaddeq, S LaRochelle, E Bernier, and L Rusch, Opt. Express 23 (2015) 10533. 11 A S Ostrovsky, C Rickenstorff-Parrao, V Arrizn, Opt. Lett. 38 (2013) 534. 12 P Vaity, L Rusch, Opt. Lett. 40 (2015) 597. 13 A Sabatyan, Z Behjat, Opt Quant Electron 49 (2017) 371. 14 A Kumar, P Vaity, J Banerji, and R P Singh, Phys. Lett. A 3634 (2011). 15 Y Lu, B Jiang, S Lu, Y Liu, S Li, Z Cao, and X Qi, Opt. Commun. 363 (2016) 85. 16 D P Ghai, S Vyas, P Senthilkumaran, and R S Sirohi, Opt. Commun. 282 (2009) 2692. 17 S Rasouli and D Hebri, J. Opt. Soc. Am. A 36 (2019) 800. 18 A Sabatyan and B Fathi, Opt. Quant. Electron. 50 (2017) 338. 19 A Sabatyan and J Rafighdoost; Appl. Opt. 56 (2017) 5355. 20 A Sabatyan, and Z Behjat, The Annual Physics conference of Iran, Shiraz University, 1065 (2016). 21 J W Goodman, “Introduction to Fourier optics”, 3rd ed. Roberts & Company (2005). 22 م ح توسلی، ح سهل البیع و ح ر خالصی فرد، مجلة پژوهش فیزیک ایران 2، 5 (1380) 246. 23 23. M T Tavassoly, H Sahl-ol-bei, M Salehi, and H R Khalesifard, Iranian. J. Phys. Res. 2, 5 (2001) 237. 24
ORIGINAL_ARTICLE CMB dipole asymmetry through annular variance Dipole asymmetry is among the most important anomalies in the cosmic microwave background (CMB). A dipole, if primordial, would challenge the isotropy of the Universe. In this work, we propose a novel method to find the direction of the dipole and its amplitude and assess its significance. The method is based on the comparison of annular variances on the sphere. We find the direction on the sphere around which the difference of the annular variances on the two hemispheres is maximized. By applying this algorithm on symmetric CMB simulations we get the distribution of the measured dipole amplitude for these null cases, providing us with the baseline for quantifying the significance of dipole amplitude of any other CMB maps. In particular, we find the statistical significance of the observed Planck dipole to be 1.6σ. Our simulations show that although the proposed method is not more powerful in detecting the dipole compared to other algorithms, its relatively low computational cost (performed in the pixel-space) is its advantage. This paves the way for a straightforward upgrade of the method which uses spherical caps instead of rings and thus, by increasing the number of pixels used in calculating the variance, improves the results significantly. https://ijpr.iut.ac.ir/article_1586_d34074ec0a19ce59beb718195cd48a07.pdf 2020-02-20 795 801 10.47176/ijpr.19.4.37511 CMB random field statistical isotropy variance M Valipour masood.no93@gmail.com 1 Department of Physics, Shahid Beheshti University, Velenjak, Tehran, Iran AUTHOR M Farhang m_farhang@sbu.ac.ir 2 Department of Physics, Shahid Beheshti University, Velenjak, Tehran, Iran LEAD_AUTHOR Planck Collaboration P. Ade, et al., A & A 594 )2016) A16. 1 D Schwarz, C Copi, D Huterer and G Starkman, Class. Quant. Grav. 33 (2016) 184001. 2 P Vielva, E Martínez-González, R B Barreiro, J L Sanz, and L Cayón, ApJ. 609 (2004) 22. 3 M Cruz, M Tucci, E Martínez-González, and P Vielva, MNRAS. 369 (2006) 57. 4 M Cruz, N Turok, P Vielva, E Martínez-González, and M A Hobson, Science 318 (2007) 1612. 5 L Rudnick, S Brown, and L RWilliams, ApJ. 671 (2007) 40. 6 J D McEwen, S M Feeney, M C Johnson, and H V Peiris, Phys. Rev. D 85 (2012) 103502. 7 J C Bueno Sanchez, Phys. Lett. B 739 (2014) 269. 8 9.     D Baumann, TASI Lectures on Inflation, arXiv : 0907.5424 9 10. H K Eriksen, F K Hansen, A J Banday, K M Górski, and P B Lilje, ApJ. 605 (2004a) 14. 10 11. Y Akrami, Y Fantaye, A Shafieloo, et al., ApJ. 784 (2014) L42. 11 12. C Gordon, ApJ. 656 (2007) 636. 12 13. A Moss, D Scott, J P Zibin, and R Battye, Phys. Rev. D 84 (2011) 023014. 13 14. A Hajian and T Souradeep, ApJ. 597 (2003) L. 14 15. A Pontzen, and H V Peiris, Phys. Rev. D 81 (2010) 103008. 15 16. N Bartolo, S Matarrese, M Peloso and A Ricciardone, JCAP. 1308 (2013) 022. 16 17. N Bartolo, S Matarrese, M Peloso and A Ricciardone, Phys. Rev. D 87 (2013) 023504. 17 18. S Jazayeri, Y Akrami, H Firouzjahi, A R Solomon and Y Wang, JCAP. 1411 (2014) 044. 18
ORIGINAL_ARTICLE Bias factor in anisotropic stochastic fields The geometrical and topological measures enable us to characterize stochastic field systematically, and  the relation between weighted and unweighted N-point functions is provided. One of such relations is given by the bias factor. In this paper, based on peak statistics, we study the bias factor for stochastic and anisotropic fields. Accordingly, we present the analytical description of local and linear bias factor. Doing simulations, we examine the validation of  the derived analytical relation. Our results show that at high threshold level and large spatial separation, there exists a good agreement between the analytical calculation and numerical computations.   https://ijpr.iut.ac.ir/article_1583_8c0ab8d753b2ba46c615c3d658ee1cc1.pdf 2020-02-20 803 814 10.47176/ijpr.19.4.10752 stochastic field bias factor anisotropy geometrical and topological features S M S Movahed m.s.movahed@ipm.ir 1 Department of Physics, Shahid Beheshti University, Velenjak, Tehran, Iran LEAD_AUTHOR M Bahraminasr 2 Ibn Sina lab. Department of Physics, Shahid Beheshti University, Velenjak, Tehran, Iran AUTHOR T Matsubara, The Astrophysical Journal 584, 1 (2003) 1. 1 J M Bardeen, et al., Astrophys. J. 304.FERMILAB-PUB-85-148- A (1985) 15. 2 F Heavens, Alan, and K Ravi, Sheth. Monthly Notices of the Royal Astronomical Society 310, 4 (1999) 1062. 3 S Codis, C C Pichon, D Pogosyan, F Bernardeau, and TMatsubara, MNRAS. (2013) 435. 4 P Pápai, and R K Sheth,Monthly Notices of the Royal Astronomical Society 429, 2 (2012) 1133. 5 C Li, Y P Jing, A Faltenbacher, and J Wang, The Astrophysical Journal Letters 770, 1 (2013) L12. 6 D J Schwarz, C J Copi, D Huterer, and G D Starkman, Classical and Quantum Gravity 33, 18 (2016) 184001. 7 R M Bradley, J. Vac. Sci. Technol. A 6 (1988) 2390. 8 G Nezhadhaghighi, S M S Movahed, T Yasseri, and S M Vaez Allaei, Journal of Applied Physics 122 (2017) 085302. 9 10. Y P Zhao, H. N Yang, G C Wang, and T M Lu, Phys. Rev. B 57 (1998) 1922. 10 11. Y P Zhao, G C Wang, and T M Lu, Phys. Rev. B 58 (1998) 7300. 11 12. R Kree, T Yasseri, and A K Hartmann, Nucl. Ins. Meth.in Phys. B 267 (2009) 1407. 12 13. S O Riceed and N Wax, “Statistical Properties of Random Noise Currents”, Selected Papers on Noise and Stochastic Processes (New York:Dover) (1954(. 13 14. W Feller, “An Introduction to Probability Theory and Its Applications”, 2 (1965) (New York: Wiley). 14 15. H D Politzer and M B Wise, ApJ 285 (1984) L1. 15 16. N Kaiser, ApJ 284 (1984) L9 16 17. J Bardeen, J R Bond, N Kaiser, and Szalay, Acta Phys. Hung. 62 FERMILAB-PUB-86-023-A (1986) 263. 17 18. T Mastsubara, The Astrophysical Journal 525, 2 (1999) 543. 18 19. M S Taqqu, “Zeitschrift Für Wahrscheinlichkeitstheorie und verwandte Gebiete”, 40, 3 (1977) 203. 19 20. S D Landy and A S Szalay, Astrophysical Journal, Part 1, 412, 1 (1964) 64. 20 21. V Desjacques, J Donghuli, and S Fabian, Physics Reports 733 (2018) 1 21 22. A Slosar, C Hirata, U Seljak, S Ho, and N Padmanabhan, Journal of Cosmology and Astroparticle Physics 08 (2008) 031. 22 23. S Baghram, M H Namjoo, and H Firouzjahi, Journal of Cosmology and Astroparticle Physics 08 (2013) 48. 23 24. V Desjacques, Physical Review D 78, 10 (2008) 103503. 24 25. S Fabian, J Donghui, and V Desjacques, PRD 88 (2013) 023515. 25 26. M Davis, G Efstathiou, C S Frenk, and S D M White, Astrophysical Journal. 292, 1 (1999) 371. 26 27. M Houjun, F Bosch, and S White, “Galaxy Formation and Evolution”, Cambridge University Press (2010). 27
ORIGINAL_ARTICLE A review on the reduction of data taken from a microlensing event Data reduction is one the most important process of researches in astronomy and astrophysics. Data reduction process includes all steps which convert the crude astronomical images to the astrophysical events. These steps are similar for different astronomical events in which the brightness of one star changes with time, although they may be different in some details. This paper will help for learning or even doing data reduction of each astronomical event. Data reduction of microlensing events contains 7 stages in which first the crude images will be calibrated. Then, some of the best calibrated images will be chosen for making the reference images. The reference image helps for comparing all taken images to indicate how the source light changes versus time. For this propose all images should be registered to the reference images. Then, all images should be taken to the same scale. Finally, the resulted images will be subtracted from the reference image, to find the light curve of that desired source star.   https://ijpr.iut.ac.ir/article_1589_179aed14865ba8b9f2f6ae32f1a786b2.pdf 2020-02-20 815 823 10.47176/ijpr.19.4.27882 reduction of astronomical images gravitational microlensing event S Sajadian s.sajadian@cc.iut.ac.ir 1 Department of Physics, Isfahan University of Technology, Isfahan, Iran LEAD_AUTHOR B Adami banafsheadami@gmail.com 2 Department of Physics, Isfahan University of Technology, Isfahan, Iran AUTHOR M R Mohammadi mohammadreza600@gmail.com 3 Department of Physics, Isfahan University of Technology, Isfahan, Iran AUTHOR B Paczynski, ApJ 301 (1986) 503. 1 2. S Moa and B Paczynski, ApJ 374 (1999) 37. 2 3. D Bramich, MNRAS 397 (2009) 2099. 3 4. S Sajadian, S Rahvar, M Dominik, and M 4 Hundertmark, MNRAS, 458 (2016) 3248. 5 5. E Diolaiti, O Bendinelli, D Bonaccini, L Close, et al., 6 A & A 147 (2000) 335. 7 6. C Alard and R H Lupton, AJ 503 (1998) 325 8
ORIGINAL_ARTICLE Characterization of EUV and Soft X-ray emitted by plasma produced in a nanosecond laser field using AXUV Photo-Diode detector Using AXUV (absolute extreme ultraviolet) photodiode, experimental results obtained for soft X-ray and EUV emission are presented. Plasma produced by nanosecond laser pulse laser system is applied with maximum energy of 250 mJ, pulse durations, 10-30 ns and wavelength, 1064 nm under interaction with steel-316 target. The energy of soft X-ray is observed to be approximately linearly proportional to the laser pulse energy. The soft X-ray and EUV emissions with specific signal was detected by AXUV photodiode with durations of about 15 ns and time delay about 20 ns relative to the laser pulse. The average energy conversion efficiency emission was determined to be about 2.5%.   https://ijpr.iut.ac.ir/article_1578_82611ebd1f20202ccc29420bb29ee5f9.pdf 2020-02-20 825 830 10.47176/ijpr.19.4.15204 AXUV photodiode EUV emission Soft X-ray laser produced plasma laser energy conversion efficiency N Morshedian nmorshed@aeoi.org.ir 1 The Institute of Plasma and Fusion is available, the Institute of Science and Technology available, Iran LEAD_AUTHOR A H Farahbod afarahbod@aeoi.org.ir 2 The Institute of Plasma and Fusion is available, the Institute of Science and Technology available, Iran AUTHOR A G Michette, “Optical systems for soft X-rays, Plenum Press”, New York (1986). 1 E Spiller, “Soft X-ray Optics”, SPIE Optical Engineering Press, Bellingham, Washington (1994) 2 Y Duan et al., Plasma Science and Technology 13, 5 (2011) 546. 3 A S Prokhorov, et al., Plasma Physics Report 30, 2 (2004) 136. 4 Y Liu, et al., Rev. Sci. Instrum. 74, 4 (2003) 2312. 5 C Suzuki, B J Peterson, and K Ida, Rev. Sci. Instrum. 75, 10 (2004) 4142. 6 S Santosh, et al., X-Ray Spectrom. 45 (2016) 185. 7 M Richardson, et al., J. Vac. Sci. Technol. B 22, 2 (2004) 785. 8 J Tang, et al., Plasma Science and Technology 18, 3 (2016) 273. 9 W Liqiu, et al., Journal of Applied Physics 117 (2015) 053301. 10 W Liqiu, et al., Vacuum 123 (2016) 126. 11 L Wenbo, et al., Vacuum 136 (2017) 77. 12 L A Gizzi, et al., Phys. E 49 (1994) 5628. 13 P R Willmott and J R Huber, Rev. Mod. Phys. 72 (2000) 315. 14 E Woryna, et al., Rev. Sci. Instrum. 71 (2000) 949. 15 L Torrisi, et al., Appl. Surf. Sci. 217 (2003) 319. 16 “Opto Diode Optoelectronics Data Book”, Innovators in Optoelectronics, http://optodiode. com/ pdf Opto Diode, an ITW Company, www.irdinc.com (2015). 17 A Saxena et al., Applied Physics 2, 2 (2010) 176. 18 ن مرشدیان، ف شاهوردی و ا ح فرهبد، مجلة پژوهش فیزیک ایران 15، 1 (1394) 25. 19 19. N Morshedian, F Shahverdi, and A H Farahbod, Iranian J. Phys. Res. 15, 1 (2015) 25. 20 م افشاری، "مطالعه پرتو X نرم حاصل از برهم‌کنش باریکة لیزر پرتوان با ماده"، دانشگاه امام حسین، اسفند (1389). 21 Y Tao, F Sohbatzadeh, A Sunahara and T Kawamura, Appl. Phys. Lett. 85, 11 (2004) 1919. 22
ORIGINAL_ARTICLE Tilted-Lorentz symmetry Dirac cone can be tilted in condensed matter setting. As a result of tilt, the Lorentz symmetry is reduced to what we call tilted-Lorentz symmetry. In this paper we derive the tilted-Lorentz transformations that leave a world with tilted Dirac cone invariant.  https://ijpr.iut.ac.ir/article_1579_1658aef251e300de3f0958b58c3752c2.pdf 2020-02-20 831 834 10.47176/ijpr.19.4.372 tilted Lorentz group spacetime in solid state physics S A Jafari akbar.jafari@gmail.com 1 Department of Physics, Sharif University of Technology, Tehran, Iran LEAD_AUTHOR B Bradlyn, J Cano, Z Wang, M G Vergniory, C Felser, R J Cava, and B A Bernevig, Science 353 (2016) 6299. 1 T Farajollahpour, Z Faraei, and S A Jafari, Phys. Rev. B 99 (2019) 235150. 2 M I Katsnelson and M Iosifovich Kat︠s︡nelʹson. Graphene, “Carbon in Two Dimensions”, Cambridge university press (2012). 3  T Padmanabhan, Springer General Relativity and Gravitation 46, 3 (2014) 1673. 4 ک بی‌تقصیر فدافن و س مجرد لمن جویی، مجلة پژوهش فیزیک ایران، ۱۸، ۲ (۱۳۹۷) ۱۹۰. 5 5. K Bitaghsir Fadafan and S Mojarad Laman jouee, Iranian J. Phys. Res. 18, 2 (2018) 190. 6
ORIGINAL_ARTICLE Laser wakefield generation by R, L, X and O modes in magnetized plasma Short and intense laser pulse propagating in a plasma produces an electrostatic wakefield that is widely used in laser acceleration of charged particles. Amplitude of the wakefield depends on several factors, including the laser pulse polarization. Magnetized plasma is anisotropic for various laser polarization and in different condition, different modes can propagate in plasma. In this paper, we investigate the propagation conditions of each modes and with finding the governing equations, the excitation of wakefield due to the laser pulse with the different modes, including circular (R and L modes), elliptic (X mode) and linear (L mode) polarizations, will be determined. By using the forth-order Runge-Kutta algorithm, the differential equations, simultaneously have been solved. The results show that, the amplitude of the wakefield depends not only on the laser mode but also on the plasma density, external magnetic field and laser frequency. https://ijpr.iut.ac.ir/article_1587_1f0a160018df7aa073152999071228f9.pdf 2020-02-20 835 850 10.47176/ijpr.19.4.23422 laser wakefield Magnetized plasma Laser pulse polarization Y Heydarzadeh 1 Department of Physics, Faculty of Basic Sciences, Babol Noshirvani University of Technology, Babol, Iran AUTHOR H Akou h.akou@nit.ac.ir 2 Department of Physics, Faculty of Basic Sciences, Babol Noshirvani University of Technology, Babol, Iran LEAD_AUTHOR E Esarey, P Sprangle, J Krall, and A Ting, IEEE T Plasma Sci. 24 (1996) 252. 1 E A Peralta, K Soong, R J England, E R Colby, Z Wu, B Montazeri, C McGuinness, J McNeur, K J Leedle, D Wals, E B Sozer, B Cowan, B Schwartz, G Travish, and R L Byer, Nature 503 (2013) 91. 2 J Breuer and P Hommelhoff, Phys. Rev. Lett. 111 (2013) 134803. 3 T Andre et. al., Nat. Commun. 9 (2018) 1334. 4 M Wen, Y I Salamin, and C H Keitel, Opt. Express 27 (2019) 557. 5 V Malka, Phys. Plasmas 19 (2012) 055501. 6 م لامعی رشتی، ف قاسمی، س زارعی، ح سیار، ح آلابراهیم، م خسروانی، م انصاری، م یاحقی، ا میردامـادی و ش مـدنی، مجلۀ پژوهش فیزیک ایران 15، 2 (1394) 119. 7 7. M Lamehi Rashti, F Ghasemi, S Zarei, H Sayyar, H Aleebrahim, M Khosravani et al., Iranian J. Phys. Res. 15, 2 (2015) 119. 8 K Shimoda, Appl. Opt. 1 (1962) 33. 9 F Sohbatzadeh, S Mirzanejhad, and M Ghasemi, Phys. Plasmas 13 (2006) 123108. 10 10. F V Hartemann, E C Landahl, A L Troha Jr., J R Van Meter, H A Baldis, R R Freeman, N C Luhmann Jr., L Song, A K Kerman, and D U L Yu, Phys. Plasmas 6 (1999) 4104. 11 11. م اخیانی، م رضـایی پنـدری، ف جهـانگیری، ع نیکنـام و ر مسعودی، مجلۀ پژوهش فیزیک ایران 17،2 (1396) 293. 12 11. A Sadeghipanah, K Sarhadi, J Rahighi, A H Feghhi, and H Ghasem, Iranian J. Phys. Res. 17, 2 (2017) 233. 13 12. J B Rosenzweig, P Schoessow, B Cole, W Gai, R Konecny, J Norem, and J Simpson, Phys. Rev. A 39 (1989) 1576. 14 13. M J Hogan, C D Barnes, F J Clayton, C E Decker, S Deng, P Emma, C Hung, H Iverson, D K Johnson, C Joshi, T Katsouleas, P Krejcik, W Lu, K A Marsh,W B Mori, P Muggli, C L O’Connell, E Oz, R H Siemann, and D Walz, Phys. Rev. Lett. 95 (2005) 054802. 15 14. T Tajima, and J M Dawson, Phys. Rev. Lett. 43 (1979) 267. 16 15. M Everett, A Lal, D Gordon, C E Clayton, K A Marsh and C Joshi, Nature 368 (1994) 527. 17 16. H Hamster, A Sullivan, S Gordon, W White, and R W Falcone, Phys. Rev. Lett. 71 (1993) 2725. 18 17. C A Coverdale, C B Darrow, C D Decker, W B Mori, K Tzeng, K A Marsh, C E Clayton, and C Joshi, Phys. Rev. Lett. 74 (1995) 4659. 19 18. K Nakajima, D Fisher, T Kawakubo, H Nakanishi, A Ogata, Y Kato, Y Kitagawa, R Kodama, K Mima, H Shiraga, K Suzuki, K Yamakawa, T Zhang, Y Sakawa, T Shoji, Y Nishida, N Yugami, M Downer, and T Tajima, Phys. Rev. Lett. 74 (1995) 4428. 20 19. ح آکو، مجلة پژوهش فیزیک ایران 16، 2 (1395) 231. 21 19. H Akou, Iranian J. Phys. Res. 16, 2 (2016) 231. 22 20. F Sohbatzadeh and H Akou, Phys. Plasmas 20 (2013) 043101. 23 21. T P Coffey, Phys. Fluids 14 (1971) 1402. 24 22. P Sprangle, B Hafizi, and J R Penano, Phys. Rev. E 61 (2000) 4381. 25 23. Y I Salamin, and N M Jisrawi, J. Phys. B: At. Mo; Opt. Phys. 47 (2014) 025601. 26 24. F V Hartmann, E C Landahl, A L Troha Jr., J R Van Meter, H A Baldis, R R Freeman, N C Luhmann Jr., L Song, A K Kerman, and D U L Yu, Phys. Plasmas 6 (1999) 4104. 27 25. H Akou, and M Asri, Phys. Lett. A 380, (2016) 1729. 28 26. م عصری، مجلة پژوهش فیزیک ایران 18، 2 (1397) 283. 29 26. M Asri, Iranian J. Phys. Res. 18, 2 (2018) 283. 30 27. P K Shukla, Phys. Scr. T 52 (1994) 73. 31 28. P Jha, A Saroach, R K Mishra, and A K Upadhyay, Phys. Rev. ST Accel. Beams 15 (2012) 081301. 32 29. P K Shukla, Phys. Plasmas 6 (1999) 1363. 33 30. آ کارگریـان، ح مهـدیان و ع حسـن بیگـی، مجلة پـژوهش فیزیک ایران 14، 1 (1393) 83. 34 30. A Kargarian, H Mehdian, and A Hasanbeigi, Iranian J. Phys. Res. 14, 1 (2014) 83. 35 31. B Zohuri, “Plasma physics and Controlled Thermonuclear Reactions Driven Fusion Energy”, Springer (2016). 36 32. R Fitzpatrick, “Plasma Physics: An Introduction”, CRC Press (2015). 37 33. A Piel, “Plasma physics: An Introduction to Laboratory, Space, and Fusion Plasmas”, Springer (2017). 38 34. K F F Law, M Bailly-Grandvaux, A Morace, S Sakata, K Matsuo, S Kojima, S Lee, X Vaisseau, Y Arikawa, A Yogo, K Kondo, Z Zhang, C Bellei, J J Santos, S Fujioka and H Azechi, Appl. Phys. Lett. 108, 091104 (2016). 39 V Kaymak, A Pukhov, V N Shlyaptsev and J J Rocca, Phys. Rev. Lett. 117 (2016) 035004; http://www.lanl. gov/mst/nhm/magnets.shtml. 40
ORIGINAL_ARTICLE The energy transfer between a pair of molecules (donor-acceptor) in the vicinity of a graphene-coated nanoparticle In this paper, we study the energy transferred between a pair of acceptor-donor molecules near a graphene-coated metallic nanoparticle by using the Laplace equation in a quasi-static approximation. After performing theoretical calculations and computer simulations, the influence of the system parameters such as the refractive index of the environment and the contribution of multipolar in different modes on the energy exchanged between the pair of molecules and nanoparticles is analyzed and investigated. The results show that graphene coating enhances plasmon-plasmas coupling in the nanostructure, consequently, enhances the energy transferred between the two molecules and the nanoscale. Therefore, this structure could be used as a new route designing nano-based biosensors. https://ijpr.iut.ac.ir/article_1580_88047cd8da2131a387650ad485e3cc07.pdf 2020-02-20 851 855 10.47176/ijpr.19.4.32341 energy exchanged acceptor-donor molecule nanoparticle graphene M Jalilian 1 Department of Physics, Faculty of Science, Razi University, Kermanshah, Iran AUTHOR T Naseri tayebe.naseri@gmail.com 2 Department of Physics, Faculty of Science, Razi University, Kermanshah, Iran LEAD_AUTHOR N Daneshfar 3 Department of Physics, Faculty of Science, Razi University, Kermanshah, Iran AUTHOR H Y Xie, H Y Chung, P T Leun and D P Tsai, Phys. Rev. B 80 (2015) 155448. 1 A Pietraszewska-Bogiel and T W J Gadella, J. Microscopy 241 (2011) 111. 2 X M Hua, J I Gersten, and A Nitzan, J. Chem. Phys. 83 (1985) 3650. 3 T Christensen, A P Jauho, MWubs, and N Mortensen, Phys. Rev. B 91 (2015) 125414. 4 T Bian, R Chang, and P T Leung, Plasmonics 11 (2016) 1239. 5 Y Huang, A E Miroshnichenko, and L Gao, Sci. Rep. 6 (2016) 23354. 6 M S Shishodia, B D Fainberg, and A Nitzan, Proc. SPIE (2011). 7 N Danshfar and A Yavari, Phys. Plasmas 23 (2016) 053303. 8 N Danshfar and A Yavari, Phys. Plasmas 25 (2018) 013301.  9 N Daneshfar, Molecules physics of plasmas, 22 (2015). 10
ORIGINAL_ARTICLE Tunable surface polaritons of one-dimensional photonic crystal containing graphen-based hyperbolic metamaterials In this paper, surface polaritons (SPs) at the interface of a semi-infinite homogeneous dielectric medium and a one-dimensional photonic crystal (PC) have been investigated theoretically. The PC is made of the alternate layers of an isotropic ordinary dielectric and a graphene-based hyperbolic metamaterial layers. The effective medium approach has been used for the study of the metamaterial layers and it is shown that they have hyperbolic dispersion in a certain frequency range at THz region. The obtained results show that the structure has some photonic band gaps in the hyperbolic and elliptical frequency regions for both TE and TM polarizations and can support the SPs in these frequency ranges. It is observed that the characteristics of the SPs depend on the geometrical parameters of the structure and optical parameters of the graphene monolayers. In the following, the electromagnetic field profiles of some SPs have been plotted and it is shown that the modes of the first band gap are more localized than the modes of the second band gap. Finally, the intensity distribution of a TM-polarized Gaussian beam inside and outside the PC has been simulated which is verifying the localization of the SPs at the interface of the structure.   https://ijpr.iut.ac.ir/article_1581_f99807fa548096ec2b28f37d8ce10609.pdf 2020-02-20 857 865 10.47176/ijpr.19.4.36941 surface polaritons graphene-based hyperbolic metamaterial photonic crystal tunable A Madani a-madani@bonabu.ac.ir 1 Department of Photonics, Laser and Optical Engineering, University of Bonab, Bonab, Iran LEAD_AUTHOR R Abdi-Ghaleh reza.abdi82@gmail.com 2 Department of Photonics, Laser and Optical Engineering, University of Bonab, Bonab, Iran AUTHOR J Poursamad jpoursamad@yahoo.com 3 Department of Photonics, Laser and Optical Engineering, University of Bonab, Bonab, Iran AUTHOR J Nkoma, R Loudon, and D R Tilley, J. Phys. C: Solid State Phys. 7 (1977) 3547. 1 S A Maier, “Plasmonics: “Fundamentals” and Applications”, Springer, Germany (2007) . 2 V M Agranovich and D L Mills, “Surface Polaritons-Electromagnetic Waves at Surfaces and Interfaces”, Elsevier Science Ltd., Netherlands (1982) . 3 P Yeh, A Yariv, and C Hong, J. Opt. Soc. Am. 67 (1977) 423. 4 P Yeh, P Chen, and A Yariv, Appl. Phys. Lett. 32 (1978) 370. 5 G Margheri, T Del Rosso, S Sottini, S Trigari, and E Giorgetti, Opt. Express16 (2008) 9869. 6 J Martínez, A Ródenas, M Aguiló, T Fernandez, J Solis, and F Díaz, Opt. Lett. 41 (2016) 2493. 7 Y Zong, P Lang, L Yu, G Duan, and Z Pan, IEEE Photonic Tech L. 29 (2017) 466. 8 7.     S Dhara, C Y Lu, P Magudapathy, Y F Huang, W S Tu, and K H Chen, Appl. Phys. Lett. 106 (2015) 023101. 9 10. J Gaspar-Armenta and F Villa, J. Opt. Soc. Am. B, 20 (2003) 2349. 10 11. J Martorell, D Sprung, and G Morozov, J. Opt. A: Pure Appl. Opt. 8 (2006) 630. 11 12. [12] J. Gaspar-Armenta, F. Villa, T. López-Rios, Opt. Commun. 216 (2003) 379. 12 13. I V Soboleva, E Descrovi, C Summonte, A A Fedyanin, and F Giorgis, Appl. Phys. Lett. 94 (2009) 231122. 13 14. M Shinn and W Robertson, Sensors and Actuators B, 105 (2005) 360. 14 15. Y Wan, Z Zheng, W Kong, X Zhao, Y Liu, Y Bian, and J. Liu, Opt. Express, 20 (2012) 8998. 15 16. D Soto-Puebla, M Xiao, and F Ramos-Mendieta, Phys. Lett. A 326 (2004) 273. 16 17. D Bria, B Djafari-Rouhani, A Akjouj, L Dobrzynski, J P Vigneron, E H El Boudouti, and A Nougaoui, Phys. Rev. E 69 (2004) 066613. 17 18. S Feng, J Merle Elson, and P L Overfelt, Opt. Express13 (2005) 4113. 18 19. A Madani and S Roshan Entezar, Physica B 431 (2013) 1. 19 20. S Roshan Entezar, Z Saleki, A Madani, Physica B 478 (2015) 122. 20 21. Z Saleki, S Roshan Entezar, and A Madani, Appl. Opt. 56 (2017) 317. 21 22. A Namdar, Opt. Commun. 278 (2007) 194. 22 23. S Roshan Entezar, A Madani, A Namdar, and H Tajalli, J. Magn. Magn. Mater. 324 (2012) 1739. 23 24. A Madani and S Roshan Entezar, Superlattices and Microstructures 75 (2014) 692. 24 25. A Poddubny, I Iorsh, P Belov, and Y Kivshar, Nat. Photonics 7 (2013) 948. 25 26. V Drachev, V A Podolskiy, and A V Kildishev, Opt. Express 21 (2013) 15048. 26 27. Y Li, J Zhang, S Qu, J Wang, Y Pang, Z Xu and A Zhang,  J. Phys. D: Appl. Phys. 48 (2015) 335101. 27 28. C Lv, W Li, X Jiang, and J Cao, EPL 105 (2014) 28003. 28 29. X Li, Z Liang, X Liu, X Jiang, and J Zi, Appl. Phys. Lett. 93 (2008) 171111. 29 30. J Yang, X Hu, X Li, Z Liu, X Jiang, and J Zi, Opt. Lett. 35 (2010) 16. 30 31. Y Chang, C Liu, C Liu, S Zhang, S R Marder, E E Narimanov, Z Zhong, and T B Norris, Nat. Commun. 7 (2016) 10568. 31 32. K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva, and A A Firsov, Science 306 (2004) 666. 32 33. A K Geim, Science, 324 (2009) 1530. 33 34. A Madani and S Roshan Entezar, Photonics and Nanostructures-Fundamentals and Applications 25 (2017) 58. 34 35. G W Hanson, J. Appl. Phys. 104 (2008) 084314. 35 I Iorsh, I Mukhin, I Shadrivov, P Belov, and Y Kivshar, Phys. Rev. B 87 (2013) 075416. 36