Dear user; Recently we have changed our software to Sinaweb. If you had already registered with the old site, you may use the same USERNAME but you need to change your password. To do so at the first use, please choose انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان Iranian Journal of Physics Research 1682-6957 انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان 1606 10.47176/ijpr.20.1.11111 Review Article Principles of topology in understanding and development of topological states of matter Principles of topology in understanding and development of topological states of matter Kargarian M 1 Department of physics, Sharif University of Technology, Tehran, Iran 21 05 2020 20 1 1 22 08 04 2020 12 07 2020 2020 https://ijpr.iut.ac.ir/article_1606.html

By using concepts of topology in mathematics, quantum mechanics, and their synergetic development during the past few decades, condensed matter physicists have discovered new phases of matter and introduced general frameworks to classify them. The research includes a vast gamut from chemistry of atomic orbitals to material science, promising new applications in the growing technologies. This review article aims to provide a better understanding of these unprecedented electron systems and their underlying topological principles. The article consist of two parts. First, there is a historical review of using topological concepts in condensed matter systems. Then, in the second part, we elaborate on some basics of topology in quantum mechanics and the concept of topological invariants.

geometrical and berry phases topology topological materials Chern invariant
M Tinkham, “Introduction to Superconductivity”, NY: McGraw-Hill, (1996). N Goldenfeld, “Lectures On Phase Transitions and the Renormalization Group”, Addison-Wesley (1992). L D L A V L Ginzburg, Eksp. Teor. Fiz. 20 (1950) 1064. H Wagner and N D Mermin, Physical Review Letters 17 (1966) 1133. H E Stanley, and T A Kaplan, Phys. Rev. Lett. 17 (1966) 913. F Wegner, Zeitschrift für Physik 206 (1967) 465. V L Berezinskii, Sov. Phys. JETP 32 (1970) 493. V L Berezinskii, Sov. Phys. JETP 34 (1972) 610. J M Kosterlitz and D J Thouless, Journal of Physics C: Solid State Physics 6 (1973) 1181. N D Mermin, Rev. Mod. Phys. 51 (1979) 591. J M Kosterlitz, Rev. Mod. Phys. 89 (2017) 40501. K V Klitzing, G Dorda, and M Pepper, Phys. Rev. Lett. 45 (1980) 494. D J Thouless, M Kohmoto, M P Nightingale, and M D Nijs, Phys. Rev. Lett. 49 (982) 405. D J Thouless, “Topological Quantum Numbers in Nonrelativistic Physics”, World Scientific, Singapore (1998). M V Berry, Proceedings of the Royal Society A 392 (1984) 45. F D M Haldane, Phys. Rev. Lett. 61 (1988) 2015. Y Hatsugai, Phys. Rev. Lett. 71 (1993) 3697. G Jotzu, M Messer, R Desbuquois, M Lebrat, T Uehlinger, D Greif, and T Esslinger, Nature 515 (2014) 237. C Kane and E Mele, Phys. Rev. Lett. 95 (2005) 226801. C Kane and E Mele, Phys. Rev. Lett. 95 (2005) 146802. B Bernevig, T Hughes, and S C. Zhang, Science 314 (2006) 1757. [M König, S Wiedmann, C Brüne, A Roth, H Buhmann, L Molenkamp, X Qi and S Zhang, Science 318 (2007) 766. M Z Hasan and C L Kane, Rev. Mod. Phys. 82 (2010) 3045. A Kitaev, AIP Conference Proceedings 1134 (2009) 22. X L. Qi and S C. Zhang, Rev. Mod. Phys. 83 (2011) 1057. A Kitaev, Physics-Uspekhi 44 (2001) 131. C Nayak, S H Simon, A Stern, M Freedman, and S D Sarma, Rev. Mod. Phys. 80 (2008) 1083. [C K Chiu, J C Teo, A P Schnyder, and S Ryu, Rev. Mod. Phys. 88 (2016) 035005. [L Fu, Phys. Rev. Lett. 106 (2011) 106802. M Kargarian and G A Fiete, Phys. Rev. Lett. 110 (2013) 156403. F Schindler, A M Cook, M G Vergniory, Z Wang, S S P Parkin, B A Bernevig and T Neupert, Science Advances 4 (2018) eaat0346. N Armitage, E Mele and A Vishwanath, Rev. Mod. Phys. 90 (2018) 015001. S Y Xu and et al., Science 347 (2015) 294. Z K Liu and et al., Science 343 (2014) 864. Z Wang, H Weng, Q Wu, X Dai and Z Fang, Phys. Rev. B, 88 (2013) 125427. S Jeon, B B Zhou, A Gyenis, B E Feldman, I Kimchi, A C Potter, Q D Gibson, R J Cava, A Vishwanath and A Yazdani, Nature Materials 13 (2014) 851. S M. Huang, S Y. Xu, I Belopolski, C C. Lee, G Chang, B K. Wang, N Alidoust, G Bian, M Neupane, C Zhang, S Jia, A Bansil, H Lin and M Z Hasan, Nature Communications 6 (2015) 7373. H Weng, C Fang, Z Fang, B A Bernevig and X Dai, Phys. Rev. X 5 (2015) 011029. S Huang, J Kim, W A Shelton, E W Plummer and R Jin, PNAS (2017) 1706657114. C L Zhang and et al., Nature Communications 7 (2016) 10735. Q Li, D E Kharzeev, C Zhang, Y Huang, I Pletikosić, A V Fedorov, R D Zhong, J A Schneeloch, G D Gu and T Valla, Nature Physics 12 (2016) 550. B Bradlyn and et al., Science 353 (2016) aaf5037. Z Rao and et al., Nature 567 (2019) 496. G Chang, S Y Xu, B J Wieder, D S Sanchez, S M Huang, I Belopolski, T R. Chang, S Zhang, A Bansil, H Lin and M Z Hasan, Phys. Rev. Lett. 119 (2017) 206401. [T H Hsieh, H Lin, J Liu, W Duan, A Bansil and L Fu, Nature Communications 3 (2012) 982. P Dziawa, B J Kowalski, K Dybko, R Buczko, A Szczerbakow, M Szot, E Łusakowska, T Balasubramanian, B M Wojek, M H Berntsen, O Tjernberg and T Story, Nature Materials 11 (2012) 1023. A P Mackenzie and Y. Maeno, Rev. Mod. Phys. 75 (2003) 657. X Gong, M Kargarian, A Stern, D Yue, H Zhou, X Jin, V M Galitski, V M Yakovenko and J Xia, Science Advances 3 (2017) e1602579. A Das, Y Ronen, Y Most, Y Oreg, M Heiblum and H Shtrikman, Nature Physics 8 (2012) 887. M X Wang and e. al, Science 336 (2012) 6077. L Jiao, S Howard, S Ran, Z Wang, J O Rodriguez, M Sigrist, Z Wang, N P Butch and V Madhavan, Nature 579 (2020) 523. Y Wu, N H Jo, L L Wang, C A Schmidt, K M.Neilson, B Schrunk, P Swatek, A Eaton, S L Bud'ko, P C Canfield and A Kaminski, Phys. Rev. B 99 (2019) 161113(R). C Le, X Wu, S Qin, Y Li, R Thomale, F C. Zhang and J Hu, PNAS 115 (2018) 8311. N B M Schröter and e. al, Nature Physics 15 (2019) 759. M Dzero, K Sun, V Galitski and P Coleman, Phys. Rev. Lett. 104 (2010) 106408. K Hagiwara and e. al, Nature Communications 7 (2016) 12690. [T Itou, A Oyamada, S Maegawa, M Tamura and R Kato, Phys. Rev. B 77 (2008) 104413. J S Helton, K Matan, M P Shores, E A Nytko, B M Bartlett, Y Yoshida, Y Takano, A Suslov, Y Qiu, J H. Chung, D G Nocera and Y S Lee, Phys. Rev. Lett. 98 (2007) 107204. H L Stormer, D C Tsui and A. C Gossard, Rev. Mod. Phys. 71 (1999) S298. F. Wilczek, Phys. Rev. Lett. 49 (1982) 957. X G Wen, “Quantum Field Theory of Many-Body Systems:From the Origin of Sound to an Origin of Light and Electrons”, Oxford: OUP (2004). Y Kasahara, T Ohnishi, Y Mizukami, O Tanaka, S Ma, K Sugii, N Kurita, H Tanaka, J Nasu, Y Motome, T Shibauchi and Y Matsuda, Nature 559 (2018) 227. A Kitaev, Annals of Physics 321 (2006) 2. A Kitaev, Annals of Physics 303 (2003) 2. H Bombin and M A Martin-Delgado, Phys. Rev. Lett. 97 (2006) 180501. M Kargarian, Phys. Rev. A 78 (2008) 062312. F D M Haldane, Phys. Rev. Lett. 50 (1983) 1153. F D M Haldane, Rev. Mod. Phys. 89 (2017) 40502. V Mourik, K Zuo, S M Frolov, S R Plissard, E P A M. Bakkers and L P Kouwenhoven, Science 336 (2012) 1003. S Trebst, "Kitaev Materials," arXiv, (2017). M Kargarian, M Randeria and Y M Lu, PNAS 113 (2016) 8648. B Bradlyn, L Elcoro, J Cano, M G Vergniory, Z Wang, C Felser, M I Aroyo and B A Bernevig, Nature 547 (2017) 298. [M G Vergniory, L Elcoro, C Felser, N Regnault, B A Bernevig and Z Wang, Nature 566 (2019) 480. R Bistritzer and A H. MacDonald, PNAS 108 (2011) 12233. Y Cao, V Fatemi, A Demir, S Fang, S L Tomarken, J Y Luo, J D Sanchez-Yamagishi, K Watanabe, T Taniguchi, E Kaxiras, R C Ashoori and P Jarillo-Herrero, Nature 556 (2018) 80. Y Cao, V Fatemi, S Fang, K Watanabe, T Taniguchi, E Kaxiras and P Jarillo-Herrero, Nature 556 (2018) 43. [H C Po, L Zou, A Vishwanath and T Senthil, Phys. Rev. X 8 (2018) 031089. B Lian, Z Wang and B A Bernevig, Phys. Rev. Lett. 122 (2019) 257002. F Wu, A MacDonald and I Martin, Phys. Rev. Lett. 121 (2018) 257001. A L Sharpe, E J Fox, A W Barnard, J Finney, K Watanabe, T Taniguchi, M A Kastner and D Goldhaber-Gordon, Science 365 (2019) 605. Z Song, Z Wang, G L Wujun Shi, C Fang and B A Bernevig, Phys. Rev. Lett. 123 (2019) 036401. S Ran, C Eckberg, Q P Ding, Y Furukawa, T Metz, S R Saha, L Liu, M Zic, H Kim, J Paglione and N P Butch, Science365 (2019) 684. S M Bhattacharjee, “Topology and Condensed Matter Physics, Texts and Readings in Physical Sciences”, Springer, Singapore, 19 (2017) 171. A Altland and B D Simons, “Condensed Matter Field Theory”, Cambridge: Cambridge University Press, (2010). D Xiao, M C. Chang and Q Niu, Rev. Mod. Phys. 82 (2010) 1959. J E Moore and L Balents, Phys. Rev. B 75 (2007). 121306(R. R Roy, Phys. Rev. B 79 (2009) 195322. B A Bernevig and T L Hughes, “Topological Insulators and Topological Superconductors”, Princeton: Princeton University Press (2013). Editorial, "Topology on top," Nature Physics 12 (2016) 615. G A Fiete, Nature 547 (2017) 287. A B Khanikaev, S H Mousavi, W K Tse, M Kargarian, A H MacDonald and G Shvets, Nature Materials 12 (2013) 233. M Hafezi, et al, Nature Photonics 7 (2013) 1001. C L Kane and T C Lubensky, Nature Physics 10 (2014) 39. E Cohen, H Larocque, FBouchard, F Nejadsattari, Y Gefen and E Karimi, Nature Physics Reviews 1 (2019) 437. M Tinkham, “Introduction to Superconductivity”, NY: McGraw-Hill, (1996). N Goldenfeld, “Lectures On Phase Transitions and the Renormalization Group”, Addison-Wesley (1992). L D L A V L Ginzburg, Eksp. Teor. Fiz. 20 (1950) 1064. H Wagner and N D Mermin, Physical Review Letters 17 (1966) 1133. H E Stanley, and T A Kaplan, Phys. Rev. Lett. 17 (1966) 913. F Wegner, Zeitschrift für Physik 206 (1967) 465. V L Berezinskii, Sov. Phys. JETP 32 (1970) 493. V L Berezinskii, Sov. Phys. JETP 34 (1972) 610. J M Kosterlitz and D J Thouless, Journal of Physics C: Solid State Physics 6 (1973) 1181. N D Mermin, Rev. Mod. Phys. 51 (1979) 591. J M Kosterlitz, Rev. Mod. Phys. 89 (2017) 40501. K V Klitzing, G Dorda, and M Pepper, Phys. Rev. Lett. 45 (1980) 494. D J Thouless, M Kohmoto, M P Nightingale, and M D Nijs, Phys. Rev. Lett. 49 (982) 405. D J Thouless, “Topological Quantum Numbers in Nonrelativistic Physics”, World Scientific, Singapore (1998). M V Berry, Proceedings of the Royal Society A 392 (1984) 45. F D M Haldane, Phys. Rev. Lett. 61 (1988) 2015. Y Hatsugai, Phys. Rev. Lett. 71 (1993) 3697. G Jotzu, M Messer, R Desbuquois, M Lebrat, T Uehlinger, D Greif, and T Esslinger, Nature 515 (2014) 237. C Kane and E Mele, Phys. Rev. Lett. 95 (2005) 226801. C Kane and E Mele, Phys. Rev. Lett. 95 (2005) 146802. B Bernevig, T Hughes, and S C. Zhang, Science 314 (2006) 1757. [M König, S Wiedmann, C Brüne, A Roth, H Buhmann, L Molenkamp, X Qi and S Zhang, Science 318 (2007) 766. M Z Hasan and C L Kane, Rev. Mod. Phys. 82 (2010) 3045. A Kitaev, AIP Conference Proceedings 1134 (2009) 22. X L. Qi and S C. Zhang, Rev. Mod. Phys. 83 (2011) 1057. A Kitaev, Physics-Uspekhi 44 (2001) 131. C Nayak, S H Simon, A Stern, M Freedman, and S D Sarma, Rev. Mod. Phys. 80 (2008) 1083. [C K Chiu, J C Teo, A P Schnyder, and S Ryu, Rev. Mod. Phys. 88 (2016) 035005. [L Fu, Phys. Rev. Lett. 106 (2011) 106802. M Kargarian and G A Fiete, Phys. Rev. Lett. 110 (2013) 156403. F Schindler, A M Cook, M G Vergniory, Z Wang, S S P Parkin, B A Bernevig and T Neupert, Science Advances 4 (2018) eaat0346. N Armitage, E Mele and A Vishwanath, Rev. Mod. Phys. 90 (2018) 015001. S Y Xu and et al., Science 347 (2015) 294. Z K Liu and et al., Science 343 (2014) 864. Z Wang, H Weng, Q Wu, X Dai and Z Fang, Phys. Rev. B, 88 (2013) 125427. S Jeon, B B Zhou, A Gyenis, B E Feldman, I Kimchi, A C Potter, Q D Gibson, R J Cava, A Vishwanath and A Yazdani, Nature Materials 13 (2014) 851. S M. Huang, S Y. Xu, I Belopolski, C C. Lee, G Chang, B K. Wang, N Alidoust, G Bian, M Neupane, C Zhang, S Jia, A Bansil, H Lin and M Z Hasan, Nature Communications 6 (2015) 7373. H Weng, C Fang, Z Fang, B A Bernevig and X Dai, Phys. Rev. X 5 (2015) 011029. S Huang, J Kim, W A Shelton, E W Plummer and R Jin, PNAS (2017) 1706657114. C L Zhang and et al., Nature Communications 7 (2016) 10735. Q Li, D E Kharzeev, C Zhang, Y Huang, I Pletikosić, A V Fedorov, R D Zhong, J A Schneeloch, G D Gu and T Valla, Nature Physics 12 (2016) 550. B Bradlyn and et al., Science 353 (2016) aaf5037. Z Rao and et al., Nature 567 (2019) 496. G Chang, S Y Xu, B J Wieder, D S Sanchez, S M Huang, I Belopolski, T R. Chang, S Zhang, A Bansil, H Lin and M Z Hasan, Phys. Rev. Lett. 119 (2017) 206401. [T H Hsieh, H Lin, J Liu, W Duan, A Bansil and L Fu, Nature Communications 3 (2012) 982. P Dziawa, B J Kowalski, K Dybko, R Buczko, A Szczerbakow, M Szot, E Łusakowska, T Balasubramanian, B M Wojek, M H Berntsen, O Tjernberg and T Story, Nature Materials 11 (2012) 1023. A P Mackenzie and Y. Maeno, Rev. Mod. Phys. 75 (2003) 657. X Gong, M Kargarian, A Stern, D Yue, H Zhou, X Jin, V M Galitski, V M Yakovenko and J Xia, Science Advances 3 (2017) e1602579. A Das, Y Ronen, Y Most, Y Oreg, M Heiblum and H Shtrikman, Nature Physics 8 (2012) 887. M X Wang and e. al, Science 336 (2012) 6077. L Jiao, S Howard, S Ran, Z Wang, J O Rodriguez, M Sigrist, Z Wang, N P Butch and V Madhavan, Nature 579 (2020) 523. Y Wu, N H Jo, L L Wang, C A Schmidt, K M.Neilson, B Schrunk, P Swatek, A Eaton, S L Bud'ko, P C Canfield and A Kaminski, Phys. Rev. B 99 (2019) 161113(R). C Le, X Wu, S Qin, Y Li, R Thomale, F C. Zhang and J Hu, PNAS 115 (2018) 8311. N B M Schröter and e. al, Nature Physics 15 (2019) 759. M Dzero, K Sun, V Galitski and P Coleman, Phys. Rev. Lett. 104 (2010) 106408. K Hagiwara and e. al, Nature Communications 7 (2016) 12690. [T Itou, A Oyamada, S Maegawa, M Tamura and R Kato, Phys. Rev. B 77 (2008) 104413. J S Helton, K Matan, M P Shores, E A Nytko, B M Bartlett, Y Yoshida, Y Takano, A Suslov, Y Qiu, J H. Chung, D G Nocera and Y S Lee, Phys. Rev. Lett. 98 (2007) 107204. H L Stormer, D C Tsui and A. C Gossard, Rev. Mod. Phys. 71 (1999) S298. F. Wilczek, Phys. Rev. Lett. 49 (1982) 957. X G Wen, “Quantum Field Theory of Many-Body Systems:From the Origin of Sound to an Origin of Light and Electrons”, Oxford: OUP (2004). Y Kasahara, T Ohnishi, Y Mizukami, O Tanaka, S Ma, K Sugii, N Kurita, H Tanaka, J Nasu, Y Motome, T Shibauchi and Y Matsuda, Nature 559 (2018) 227. A Kitaev, Annals of Physics 321 (2006) 2. A Kitaev, Annals of Physics 303 (2003) 2. H Bombin and M A Martin-Delgado, Phys. Rev. Lett. 97 (2006) 180501. M Kargarian, Phys. Rev. A 78 (2008) 062312. F D M Haldane, Phys. Rev. Lett. 50 (1983) 1153. F D M Haldane, Rev. Mod. Phys. 89 (2017) 40502. V Mourik, K Zuo, S M Frolov, S R Plissard, E P A M. Bakkers and L P Kouwenhoven, Science 336 (2012) 1003. S Trebst, "Kitaev Materials," arXiv, (2017). M Kargarian, M Randeria and Y M Lu, PNAS 113 (2016) 8648. B Bradlyn, L Elcoro, J Cano, M G Vergniory, Z Wang, C Felser, M I Aroyo and B A Bernevig, Nature 547 (2017) 298. [M G Vergniory, L Elcoro, C Felser, N Regnault, B A Bernevig and Z Wang, Nature 566 (2019) 480. R Bistritzer and A H. MacDonald, PNAS 108 (2011) 12233. Y Cao, V Fatemi, A Demir, S Fang, S L Tomarken, J Y Luo, J D Sanchez-Yamagishi, K Watanabe, T Taniguchi, E Kaxiras, R C Ashoori and P Jarillo-Herrero, Nature 556 (2018) 80. Y Cao, V Fatemi, S Fang, K Watanabe, T Taniguchi, E Kaxiras and P Jarillo-Herrero, Nature 556 (2018) 43. [H C Po, L Zou, A Vishwanath and T Senthil, Phys. Rev. X 8 (2018) 031089. B Lian, Z Wang and B A Bernevig, Phys. Rev. Lett. 122 (2019) 257002. F Wu, A MacDonald and I Martin, Phys. Rev. Lett. 121 (2018) 257001. A L Sharpe, E J Fox, A W Barnard, J Finney, K Watanabe, T Taniguchi, M A Kastner and D Goldhaber-Gordon, Science 365 (2019) 605. Z Song, Z Wang, G L Wujun Shi, C Fang and B A Bernevig, Phys. Rev. Lett. 123 (2019) 036401. S Ran, C Eckberg, Q P Ding, Y Furukawa, T Metz, S R Saha, L Liu, M Zic, H Kim, J Paglione and N P Butch, Science365 (2019) 684. S M Bhattacharjee, “Topology and Condensed Matter Physics, Texts and Readings in Physical Sciences”, Springer, Singapore, 19 (2017) 171. A Altland and B D Simons, “Condensed Matter Field Theory”, Cambridge: Cambridge University Press, (2010). D Xiao, M C. Chang and Q Niu, Rev. Mod. Phys. 82 (2010) 1959. J E Moore and L Balents, Phys. Rev. B 75 (2007). 121306(R. R Roy, Phys. Rev. B 79 (2009) 195322. B A Bernevig and T L Hughes, “Topological Insulators and Topological Superconductors”, Princeton: Princeton University Press (2013). Editorial, "Topology on top," Nature Physics 12 (2016) 615. G A Fiete, Nature 547 (2017) 287. A B Khanikaev, S H Mousavi, W K Tse, M Kargarian, A H MacDonald and G Shvets, Nature Materials 12 (2013) 233. M Hafezi, et al, Nature Photonics 7 (2013) 1001. C L Kane and T C Lubensky, Nature Physics 10 (2014) 39. E Cohen, H Larocque, FBouchard, F Nejadsattari, Y Gefen and E Karimi, Nature Physics Reviews 1 (2019) 437.
Dear user; Recently we have changed our software to Sinaweb. If you had already registered with the old site, you may use the same USERNAME but you need to change your password. To do so at the first use, please choose انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان Iranian Journal of Physics Research 1682-6957 انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان 1590 10.47176/ijpr.20.1.38131 Original Article Investigating the size effect in the dielectric function of spherical nano particles and determining their allowed radial interval for experimentally produced samples Investigating the size effect in the dielectric function of spherical nano particles and determining their allowed radial interval for experimentally Nadjari H 1 Movahedinejad H . Physics Departmen, Zanjan University, Zanjan, Iran Physics Departmen, Zanjan University, Zanjan, Iran 2. Institute of Nuclear Science, Iran 21 05 2020 20 1 23 30 16 12 2017 05 01 2020 2020 https://ijpr.iut.ac.ir/article_1590.html

A new method is developed to calculate the mean free path of electrons in spherical nano particles and related Г(R) in the Drude model; accordingly, we have corrected ϵ(R,ω). The new dielectric function is inserted in the series expansion of extinction and absorption cross sections in the Mie Theory. After plotting the real and imaginary part of  ϵ(R,ω) in 3D graphs, and Cext and Cabs in other 3D graphs, we show that the SPR’s positions are relatively constant for two samples; meanwhile, it is displayed that the absorbance for these two samples have visible changes. At last, in two separate 3D graphs, we have plotted the variation of wave length and absorbance against radius and standard deviation to estimate the radius range for experimentally produced gold nanoparticles. We have estimated the radius to be 17 ~ 20 nm for the immediately prepared sample and 12~14 nm for the same sample illuminated with pulsed laser. These results are consistent with the experimental data of TEM images.

nano particles dielectric function mie thoeory 3D absrpion diagram
N P Armitage, arXiv: 0908.1126 (cond-mat.str-el) (2009). M Dressel and G Gruner, American Journal of Physics 70 (2002) 1269. H Kuzmany, “Solid State Spectroscopy”, springer (2009). D W Lynch, “Handbook of optical constants of solids”, Elsevier (1985). J H Weaver, Appl. Opt. 20, 7 (1981) 1124. M A Ordal, Appl. Opt. 22 (1983) 1099. C L Foiles, “Metals: Electronic Transport Phenomena”, Springer (1985). P B Johnson & Christy, phys. Rev. B 6 (1972) 4370. M Moskovits, J. Chem. Phys. 116 (2002) 10435. C F Bohren and D R Huffman, “Absorption and scattering of light by small particles”, New York, Wiley (1998). P G Etchegoin, J. Chem. Phys. 125 (2006) 164705. P G Etchegoin, J. Chem. Phys. 127 (2007) 189901. D Rioux and at el., Advanced Optical Materials, 2, 2 (2014) 176. U Kreibig and L Genzel, Surface Science 156 (1985) 678. U Kreibig and M Vollmer, “Optical Properties of Metal Clusters”, Springer (1995). A Derkachova, K Kolwas I Demchenko, Plasmonics 11, 3 (2016) 941. J Luis, Mendoza and Herrera, Journal of Applied Physics 116 (2014) 233105. S Ghosh and T Pal, Chemical Reviews 107, 11 (2007). V Amendola and M. Meneghetti, J. Phys. Chem. C 113 (2009) 4277. N P Armitage, arXiv: 0908.1126 (cond-mat.str-el) (2009). M Dressel and G Gruner, American Journal of Physics 70 (2002) 1269. H Kuzmany, “Solid State Spectroscopy”, springer (2009). D W Lynch, “Handbook of optical constants of solids”, Elsevier (1985). J H Weaver, Appl. Opt. 20, 7 (1981) 1124. M A Ordal, Appl. Opt. 22 (1983) 1099. C L Foiles, “Metals: Electronic Transport Phenomena”, Springer (1985). P B Johnson & Christy, phys. Rev. B 6 (1972) 4370. M Moskovits, J. Chem. Phys. 116 (2002) 10435. C F Bohren and D R Huffman, “Absorption and scattering of light by small particles”, New York, Wiley (1998). P G Etchegoin, J. Chem. Phys. 125 (2006) 164705. P G Etchegoin, J. Chem. Phys. 127 (2007) 189901. D Rioux and at el., Advanced Optical Materials, 2, 2 (2014) 176. U Kreibig and L Genzel, Surface Science 156 (1985) 678. U Kreibig and M Vollmer, “Optical Properties of Metal Clusters”, Springer (1995). A Derkachova, K Kolwas I Demchenko, Plasmonics 11, 3 (2016) 941. J Luis, Mendoza and Herrera, Journal of Applied Physics 116 (2014) 233105. S Ghosh and T Pal, Chemical Reviews 107, 11 (2007). V Amendola and M. Meneghetti, J. Phys. Chem. C 113 (2009) 4277.
Dear user; Recently we have changed our software to Sinaweb. If you had already registered with the old site, you may use the same USERNAME but you need to change your password. To do so at the first use, please choose انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان Iranian Journal of Physics Research 1682-6957 انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان 1591 10.47176/ijpr.20.1.38113 Original Article New agegraphic in modified teleparallel gravity with viscosity fluid New agegraphic in modified teleparallel gravity with viscosity fluid Mirzaei Rezaei T 1 Amani A 1 Department of Physics, Ayatollah Amoli Branch, Islamic Azad University, Amol, Mazandaran, Iran 21 05 2020 20 1 31 38 16 06 2019 29 12 2019 2020 https://ijpr.iut.ac.ir/article_1591.html

In this paper, the model of the new agegraphic is considered as an alternative to the teleparallel modified gravity model. First, we obtain the Friedman equations by taking dark matter and dark energy based on the existence of the bulk viscosity in the flat Friedmann–Robertson–Walker metric. So, we obtain the cosmological parameters and the function f(T) by using the power law of the scale factor and the correspondence between the agegraphic model and teleparallel gravity. By plotting the variety of the dark energy equation of state versus the redshift parameter, we describe the accelerated expansion of the universe. Finally, we investigate the stability condition by using the function of sound speed, finding the energy-weak constraints for free parameters.

new agegraphic Teleparallel Gravity equation of state dark energy
G Riess et al., Astron. J. 116 (1998) 1009. S Perlmutter et al., Astrophys. J. 517 (1999) 565. D N Spergel et al., [WMAP Collaboration], Astrophys. J. Suppl. 148  (2003) 175. M Tegmark et al., [SDSS Collaboration], Phys. Rev. D 69 (2004) 103501. S Weinberg, Rev. Mod. Phys. 61, 1 (1989) 1. P J E Peebles and B Ratra, Rev. Mod. Phys. 75 (2003) 559. I Zlatev, L Wang, and P J Steinhardt, Phys. Rev. Lett. 82 (1999) 896. A Kamenshchik, U Moschella, and V Pasquier, Phys. Lett. B 511 (2001) 265. R R Caldwell, Phys. Lett. B 545 (2002) 23. G W Gibbons, Classical and Quantum Gravity 20, 12 (2003) S321. A Sen, JHEP 0207 (2002) 065. J S Bagla, H K Jassal and T Padmanabhan, Physical Review D 67, 6 (2003) 063504. S I Nojiri and S D Odintsov, Phys. Rev. D 74, (2006) 086005. S I Nojiri and S D Odintsov, Phys. Lett. B 657, (2007) 238. S M Carroll and et al., PRD 71, 6 (2005) 063513. S Tsujikawa, In Lectures on Cosmology, Springer, Berlin, Heidelberg (2010) 99. V Faraoni and S Nadeau, Physical Review D 72, 12 (2005) 124005. S Ferraro, F Schmidt and W Hu, Physical Review D 83, 6 (2011) 063503. T Chiba. J. Cosmol. Astropart, Phys. 08 (2008) 004. J Sadeghi, M R Setare, A R Amani, and S M Noorbakhsh, Phys. Lett. B 685, 4 (2010) 229. H Wei, Commun. Theor. Phys. 52 (2009) 743. V Sahni and Y Shtanov, J. Cosmol. Astropart. Phys. 11 (2003) 014. K Bamba, C Q Geng, C C Lee, and L W Luo, JCAP 01 (2011) 021. K Karami, M S Khaledian, F Felegary and Z Azarmi, Phys. Lett. B 686, 4 (2010) 216. X Zhang, F Q Wu, Phys. Rev. D 72 (2005) 043524. Q G Huang, Y G Gong, JCAP 0408 (2004) 006. H Wei and R G Cai, Phys. Lett. B 663 (2008) 1. X Wu, Y Zhang, H Li, R Cai, and Z Zhu, arXiv preprint arXiv:0708.0349 (2007). J C Fabris, S V B Goncalves, R de Sa Ribeiro, Gen. Relativ. Gravit. 38 (2006) 495. A Avelino and U Nucamendi, JCAP 04 (2009) 006. P Kovtun, Journal of Physics A: Mathematical and Theoretical 45, 47 (2012) 473001. N D J Mohan, A Sasidharan and T K Mathew, The Europ. Physical J. C 77, 12 (2017) 849. F Karolyhazy, Nuovo Cim. A 42, 390 (1966). M Maziashvili, Int. J. Mod. Phys. D 16, (2007) 1531 [gr-qc/0612110]. K Bamba and et al., Journal of Cosmology and Astroparticle Physics 2011, 01 (2011) 021. J Sadeghi and H Farahani, Astrophysics and Space Science 347, 1 (2013) 209. D Pavon and B Wang, General Relativity and Gravitation, 41, 1 (2009) 1. S Kumar, Monthly Notices of the Royal Astronomical Society, 422, 3 (2012) 2532. R Amanullah et al., Astrophys. J. 716 (2010) 712. G Riess et al., Astron. J. 116 (1998) 1009. S Perlmutter et al., Astrophys. J. 517 (1999) 565. D N Spergel et al., [WMAP Collaboration], Astrophys. J. Suppl. 148  (2003) 175. M Tegmark et al., [SDSS Collaboration], Phys. Rev. D 69 (2004) 103501. S Weinberg, Rev. Mod. Phys. 61, 1 (1989) 1. P J E Peebles and B Ratra, Rev. Mod. Phys. 75 (2003) 559. I Zlatev, L Wang, and P J Steinhardt, Phys. Rev. Lett. 82 (1999) 896. A Kamenshchik, U Moschella, and V Pasquier, Phys. Lett. B 511 (2001) 265. R R Caldwell, Phys. Lett. B 545 (2002) 23. G W Gibbons, Classical and Quantum Gravity 20, 12 (2003) S321. A Sen, JHEP 0207 (2002) 065. J S Bagla, H K Jassal and T Padmanabhan, Physical Review D 67, 6 (2003) 063504. S I Nojiri and S D Odintsov, Phys. Rev. D 74, (2006) 086005. S I Nojiri and S D Odintsov, Phys. Lett. B 657, (2007) 238. S M Carroll and et al., PRD 71, 6 (2005) 063513. S Tsujikawa, In Lectures on Cosmology, Springer, Berlin, Heidelberg (2010) 99. V Faraoni and S Nadeau, Physical Review D 72, 12 (2005) 124005. S Ferraro, F Schmidt and W Hu, Physical Review D 83, 6 (2011) 063503. T Chiba. J. Cosmol. Astropart, Phys. 08 (2008) 004. J Sadeghi, M R Setare, A R Amani, and S M Noorbakhsh, Phys. Lett. B 685, 4 (2010) 229. H Wei, Commun. Theor. Phys. 52 (2009) 743. V Sahni and Y Shtanov, J. Cosmol. Astropart. Phys. 11 (2003) 014. K Bamba, C Q Geng, C C Lee, and L W Luo, JCAP 01 (2011) 021. K Karami, M S Khaledian, F Felegary and Z Azarmi, Phys. Lett. B 686, 4 (2010) 216. X Zhang, F Q Wu, Phys. Rev. D 72 (2005) 043524. Q G Huang, Y G Gong, JCAP 0408 (2004) 006. H Wei and R G Cai, Phys. Lett. B 663 (2008) 1. X Wu, Y Zhang, H Li, R Cai, and Z Zhu, arXiv preprint arXiv:0708.0349 (2007). J C Fabris, S V B Goncalves, R de Sa Ribeiro, Gen. Relativ. Gravit. 38 (2006) 495. A Avelino and U Nucamendi, JCAP 04 (2009) 006. P Kovtun, Journal of Physics A: Mathematical and Theoretical 45, 47 (2012) 473001. N D J Mohan, A Sasidharan and T K Mathew, The Europ. Physical J. C 77, 12 (2017) 849. F Karolyhazy, Nuovo Cim. A 42, 390 (1966). M Maziashvili, Int. J. Mod. Phys. D 16, (2007) 1531 [gr-qc/0612110]. K Bamba and et al., Journal of Cosmology and Astroparticle Physics 2011, 01 (2011) 021. J Sadeghi and H Farahani, Astrophysics and Space Science 347, 1 (2013) 209. D Pavon and B Wang, General Relativity and Gravitation, 41, 1 (2009) 1. S Kumar, Monthly Notices of the Royal Astronomical Society, 422, 3 (2012) 2532. R Amanullah et al., Astrophys. J. 716 (2010) 712.
Dear user; Recently we have changed our software to Sinaweb. If you had already registered with the old site, you may use the same USERNAME but you need to change your password. To do so at the first use, please choose انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان Iranian Journal of Physics Research 1682-6957 انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان 1592 10.47176/ijpr.20.1.31862 Original Article Calculation of the structural and electronic properties of III-V semiconductor compounds using advanced functionals of density functional theory Calculation of the structural and electronic properties of III-V semiconductor compounds using advanced functionals of density functional theory Nikoo A M 1 Sadeghi H 2 Arab A 2 Hashemifar S J 3 Faculty of Applied Sciences, Malek Ashtar University of Technology, Iran . Faculty of Applied Sciences, Malek Ashtar University of Technology, Iran Department of Physics, Isfahan University of Technology, Isfahan, Iran 21 05 2020 20 1 39 48 14 08 2019 29 12 2019 2020 https://ijpr.iut.ac.ir/article_1592.html

In this study, the structural and electronic properties of III-V semiconductor compounds are studied using Density Functional Theory computations within the Full Potential Linearized Augmented Plane Wave (FP-LAPW) method. After considering several exchange-correlation functionals, it is determined that the SOGGA and GGA-WC functionals are suitable alternatives for calculating the structural properties of the desired compounds. For the calculation of electronic properties, particularly the energy band gap, the GGA-EV functional and the TB-mBJ exchange potential with spin-orbit correction are approved. The results show that the exchange potential TB-mBJ + SOC accurately calculates the band gap of these compounds. In the case of materials such as TlAs, which have negative band gaps, it is found that the exchange potential TB-mBJ is not able to predict this gap; in fact, the gap is set to zero. For the calculation of the effective mass, several methods are used; after comparing with experimental data, it is found that the GGA-PBE and GGA-EV functionals calculate this quantity for small band gap and large band gap materials, respectively; this is done with proper accuracy and of course,   the best effective mass results are obtained with the method of hybrid functional HSEbgfit. It is also found that the spin-orbit correction makes the calculated effective mass results closer to the experimental values.  

III-V materials lattice parameter energy gap effective mass DFT
A Assali, M h Bouslama, A Reshak, S Zerroug, and H Abid, Optik135 (2017) 57. M Hadjab, S Berrah, H Abid, M I Ziane, H Bennacer, and B G Yalcin, Optik127 (2016) 9280. M Othman, E Kasap, and N Korozlu, Journal of Alloys and Compounds496 (2010) 226. M Ferhat and A Zaoui, Physical Review B73 (2006) 115107. A H Reshak, H Kamarudin, S Auluck, and I Kityk, Journal of Solid State Chemistry186 (2012) 47. S Z Karazhanov and L L Y Voon, Semiconductors39 (2005) 161. R Ahmed, S J Hashemifar, H Akbarzadeh, and M Ahmed, Computational Materials Science 39 (2007) 580. P Hohenberg and W Kohn, Physical Review 136 (1964) B864. S Mankefors and S Svensson, Journal of Physics: Condensed Matter,12 (2000) 1223. S Gulebaglan, E Dogan, M Aycibin, M Secuk, B Erdinc, and H Akkus, Open Physics 11 (2013) 1680. Y Yao, D König, and M Green, Solar Energy Materials and Solar Cells 111 (2013) 123. M Aslan, B G Yalçın, and M Üstündağ, Journal of Alloys and Compounds519 (2012) 55. Z Feng, H Hu, S Cui, W Wang, and C Lu, Open Physics7 (2009) 786. 14. ح تشکری، ف کنجوری و ع نجاتی، مجله پژوهش فیزیک ایران 14، 4 (1393) 221. 15. ح باده‌یان، ح صالحی و م فربد، مجله پژوهش فیزیک ایران 15، 1 (1394) 1. 16. ر فتحی و ط مولاروی، مجله پژوهش فیزیک ایران 16، 1 (1395) 35. J P Perdew, Physical Review B33 (1986) 8822. H Mazouz, A Belabbes, A Zaoui, and M Ferhat, Superlattices and Microstructures 48 (2010) 560. L Shi, Y Duan, and L Qin, Computational Materials Science 50 (2010) 203. Z Wu and R E Cohen, Physical Review B73 (2006) 235116. Y Zhao and D G Truhlar, The Journal of Chemical Physics 128 (2008) 184109. F Tran and P Blaha, Physical Review Letters 102 (2009) 226401. F E H Hassan, A Postnikov, and O Pagès, Journal of Alloys and Compounds 504 (2010) 559. M I Ziane, Z Bensaad, T Ouahrani, and H Bennacer, Materials Science in Semiconductor Processing 30 (2015) 181. M Van Schilfgaarde, A B Chen, S Krishnamurthy, and A Sher, Applied Physics Letters 65 (1994) 2714. J ZHOU, X- M REN, Y- Q HUANG, Q WANG, and H HUANG, Chinese Physics Letters 25 (2008) 3353. S Kacimi, H Mehnane, and A Zaoui, Journal of Alloys and Compounds 587 (2014) 451. P Haas, F Tran, and P Blaha, Physical Review B79 (2009) 085104. B Peter, et al, Journal of Chemical Physics 152.7 (2020) 074101. J P Perdew, K Burke, and M Ernzerhof, Errata:(1997) Physical Review Letters 78 (1996) 1396. E Engel and S H Vosko, Physical Review B47 (1993) 13164. F Tran, P Blaha, and K Schwarz, Journal of Physics: Condensed Matter 19 (2007) 196208. I Bhat, Wide Bandgap Semiconductor Power Devices (2019) 43. J Heyd, G E Scuseria, and M Ernzerhof, The Journal of Chemical Physics 118 (2003) 8207. F Murnaghan, Proceedings of the National Academy of Sciences of the United States of America 30 (1944) 244. C Filippi, D J Singh, and C J Umrigar, Physical Review B50 (1994) 14947. S Hussain, S Dalui, R Roy, and A Pal, Journal of Physics D: Applied Physics,39 (2006) 2053. S Adachi, Properties of Semiconductor Alloys: Group- IV, III- V and II- VI Semiconductors 28: John Wiley & Sons (2009). R Ahmed, S J Hashemifar, H Rashid, and H Akbarzadeh, Communications in Theoretical Physics 52 (2009) 527. O Madelung, Semiconductors: Data Handbook: Springer Science & Business Media (2012). G B Akyüz, A Tunali, S Gulebaglan, and N Yurdasan, Chinese Physics B25 (2015) 027101. D Koller, F Tran, and P Blaha, Physical Review B85 (2012) 155109. M I Ziane, Z Bensaad, B Labdelli, and H Bennacer, Sensors & Transducers 27 (2014) 374. O Madelung, New series (1982) 571. I Vurgaftman, J á Meyer, and L á Ram- Mohan, Journal of Applied Physics 89 (2001) 5815. A Owens and A Peacock, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 531 (2004) 18. Y- S Kim, M Marsman, G Kresse, F Tran, and P Blaha, Physical Review B82 (2010) 205212. Y Wang, H Yin, R Cao, F Zahid, Y Zhu, L Liu, J Wang, and H Guo, Physical Review B87 (2013) 235203. A Assali, M h Bouslama, A Reshak, S Zerroug, and H Abid, Optik135 (2017) 57. M Hadjab, S Berrah, H Abid, M I Ziane, H Bennacer, and B G Yalcin, Optik127 (2016) 9280. M Othman, E Kasap, and N Korozlu, Journal of Alloys and Compounds496 (2010) 226. M Ferhat and A Zaoui, Physical Review B73 (2006) 115107. A H Reshak, H Kamarudin, S Auluck, and I Kityk, Journal of Solid State Chemistry186 (2012) 47. S Z Karazhanov and L L Y Voon, Semiconductors39 (2005) 161. R Ahmed, S J Hashemifar, H Akbarzadeh, and M Ahmed, Computational Materials Science 39 (2007) 580. P Hohenberg and W Kohn, Physical Review 136 (1964) B864. S Mankefors and S Svensson, Journal of Physics: Condensed Matter,12 (2000) 1223. S Gulebaglan, E Dogan, M Aycibin, M Secuk, B Erdinc, and H Akkus, Open Physics 11 (2013) 1680. Y Yao, D König, and M Green, Solar Energy Materials and Solar Cells 111 (2013) 123. M Aslan, B G Yalçın, and M Üstündağ, Journal of Alloys and Compounds519 (2012) 55. Z Feng, H Hu, S Cui, W Wang, and C Lu, Open Physics7 (2009) 786. 14. ح تشکری، ف کنجوری و ع نجاتی، مجله پژوهش فیزیک ایران 14، 4 (1393) 221. 15. ح باده‌یان، ح صالحی و م فربد، مجله پژوهش فیزیک ایران 15، 1 (1394) 1. 16. ر فتحی و ط مولاروی، مجله پژوهش فیزیک ایران 16، 1 (1395) 35. J P Perdew, Physical Review B33 (1986) 8822. H Mazouz, A Belabbes, A Zaoui, and M Ferhat, Superlattices and Microstructures 48 (2010) 560. L Shi, Y Duan, and L Qin, Computational Materials Science 50 (2010) 203. Z Wu and R E Cohen, Physical Review B73 (2006) 235116. Y Zhao and D G Truhlar, The Journal of Chemical Physics 128 (2008) 184109. F Tran and P Blaha, Physical Review Letters 102 (2009) 226401. F E H Hassan, A Postnikov, and O Pagès, Journal of Alloys and Compounds 504 (2010) 559. M I Ziane, Z Bensaad, T Ouahrani, and H Bennacer, Materials Science in Semiconductor Processing 30 (2015) 181. M Van Schilfgaarde, A B Chen, S Krishnamurthy, and A Sher, Applied Physics Letters 65 (1994) 2714. J ZHOU, X- M REN, Y- Q HUANG, Q WANG, and H HUANG, Chinese Physics Letters 25 (2008) 3353. S Kacimi, H Mehnane, and A Zaoui, Journal of Alloys and Compounds 587 (2014) 451. P Haas, F Tran, and P Blaha, Physical Review B79 (2009) 085104. B Peter, et al, Journal of Chemical Physics 152.7 (2020) 074101. J P Perdew, K Burke, and M Ernzerhof, Errata:(1997) Physical Review Letters 78 (1996) 1396. E Engel and S H Vosko, Physical Review B47 (1993) 13164. F Tran, P Blaha, and K Schwarz, Journal of Physics: Condensed Matter 19 (2007) 196208. I Bhat, Wide Bandgap Semiconductor Power Devices (2019) 43. J Heyd, G E Scuseria, and M Ernzerhof, The Journal of Chemical Physics 118 (2003) 8207. F Murnaghan, Proceedings of the National Academy of Sciences of the United States of America 30 (1944) 244. C Filippi, D J Singh, and C J Umrigar, Physical Review B50 (1994) 14947. S Hussain, S Dalui, R Roy, and A Pal, Journal of Physics D: Applied Physics,39 (2006) 2053. S Adachi, Properties of Semiconductor Alloys: Group- IV, III- V and II- VI Semiconductors 28: John Wiley & Sons (2009). R Ahmed, S J Hashemifar, H Rashid, and H Akbarzadeh, Communications in Theoretical Physics 52 (2009) 527. O Madelung, Semiconductors: Data Handbook: Springer Science & Business Media (2012). G B Akyüz, A Tunali, S Gulebaglan, and N Yurdasan, Chinese Physics B25 (2015) 027101. D Koller, F Tran, and P Blaha, Physical Review B85 (2012) 155109. M I Ziane, Z Bensaad, B Labdelli, and H Bennacer, Sensors & Transducers 27 (2014) 374. O Madelung, New series (1982) 571. I Vurgaftman, J á Meyer, and L á Ram- Mohan, Journal of Applied Physics 89 (2001) 5815. A Owens and A Peacock, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 531 (2004) 18. Y- S Kim, M Marsman, G Kresse, F Tran, and P Blaha, Physical Review B82 (2010) 205212. Y Wang, H Yin, R Cao, F Zahid, Y Zhu, L Liu, J Wang, and H Guo, Physical Review B87 (2013) 235203.
Dear user; Recently we have changed our software to Sinaweb. If you had already registered with the old site, you may use the same USERNAME but you need to change your password. To do so at the first use, please choose انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان Iranian Journal of Physics Research 1682-6957 انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان 1593 10.47176/ijpr.20.1.36031 Original Article Absorption enhancement in thin-film silicon solar cells using hybrid blazed dielectric gratings and Nanoparticle structure Absorption enhancement in thin-film silicon solar cells using hybrid blazed dielectric gratings and Nanoparticle structure Asgariyan Tabrizi A 1 Pahlavan A 2 Radmehr Mehdi 3 Academic Center for Education, Culture, and Research (ACECR), Tabriz, Iran Department of Physics, Sari Branch, Islamic Azad University, Sari, Iran Department of Engineering, Sari Branch, Islamic Azad University, Sari, Iran 21 05 2020 20 1 49 56 10 12 2018 10 12 2019 2020 https://ijpr.iut.ac.ir/article_1593.html

In this paper, a two-dimensional structure of thin-layer silicon solar cells with a combination of silver nanoparticle arrays and a blazed grating is introduced. Applying Ag nanoparticles in the top surface of thin-layer solar cells imrpoves the coefficient of light transmission into the active layer and photon absorption because of the resonance surface plasmon effect. By using the FDTD method, the transmittance and absorption of light at both surfaces is investigated. The effect of such structural parameters as radius, distance of nanoparticles, angle of blazed grating and the grating constant has been reported. Finally, both surfaces are combined and the weighted mean values of the light absorbed by active layer are calculated. The results show that the light trapping efficiency can be improved under specified combinations of the structural parameters.

nanoparticle thin layer solar cells gratings surface plasmon effect
A Goetzberger, C Hebling and H W Schock, Materials science and engineering: R: Reports 40 (2003) 1. F Enrichi, A Quandt and G C Righini, Renewable and sustainable energy reviews 82 (2018) 2433. P Mandal and S Sharma. Renewable and sustainable energy reviews 65 (2016) 537. A Tamang, A Hongsingthong, V Jovanov, P Sichanugrist, B Khan, A Dewan and D Knipp, Scientific reports 6 (2016) 1. K L Kelly, E Coronado, L L Zhao and G C Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment” Kelly optical(2003). E Manea, E Budianu, M Purica, D Cristea, I Cernica, R Muller and V M Poladian, Solar energy materials and solar cells 87 (2005) 423. Y MSong, J S Yu and Y T Lee, Optics letters 35 (2010) 276. W Bai, Q Gan, F Bartoli, J Zhang, L Cai, Y Huang, and G Song. Optics letters 34 (2009) 3725. G Zheng, W Zhang, L Xu, Y Chen and Y Liu, Infrared physics & technology 67 (2014) 52.  A modeling method to enhance the conversion efficiency by optimizing light trapping structure in thin-film solar cells. Solar Energy, 120 (2005) 505.  L J Lin and Y P Chiou, Solar energy 86 (2012) 1485. K L Kelly, E Coronado, L L Zhao and G C Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment” ACS Publications (2003).  Inc, [Online]. Available: http://www.lumerical.com. D P Edward and I J H O O C O S Palik, “Handbook of optical constants of solids”, Orlando, Florida: Academic (1985). S Zhang, M Liu, W Liu, Y Liu, Z Li, , X Wang and F Yang, Journal of Physics Communications 2 (2018) 055032. R S Dubey, K Jhansirani and S Singh, Results in Physics 7 (2017) 77. A A Tabrizi and A Pahlavan, Optics communications 454 (2020) 124437. S Mokkapati and K R Catchpole, Journal of applied physics 112 (2012) 101101. E Battal, T A Yogurt, L E Aygun and A KOkyay, Optics express 20 (2012) 9458. W Zhang, G Zheng, L Jiang and X  Li, Optics communications 298 (2013) 250. J Gjessing, E. S Marstein and A Sudbø, Optics express 18 (2010) 5481. A Goetzberger, C Hebling and H W Schock, Materials science and engineering: R: Reports 40 (2003) 1. F Enrichi, A Quandt and G C Righini, Renewable and sustainable energy reviews 82 (2018) 2433. P Mandal and S Sharma. Renewable and sustainable energy reviews 65 (2016) 537. A Tamang, A Hongsingthong, V Jovanov, P Sichanugrist, B Khan, A Dewan and D Knipp, Scientific reports 6 (2016) 1. K L Kelly, E Coronado, L L Zhao and G C Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment” Kelly optical(2003). E Manea, E Budianu, M Purica, D Cristea, I Cernica, R Muller and V M Poladian, Solar energy materials and solar cells 87 (2005) 423. Y MSong, J S Yu and Y T Lee, Optics letters 35 (2010) 276. W Bai, Q Gan, F Bartoli, J Zhang, L Cai, Y Huang, and G Song. Optics letters 34 (2009) 3725. G Zheng, W Zhang, L Xu, Y Chen and Y Liu, Infrared physics & technology 67 (2014) 52.  A modeling method to enhance the conversion efficiency by optimizing light trapping structure in thin-film solar cells. Solar Energy, 120 (2005) 505.  L J Lin and Y P Chiou, Solar energy 86 (2012) 1485. K L Kelly, E Coronado, L L Zhao and G C Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment” ACS Publications (2003).  Inc, [Online]. Available: http://www.lumerical.com. D P Edward and I J H O O C O S Palik, “Handbook of optical constants of solids”, Orlando, Florida: Academic (1985). S Zhang, M Liu, W Liu, Y Liu, Z Li, , X Wang and F Yang, Journal of Physics Communications 2 (2018) 055032. R S Dubey, K Jhansirani and S Singh, Results in Physics 7 (2017) 77. A A Tabrizi and A Pahlavan, Optics communications 454 (2020) 124437. S Mokkapati and K R Catchpole, Journal of applied physics 112 (2012) 101101. E Battal, T A Yogurt, L E Aygun and A KOkyay, Optics express 20 (2012) 9458. W Zhang, G Zheng, L Jiang and X  Li, Optics communications 298 (2013) 250. J Gjessing, E. S Marstein and A Sudbø, Optics express 18 (2010) 5481.
Dear user; Recently we have changed our software to Sinaweb. If you had already registered with the old site, you may use the same USERNAME but you need to change your password. To do so at the first use, please choose انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان Iranian Journal of Physics Research 1682-6957 انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان 1594 10.47176/ijpr.20.1.38882 Original Article The study of the properties of point defects in pure-Zr and Zr-1%Nb alloy using density-functional theory and atomic simulation The study of the properties of point defects in pure-Zr and Zr-1%Nb alloy using density-functional theory and atomic simulation Payami Shabestar M 1 Basaadat M R 1 Physics and Accelerators Research School, Nuclear Science and Technology Research Institute, AEOI, Tehran, Iran 21 05 2020 20 1 57 64 09 09 2019 11 12 2019 2020 https://ijpr.iut.ac.ir/article_1594.html

Crystal defects play an important role in the material strength and its mechanical properties. The Zr-1%Nb alloy, because of its low cross-section for thermal-neutron capture, corrosion resistance in water and suitable mechanical properties, is widely used in nuclear reactors. This alloy has an HCP structure at low temperatures and for low concentrations of Nb impurity. In this work, using the first-principles density-functional theory calculations, as well as molecular dynamics calculations with interatomic potentials, we have investigated the properties of vacancy and self-interstitial point defects in pure zirconium. The formation energy and formation volume are calculated; the results show a good agreement with the  experimental values. These quantities are calculated for the Zr-1%Nb alloy as well; the  results do not show any significant differences with those of the pure Zr. In addition, the interaction between two vacancies is investigated; by the calculation of the binding energies for di-vacancy clusters in different configurations, it is shown that only those clusters are stable for which the vacancies are in the first neighbor positions. Finally, the displacement energy of a vacancy in the basal plane is calculated, showing a  good agreement with experiment.

nuclear reactor zirconium-niobium alloy crystal defect density-functional theory molecular dynamics
B Cox, Journal of Nuclear Materials 336, 2- 3 (2005) 331. V O Kharchenko and D O Kharchenko, “Ab- initio calculations for structural properties of Zr- Nb alloys”, arXiv preprint arXiv:1206.7035. Q Peng, W Ji, J Lian, X -J Chen, H Huang, F Gao, and S De, Scientific Reports 4 (2014) 5735. P Hohenberg and W Kohn, Phys. Rev. 136 (1964) B864. W Kohn and L J Sham, Phys. Rev.A 140 (1965) 113. P Giannozzi, et al., Journal of Physics: Condensed Matter 21, 39 (2009) 395502. J P Perdew, K Burke, and M Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. http://lammps.sandia.gov. D Smirnova, S Starikov, Computational Materials Science 129 (2017) 259. E S Fisher, C J Renken, Phys. Rev. 135 (1964) A482. P Ehrhart, “Atomic defects in metals”, Landolt- Bornstein, New Series (1991). C Domain and A Legris, Philosophical Magazine 85, 4- 7 (2005) 569. J Barré, A R Bishop, T Lookman, and A Saxena, Physical Review B 74, 2 (2006) 024104. C Varvenne, O Mackain, and E Clouet, Acta Materialia 78 (2014) 65. W Wolfer, 1.01 - fundamental properties of defects in metals, in: R. J. Konings (Ed.), “Comprehensive Nuclear Materials ”, Elsevier, Oxford (2012). Henkelman, Graeme, B P Uberuaga, and H Jónsson, The Journal of Chemical Physics 113, 22 (2000) 9901. H H Neely, Radiation Effects 3, 2 (1970) 189. B Cox, Journal of Nuclear Materials 336, 2- 3 (2005) 331. V O Kharchenko and D O Kharchenko, “Ab- initio calculations for structural properties of Zr- Nb alloys”, arXiv preprint arXiv:1206.7035. Q Peng, W Ji, J Lian, X -J Chen, H Huang, F Gao, and S De, Scientific Reports 4 (2014) 5735. P Hohenberg and W Kohn, Phys. Rev. 136 (1964) B864. W Kohn and L J Sham, Phys. Rev.A 140 (1965) 113. P Giannozzi, et al., Journal of Physics: Condensed Matter 21, 39 (2009) 395502. J P Perdew, K Burke, and M Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. http://lammps.sandia.gov. D Smirnova, S Starikov, Computational Materials Science 129 (2017) 259. E S Fisher, C J Renken, Phys. Rev. 135 (1964) A482. P Ehrhart, “Atomic defects in metals”, Landolt- Bornstein, New Series (1991). C Domain and A Legris, Philosophical Magazine 85, 4- 7 (2005) 569. J Barré, A R Bishop, T Lookman, and A Saxena, Physical Review B 74, 2 (2006) 024104. C Varvenne, O Mackain, and E Clouet, Acta Materialia 78 (2014) 65. W Wolfer, 1.01 - fundamental properties of defects in metals, in: R. J. Konings (Ed.), “Comprehensive Nuclear Materials ”, Elsevier, Oxford (2012). Henkelman, Graeme, B P Uberuaga, and H Jónsson, The Journal of Chemical Physics 113, 22 (2000) 9901. H H Neely, Radiation Effects 3, 2 (1970) 189.
Dear user; Recently we have changed our software to Sinaweb. If you had already registered with the old site, you may use the same USERNAME but you need to change your password. To do so at the first use, please choose انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان Iranian Journal of Physics Research 1682-6957 انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان 1595 10.47176/ijpr.20.1.38881 Original Article Investigation of phonon properties and thermal behavior of UO2 crystal using density-functional theory Investigation of the phonon properties and thermal behavior of UO2 crystal using density-functional theory Payami Shabestar M 1 Sheykhi S 1 Physics and Accelerators Research School, Nuclear Science and Technology Research Institute, AEOI, Tehran, Iran 21 05 2020 20 1 65 72 02 09 2019 24 12 2019 2020 https://ijpr.iut.ac.ir/article_1595.html

Understanding thermal behavior and processes underlying the heat transport of UO2 nuclear fuel in nuclear reactor plays a key role in predicting the efficiency of the fuel. If the heat transport, which is an important parameter in temperature distribution of the fuel, does not occur properly, the continuous increase of temperature would lead to the melting of the fuel and therefore, environmental hazards. In this work, by using a non-spin-polarized calculation for the simple description of the paramagnetic state and ignoring the Hubbard correction, the thermal properties and phonon properties of bulk UO2 are calculated. These calculations are based on the density-functional theory (DFT) and density-functional perturbation theory (DFPT). To determine the lattice-vibration properties by the finite-displacement method, we have calculated the second-order and third-order force constants based on which such quantities as  constant-volume specific heat, Gruneisen parameter, three-phonon scattering rate, scattering rate due to different levels of isotopic enrichment, and cumulative thermal conductivity are calculated. The results of the calculated specific heat based on the harmonic approximation show a good agreement with the experimental values, specifically for temperatures lower than 400 Kelvin. The results obtained for three-phonon scattering rate reveal that the scattering rate increases with temperature, thereby leading to the decrease of thermal conductivity. The results related to different levels of isotopic enrichments do not show any sensible changes in the scattering rates.  

uranium dioxide phonon phonon scattering rate phonon mean free path Boltzmann transport equation
T Godfrey, W Fulkerson, T Kollie, J Moore, and D McElroy, J. of the American Ceramic Society 48, 6 (1965) 297. G Dolling, R Cowley, and AWoods, Canadian Journal of Physics 43, 8 (1965) 1397. L Goldsmith and J Douglas, J. of Nucl. Mater. 47, 1 (1973) 31. J Fink, M Chasanov, and L Leibowitz, J. of Nucl. Mater. 102, 1 (1981) 17. J Fink, J. of Nucl. Mater. 279, 1 (2000) 1. S Motoyama, Y Ichikawa, Y Hiwatari, A Oe, Phys. Rev. B 60, 1 (1999) 292. K Yamada, K Kurosaki, M Uno, and S Yamanaka, J. of Alloys and Compounds 307 (2000) 10. T Arima, S Yamasaki, Y Inagaki, K Idemitsu, J. of Alloys and Compounds 400 (2005) 43. G Kaur, P Panigrahi, M C Valsakumar, Modelling and Simulation in Materials Science and Engineering 21 (2013) 065014. 10. J W L Pang, W J L Buyers, A Chernatynskiy, M D Lumsden, B C Larson, S R Phillpot, Phys. Rev.Lett. 110 (2013) 157401. 11. A Resnick, K Mitchell, J Park, E B Farfn, and T Yee, Nuclear Engineering and Technology (2019). doi:https://doi.org/10.1016/j.net.2019.03.011. 12. E Torres, T Kaloni, J. of Nucl. Matter. 521 (2019) 137. 13. G Amoretti, A Blaise, R Caciu_o, J M Fournier, M T Hutchings, R Osborn, A D Taylor, Phys. Rev. B 40 (1989) 1856. 14. J Faber, G H Lander, B R Cooper, Phys. Rev. Lett. 35 (1975) 1770. 15. M Idiri, T Le Bihan, S Heathman, J Rebizant, Physical Review B 70, 1 (2004) 014113. 16. P Hohenberg and W Kohn, Phys. Rev. 136 (3B) (1964) B 864. 17. W Kohn, L J Sham, Phys. Rev. 140, 4A (1965) A1133. 18. B Dorado, B Amadon, M Freyss, M Bertolus, Phys. Rev. B 79 (2009) 235125. 19. M Freyss, B Dorado, M Bertolus, G Jomard, E Vathonne, P Garcia, and B Amadon, 113 in Ψk Scientific Highlight Of The Month, (2012). URL: https://psi-k.net/highlights/. 20. S Sheykhi and M Payami, Physica C: Superconductivity and its Applications 549 (2018) 93. 21. R Peierls, in: Selected Scientific Papers of Sir Rudolf Peierls: (With Commentary), World Scientific (1997) 15. 22. S Sheykhi and M Payami, https://arxiv.org/pdf/1907.04174.pdf 23. W Neil Ashcroft, “Solid State Physics”, Cambridge University Press (1990). 24. M Omini, A Sparavigna, Physica B: Condensed Matter 212, 2 (1995) 101. 25. L Lindsay, D A Broido, and N Mingo, Phys. Rev. B 82 (2010) 161402. 26. W Li, L Lindsay, D A Broido, D A Stewart, and N Mingo, Phys. Rev. B 86 (2012) 174307. 27. N Mingo, D Stewart, D Broido, L Lindsay, and W Li, In: S. Shinde, G. Srivastava (eds) Length-Scale Dependent Phonon Interactions, Topics in Applied Physics, vol 128, Springer (2014) 137. 28. P Giannozzi, S Baroni, N Bonini, M Calandra, R Car, C Cavazzoni, D Ceresoli, G L Chiarotti, M Cococcioni, and I Dabo, et al., J. of physics: Cond. Matter 21, 39 (2009) 395502. 29. J P Perdew, K Burke, and M Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. 30. S Baroni, S de Gironcoli, A Dal Corso, and P Giannozzi, Rev. Mod. Phys. 73 (2001) 515. 31. M Sanati, R C Albers, T Lookman, and A Saxena, Phys. Rev. B 84 (2011) 014116. 32. W M Jones, J Gordon, and E A Long, J. Chem. Phys. 20 (1952) 695. 33. G E Moore and K K Kelley, J. Amer. Chem. Soc. 69 (1947) 2105. 34. W Li, J Carrete, N A Katcho, and N Mingo, Comp. Phys. Communications 185, 6 (2014) 1747. T Godfrey, W Fulkerson, T Kollie, J Moore, and D McElroy, J. of the American Ceramic Society 48, 6 (1965) 297. G Dolling, R Cowley, and AWoods, Canadian Journal of Physics 43, 8 (1965) 1397. L Goldsmith and J Douglas, J. of Nucl. Mater. 47, 1 (1973) 31. J Fink, M Chasanov, and L Leibowitz, J. of Nucl. Mater. 102, 1 (1981) 17. J Fink, J. of Nucl. Mater. 279, 1 (2000) 1. S Motoyama, Y Ichikawa, Y Hiwatari, A Oe, Phys. Rev. B 60, 1 (1999) 292. K Yamada, K Kurosaki, M Uno, and S Yamanaka, J. of Alloys and Compounds 307 (2000) 10. T Arima, S Yamasaki, Y Inagaki, K Idemitsu, J. of Alloys and Compounds 400 (2005) 43. G Kaur, P Panigrahi, M C Valsakumar, Modelling and Simulation in Materials Science and Engineering 21 (2013) 065014. 10. J W L Pang, W J L Buyers, A Chernatynskiy, M D Lumsden, B C Larson, S R Phillpot, Phys. Rev.Lett. 110 (2013) 157401. 11. A Resnick, K Mitchell, J Park, E B Farfn, and T Yee, Nuclear Engineering and Technology (2019). doi:https://doi.org/10.1016/j.net.2019.03.011. 12. E Torres, T Kaloni, J. of Nucl. Matter. 521 (2019) 137. 13. G Amoretti, A Blaise, R Caciu_o, J M Fournier, M T Hutchings, R Osborn, A D Taylor, Phys. Rev. B 40 (1989) 1856. 14. J Faber, G H Lander, B R Cooper, Phys. Rev. Lett. 35 (1975) 1770. 15. M Idiri, T Le Bihan, S Heathman, J Rebizant, Physical Review B 70, 1 (2004) 014113. 16. P Hohenberg and W Kohn, Phys. Rev. 136 (3B) (1964) B 864. 17. W Kohn, L J Sham, Phys. Rev. 140, 4A (1965) A1133. 18. B Dorado, B Amadon, M Freyss, M Bertolus, Phys. Rev. B 79 (2009) 235125. 19. M Freyss, B Dorado, M Bertolus, G Jomard, E Vathonne, P Garcia, and B Amadon, 113 in Ψk Scientific Highlight Of The Month, (2012). URL: https://psi-k.net/highlights/. 20. S Sheykhi and M Payami, Physica C: Superconductivity and its Applications 549 (2018) 93. 21. R Peierls, in: Selected Scientific Papers of Sir Rudolf Peierls: (With Commentary), World Scientific (1997) 15. 22. S Sheykhi and M Payami, https://arxiv.org/pdf/1907.04174.pdf 23. W Neil Ashcroft, “Solid State Physics”, Cambridge University Press (1990). 24. M Omini, A Sparavigna, Physica B: Condensed Matter 212, 2 (1995) 101. 25. L Lindsay, D A Broido, and N Mingo, Phys. Rev. B 82 (2010) 161402. 26. W Li, L Lindsay, D A Broido, D A Stewart, and N Mingo, Phys. Rev. B 86 (2012) 174307. 27. N Mingo, D Stewart, D Broido, L Lindsay, and W Li, In: S. Shinde, G. Srivastava (eds) Length-Scale Dependent Phonon Interactions, Topics in Applied Physics, vol 128, Springer (2014) 137. 28. P Giannozzi, S Baroni, N Bonini, M Calandra, R Car, C Cavazzoni, D Ceresoli, G L Chiarotti, M Cococcioni, and I Dabo, et al., J. of physics: Cond. Matter 21, 39 (2009) 395502. 29. J P Perdew, K Burke, and M Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. 30. S Baroni, S de Gironcoli, A Dal Corso, and P Giannozzi, Rev. Mod. Phys. 73 (2001) 515. 31. M Sanati, R C Albers, T Lookman, and A Saxena, Phys. Rev. B 84 (2011) 014116. 32. W M Jones, J Gordon, and E A Long, J. Chem. Phys. 20 (1952) 695. 33. G E Moore and K K Kelley, J. Amer. Chem. Soc. 69 (1947) 2105. 34. W Li, J Carrete, N A Katcho, and N Mingo, Comp. Phys. Communications 185, 6 (2014) 1747.
Dear user; Recently we have changed our software to Sinaweb. If you had already registered with the old site, you may use the same USERNAME but you need to change your password. To do so at the first use, please choose انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان Iranian Journal of Physics Research 1682-6957 انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان 1596 10.47176/ijpr.20.1.21501 Original Article Tunneling, reflection and gravitational weak equivalence principle in the continuous transition from quantum to classical mechanics Tunneling, reflection and gravitational weak equivalence principle in the continuous transition from quantum to classical mechanics Mousavi S. V 1 Department of Physics, Faculty of Sciences, University of Qom, Qom, Iran 21 05 2020 20 1 73 82 16 10 2019 22 01 2020 2020 https://ijpr.iut.ac.ir/article_1596.html

In an effort to describe quantum and classical mechanics with the same language, a wave equation for a continuous transition from quantum to classical mechanics has been proposed. Furthermore, the equivalence of this nonlinear equation with a linear one, known as the scaled equation, which is just the Schrodinger equation with the scaled Planck constant instead of the usual one, has been proved. Using this equation, we'll study three interesting phenomena; these include tunneling through a rectangular barrier, total reflection from a hard wall, and the gravitational weak equivalence principle in quantum, transition and classical regions. Time-independent scaled equation for the stationary states is derived and solved for a flux of particles incident on the barrier. The relations show that tunneling probability is exactly zero in the classical regime. For the other problems, we use a Gaussian wavepacket to calculate  the expectation value of the position operator in reflection from the hard wall and to estimate the detection probability and arrival time in the problem of the gravitational weak equivalence.

quantum-classical transition scaled wave equation tunneling reflection gravitational weak equivalence principle
P ‎R ‎Holland, “The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics”, Cambridge University Press (1993). D Home, A K Pan and A Banerjee, J. Phys. A 42 (2009) 165302. N Rosen, Am .J. Phys. 32 (1964) 377. H Nikolic, Found. Phys. Lett. 19 (2006) 553. A Benseny, D Tena and X Oriols, Fluct. Noise Lett. 15 (2016) 1640011. X Oriols and A Benseny, New. J. Phys. 19 (2017) 063031. C D Richardson et al., Phys. Rev. A 89 (2014) 032118. C C Chou, Ann. Phys. 371 (2016) 437. S V Mousavi and S Miret-Artés, J. Phys. Commun. 2 (2018) 035029. S V Mousavi and S Miret-Artés, Ann. Phys. 393 (2018) 76. S V Mousavi and S Miret-Artés, Phys. Scr. 90 (2015) 095001. B S Zhao, G Meijer, and W Schollkopf, Science 331 (2011) 892. M A Ali, A S Majumdar, D Home, and A K Pan, Class. Quantum Grav. 23 (2006) 6493. P Chowdhury, Class. Quantum Grav. 29 (2012) 025010. S V Mousavi, A S Majumdar, and D Home, Class. Quantum Grav. 32 (2015) 215014. P C W Davies, Class. Quantum Grav. 21 (2004) 2761. L Viola and R Onofrio, Phys. Rev. D 55 (1997) 455. خ شاکرین، "بررسی نقض اصل هم ارزی در دنیای کوانتومی". پایان نامۀ کارشناسی ارشد، دانشکدۀ علوم پایه، دانشگاه قم (1391). J G Muga and C R Leavens, Phys. Rep. 338 (2000) 353. P ‎R ‎Holland, “The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics”, Cambridge University Press (1993). D Home, A K Pan and A Banerjee, J. Phys. A 42 (2009) 165302. N Rosen, Am .J. Phys. 32 (1964) 377. H Nikolic, Found. Phys. Lett. 19 (2006) 553. A Benseny, D Tena and X Oriols, Fluct. Noise Lett. 15 (2016) 1640011. X Oriols and A Benseny, New. J. Phys. 19 (2017) 063031. C D Richardson et al., Phys. Rev. A 89 (2014) 032118. C C Chou, Ann. Phys. 371 (2016) 437. S V Mousavi and S Miret-Artés, J. Phys. Commun. 2 (2018) 035029. S V Mousavi and S Miret-Artés, Ann. Phys. 393 (2018) 76. S V Mousavi and S Miret-Artés, Phys. Scr. 90 (2015) 095001. B S Zhao, G Meijer, and W Schollkopf, Science 331 (2011) 892. M A Ali, A S Majumdar, D Home, and A K Pan, Class. Quantum Grav. 23 (2006) 6493. P Chowdhury, Class. Quantum Grav. 29 (2012) 025010. S V Mousavi, A S Majumdar, and D Home, Class. Quantum Grav. 32 (2015) 215014. P C W Davies, Class. Quantum Grav. 21 (2004) 2761. L Viola and R Onofrio, Phys. Rev. D 55 (1997) 455. خ شاکرین، "بررسی نقض اصل هم ارزی در دنیای کوانتومی". پایان نامۀ کارشناسی ارشد، دانشکدۀ علوم پایه، دانشگاه قم (1391). J G Muga and C R Leavens, Phys. Rep. 338 (2000) 353.
Dear user; Recently we have changed our software to Sinaweb. If you had already registered with the old site, you may use the same USERNAME but you need to change your password. To do so at the first use, please choose انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان Iranian Journal of Physics Research 1682-6957 انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان 1597 10.47176/ijpr.20.1.37851 Original Article Heart failure diagnosis using generalized Langevin equation Heart failure diagnosis using generalized Langevin equation Manshour P 1 Badragheh M A 1 Physics Department, Persian Gulf University, Bushehr, Iran 21 05 2020 20 1 83 91 05 06 2019 08 01 2020 2020 https://ijpr.iut.ac.ir/article_1597.html

The Jump-Diffusion equation is a generalization of the Langevin equation; it has been usually applied to reconstruct discontinuous stochastic processes. In this article, by using this equation, we investigate the electrocardiogram of the electric activity of the heart beat, for three groups of subjects with normal, atrial fibrillation and ventricular arrhythmia. At first, we demonstrate that the time series of electrocardiogram is a discontinuous process that can be modeled by the jump-diffusion equation. Then, by calculating the Kramers-Moyal coefficients related to this equation, we show that there is  a significant difference between the heart dynamics of the  normal subjects and the ones with heart failure exists. Finally, we introduce a measure that may be used for the diagnosis of heart failures.

Langevin equation heart failure Kramers-Moyal coefficients jump-diffusion model
A Einstein, Ann. phys. 322 (1905) 549. P Langevin, C. R. Acad. Sci. Paris 146 (1908) 530. M Anvari, et al., Sci. Rep. 6 (2016) 35435. A Aliakbari, P Manshour, and M J Salehi, Chaos 27 (2017) 033116. P Manshour, et al., Sci. Rep. 6 (2016) 27452. W Coffey and Y P Kalmykov, “The Langevin equation: with applications to stochastic problems in physics, chemistry and electrical engineering”, World Scientific, Singapore (2012). H Risken, “The Fokker- Planck Equation”, Springer Series in Synergetics Springer, Berlin (1996). S Stenholm, “Foundations of Laser Spectroscopy”, Wiley, New York (1984). H Haken, “Laser Theory”, Springer, Berlin (1984). 10. K S Schmitz, “An Introduction to Dynamic Light Scattering by Macromolecules”, Academic Press, San Diego (1990). 11. O G Bakunin, Phys.- Uspekhi 46 (2003) 309. 12. P Brüesch, et al. Phys. Rev. B 15 (1977) 4631. 13. M Fujiwara, et al., Sci. Rep. 8 (2018) 14773. 14. W T Coffey, J. Phys. D 11 (1978) 1377. 15. M Perc, Eur. J. Phys. 26 (2005) 757. 16. J Wang, et al., Phys. Rev. E 71 (2005) 062902. 17. H Yang, S T Bukkapatnam, and R Komanduri, Phys. Rev. E 76 (2007) 026214. 18. A N Beni, B Mirza, F Shahbazi and A Kazempour, Iranian J. Phys. Res. 6 (2006) 137. ا ن ‌بنی، ب میرزا، ف شهبازی و ع کاظم‌پور، مجله پژوهش فیزیک ایران 6، 2 (1385) ۱۴۴. 19. F Atiyabi, M Akbari Livari and K Kaviani, Iranian J. Phys. Res. 7 (2007) 53. ف اطیابی، م اکبری لیواری و ک کاویانی، مجله پژوهش فیزیک ایران 7، 1 (1386) ۵۹. 20. M Boorboor, F shahbazi and B Mirza, Iranian J. Phys. Res. 7 (2007) 113. م بوربور، ف شهبازی و ب میرزا، مجله پژوهش فیزیک ایران 7، 2 (1386) ۱۱۳. 21. R Friedrich, J Peinke, M Sahimi, and M R Rahimi Tabar, Phys. Rep. 506 (2011) 87. 22. K Lehnertz, L Zabawa, and M R Rahimi Tabar, New J. Phys. 20 (2018) 113043. 23. R F Pawula, Phys. Rev. 162 (1967) 186. 24. R J P Keijsers, O I Shklyarevskii, and H van Kempen, Phys. Rev. Lett. 77 (1996) 3411. 25. A L Efros and M Rosen, Phys. Rev. Lett. 78 (1997) 1110. 26. E Shung, et al., Phys. Rev. B 56 (1997) R11431. 27. L Gammaitoni, P Hänggi, P Jung and F Marchesoni, Rev. Mod. Phys. 70 (1998) 223. 28. M Anvari, et al., New J. Phys. 18 (2016) 063027. 29. S S Lee and P A Mykland, Rev. Financial Stud. 21 (2008) 2535. 30. B Goswami, et al., Nat. Commun. 9 (2018) 48. 31. S Martinez- Conde, S L Macknik, and D H Hubel, Nat. Rev. Neurosci. 5 (2004) 229. 32. H F Credidio, et al., Sci. Rep. 2 (2012) 920. 33. G B Moody and R G Mark, Comput. Cardiol. 10 (1983) 227. 34. G B Moody and R G Mark, IEEE Eng. in Med. and Biol. 20 (2001) 45. 35. A L Goldberger, et al., Circulation 101 (2000) e215. 36. H J Bierens, “The Nadaraya- Watson Kernel Regression Function Estimator”, In: Topics in Advanced Econometrics, Cambridge University Press, New York )1994). A Einstein, Ann. phys. 322 (1905) 549. P Langevin, C. R. Acad. Sci. Paris 146 (1908) 530. M Anvari, et al., Sci. Rep. 6 (2016) 35435. A Aliakbari, P Manshour, and M J Salehi, Chaos 27 (2017) 033116. P Manshour, et al., Sci. Rep. 6 (2016) 27452. W Coffey and Y P Kalmykov, “The Langevin equation: with applications to stochastic problems in physics, chemistry and electrical engineering”, World Scientific, Singapore (2012). H Risken, “The Fokker- Planck Equation”, Springer Series in Synergetics Springer, Berlin (1996). S Stenholm, “Foundations of Laser Spectroscopy”, Wiley, New York (1984). H Haken, “Laser Theory”, Springer, Berlin (1984). 10. K S Schmitz, “An Introduction to Dynamic Light Scattering by Macromolecules”, Academic Press, San Diego (1990). 11. O G Bakunin, Phys.- Uspekhi 46 (2003) 309. 12. P Brüesch, et al. Phys. Rev. B 15 (1977) 4631. 13. M Fujiwara, et al., Sci. Rep. 8 (2018) 14773. 14. W T Coffey, J. Phys. D 11 (1978) 1377. 15. M Perc, Eur. J. Phys. 26 (2005) 757. 16. J Wang, et al., Phys. Rev. E 71 (2005) 062902. 17. H Yang, S T Bukkapatnam, and R Komanduri, Phys. Rev. E 76 (2007) 026214. 18. A N Beni, B Mirza, F Shahbazi and A Kazempour, Iranian J. Phys. Res. 6 (2006) 137. ا ن ‌بنی، ب میرزا، ف شهبازی و ع کاظم‌پور، مجله پژوهش فیزیک ایران 6، 2 (1385) ۱۴۴. 19. F Atiyabi, M Akbari Livari and K Kaviani, Iranian J. Phys. Res. 7 (2007) 53. ف اطیابی، م اکبری لیواری و ک کاویانی، مجله پژوهش فیزیک ایران 7، 1 (1386) ۵۹. 20. M Boorboor, F shahbazi and B Mirza, Iranian J. Phys. Res. 7 (2007) 113. م بوربور، ف شهبازی و ب میرزا، مجله پژوهش فیزیک ایران 7، 2 (1386) ۱۱۳. 21. R Friedrich, J Peinke, M Sahimi, and M R Rahimi Tabar, Phys. Rep. 506 (2011) 87. 22. K Lehnertz, L Zabawa, and M R Rahimi Tabar, New J. Phys. 20 (2018) 113043. 23. R F Pawula, Phys. Rev. 162 (1967) 186. 24. R J P Keijsers, O I Shklyarevskii, and H van Kempen, Phys. Rev. Lett. 77 (1996) 3411. 25. A L Efros and M Rosen, Phys. Rev. Lett. 78 (1997) 1110. 26. E Shung, et al., Phys. Rev. B 56 (1997) R11431. 27. L Gammaitoni, P Hänggi, P Jung and F Marchesoni, Rev. Mod. Phys. 70 (1998) 223. 28. M Anvari, et al., New J. Phys. 18 (2016) 063027. 29. S S Lee and P A Mykland, Rev. Financial Stud. 21 (2008) 2535. 30. B Goswami, et al., Nat. Commun. 9 (2018) 48. 31. S Martinez- Conde, S L Macknik, and D H Hubel, Nat. Rev. Neurosci. 5 (2004) 229. 32. H F Credidio, et al., Sci. Rep. 2 (2012) 920. 33. G B Moody and R G Mark, Comput. Cardiol. 10 (1983) 227. 34. G B Moody and R G Mark, IEEE Eng. in Med. and Biol. 20 (2001) 45. 35. A L Goldberger, et al., Circulation 101 (2000) e215. 36. H J Bierens, “The Nadaraya- Watson Kernel Regression Function Estimator”, In: Topics in Advanced Econometrics, Cambridge University Press, New York )1994).
Dear user; Recently we have changed our software to Sinaweb. If you had already registered with the old site, you may use the same USERNAME but you need to change your password. To do so at the first use, please choose انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان Iranian Journal of Physics Research 1682-6957 انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان 1598 10.47176/ijpr.20.1.39201 Original Article Higgs boson production through FCNC interactions Higgs boson production through FCNC interactions Khatibi S 1 Department of Physics, University of Tehran, Tehran, Iran 21 05 2020 20 1 93 102 05 10 2019 14 01 2020 2020 https://ijpr.iut.ac.ir/article_1598.html

Since top quark has large Yukawa coupling, investigation the Higgs-top sector is highly interesting as it looks for any deviations from the standard model predictions. In this paper, we study the Higgs boson production in the gluon-gluon fusion channel and in the presence of top quark Flavor Changing Neutral Current (FCNC) interactions at the LHC.  We utilize the standard model effective field theory framework to probe the new physics effects. The amplitude for Higgs boson production via FCNC interactions and the theoretical expression for its signal strength are calculated. Then, by comparing this theoretical expression with the experimental value reported by LHC collaborations, we find the allowed region for those FCNC couplings that play a role in Higgs boson production

Higgs boson flavour changing neutral current gluon-gluon fusion
S L Glashow, J Iliopoulos, and L Maiani, Phys. Rev. D 2, 1285 (1970). J A Aguilar- Saavedra, Acta Phys. Polon. B 35, 2695 (2004).  J A Aguilar- Saavedra and B M Nobre, Phys. Lett. B 553, 251 (2003).  S Chatrchyan et al., [CMS Collaboration], Phys. Lett. B 716, 30 (2012). G Aad et al., [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012).  W Buchmuller and D Wyler, Nucl. Phys. B 268 (1986) 621.  B Grzadkowski, M Iskrzynski, M Misiak, and J Rosiek, J. High Energy Phys. 1010 (2010) 085.  K Hagiwara, S Ishihara, R Szalapski, D Zeppenfeld, Phys. Rev. D 48 (1993) 2182.  C N Leung, S T Love, and S Rao, Z. Phys. C 31 (1986) 433.  M B Einhorn and J Wudka, Nucl. Phys. B 876 (2013) 556.  S Willenbrock and C Zhang, Annu. Rev. Nucl. Part. Sci. 64 (2014) 83.  A Djouadi and G Moreau, Eur. Phys. J. C 73, 9 (2013) 2512.  D Carmi, A Falkowski, E Kuflik, T Volansky, and J Zupan, J. High Energy Phys. 1210 (2012) 196.  S Khatibi, M Mohammadi Najafabadi, Phys. Rev. D 90, 7 (2014) 074014.  H Khanpour, S Khatibi, and M Mohammadi Najafabadi, Phys. Lett. B 773, 462 (2017).  S Khatibi and M Mohammadi Najafabadi, Nucl. Phys. B 909 (2016) 607.  S Khatibi and M Mohammadi Najafabadi, Phys. Rev. D 90, 7 (2014) 074014.  H Khanpour, S Khatibi, M Khatiri Yanehsari, and M M Najafabadi, Phys. Lett. B 775, 25 (2017).  S Khatibi and M Mohammadi Najafabadi, Phys.Rev. D 89, 5 (2014) 054011.  J Ellis and T You, JHEP 06 (2013) 103.  J Ellis, D S Hwang, K Sakurai, and M Takeuchi, J. High Energy Phys. 04 (2014) 004. S L Glashow, J Iliopoulos, and L Maiani, Phys. Rev. D 2, 1285 (1970). J A Aguilar- Saavedra, Acta Phys. Polon. B 35, 2695 (2004).  J A Aguilar- Saavedra and B M Nobre, Phys. Lett. B 553, 251 (2003).  S Chatrchyan et al., [CMS Collaboration], Phys. Lett. B 716, 30 (2012). G Aad et al., [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012).  W Buchmuller and D Wyler, Nucl. Phys. B 268 (1986) 621.  B Grzadkowski, M Iskrzynski, M Misiak, and J Rosiek, J. High Energy Phys. 1010 (2010) 085.  K Hagiwara, S Ishihara, R Szalapski, D Zeppenfeld, Phys. Rev. D 48 (1993) 2182.  C N Leung, S T Love, and S Rao, Z. Phys. C 31 (1986) 433.  M B Einhorn and J Wudka, Nucl. Phys. B 876 (2013) 556.  S Willenbrock and C Zhang, Annu. Rev. Nucl. Part. Sci. 64 (2014) 83.  A Djouadi and G Moreau, Eur. Phys. J. C 73, 9 (2013) 2512.  D Carmi, A Falkowski, E Kuflik, T Volansky, and J Zupan, J. High Energy Phys. 1210 (2012) 196.  S Khatibi, M Mohammadi Najafabadi, Phys. Rev. D 90, 7 (2014) 074014.  H Khanpour, S Khatibi, and M Mohammadi Najafabadi, Phys. Lett. B 773, 462 (2017).  S Khatibi and M Mohammadi Najafabadi, Nucl. Phys. B 909 (2016) 607.  S Khatibi and M Mohammadi Najafabadi, Phys. Rev. D 90, 7 (2014) 074014.  H Khanpour, S Khatibi, M Khatiri Yanehsari, and M M Najafabadi, Phys. Lett. B 775, 25 (2017).  S Khatibi and M Mohammadi Najafabadi, Phys.Rev. D 89, 5 (2014) 054011.  J Ellis and T You, JHEP 06 (2013) 103.  J Ellis, D S Hwang, K Sakurai, and M Takeuchi, J. High Energy Phys. 04 (2014) 004.
Dear user; Recently we have changed our software to Sinaweb. If you had already registered with the old site, you may use the same USERNAME but you need to change your password. To do so at the first use, please choose انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان Iranian Journal of Physics Research 1682-6957 انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان 1599 10.47176/ijpr.20.1.25941 Original Article Design and simulation of the parameters affecting the ion beam characteristics from a penning ion source Design and simulation of the parameters affecting the ion beam characteristics from a penning ion source Moslemipoorkani M 1 Ebrahimibasabi E 1 Sohani M 1 Faculty of Physics and Nuclear Engineering, Shahrood University of Technology, Shahrood, Iran 21 05 2020 20 1 103 116 11 07 2018 05 02 2020 2020 https://ijpr.iut.ac.ir/article_1599.html

Today, many different kinds of ion sources have been developed. One of the most important ones is the penning or PIG ion source. Due to its simplicity of structure and longer lifetime, these ion sources are more widely considered than other ones. In this paper, design and simulation of the parameters affecting the ion beam characteristics from a penning ion source are performed using the CST software. Among the various structures of the permanent magnet around the source, the circular arrangement is found to be better for the confinement of particles inside the source. The electric potential of the anode, the cathode and the extraction electrode are found to be 15+, -500 and -3000 Volt, respectively. The decelerator and accelerator electrodes are used as ion source extraction systems. In addition, in the beam transport systems, high efficiency focusing in Einzel lens is more than that of immersion lens.

ion source extraction system electrostatic lens CST software
C L Ndlangamandla, “The design, development and fabrication of a Microwave Proton Ion Source at iThemba LABS”, M.Sc. Thesis, University of Zululand (2006). م مسلمی پورکانی، ا ابراهیمی بسابی و م سوهانی، "بررسی ترابرد باریکه یونی از یک چشمه یونی بر اساس لنزهای الکترواستاتیکی تعلیقی و منفرد" کنفرانس فیزیک ایران (1396). A V Sy, “Advanced Penning-type ion source development and passive beam focusing techniques for an associated particle imaging neutron generator with enhanced spatial resolution”, dissertation, University of California, Berkeley, (2013). Z Yang et al., Nuclear Instruments and Methods in Physics Research Section A 685 (2012) 29. B K Das and A Shyam, Review of Scientific Instruments, 79, 12 (2008) 123305. L Jidong, Y Zhen, D Pan, H Xiaozhong, and Z Kaizhi, Nuclear Science and Techniques, 24, 4 (2013) 40201. J Yu, J Yan, Z Song, Z Wang, and W Zhao, Nuclear Instruments and Methods in Physics Research Section A 531, 3 (2004) 341. W He et al., Review of scientific instruments, 77, 3 (2006) 03A330. Z Nouri, R Li, R Holt, and S Rosner, Nuclear Instruments and Methods in Physics Research Section A 614, 2 (2010) 174. T Wang et al., Review of Scientific Instruments, 83, 6 (2012) 063302. Y H Yeon et al., “Development Study of Penning Ion Source for Compact 9 MeV Cyclotron”, Proceedings of Cyclotrons 2013, Vancouver, BC, Canada. ر صلحجو و همکاران، مجلة پژوهش فیزیک ایران ۱۵، ۲، ویژة نامه، تابستان ۱۳۹. W He et al., Review of Scientific Instruments, 77, 3 (2006) 03A330. M Abdelrahman et al., Chinese physics C 36, 4 (2012) 344. B A Soliman et al., Chinese Physics C 35, 1 (2011) 83. H Liebl, “Applied Charged Particle Optics”. Springer. Chapter 1 (2008). M Abdelrahman, Ain Shams Engineering Journal, 3, 1 (2012) 71. I G Brown, “The physics and technology of ion sources”, John Wiley & Sons (2004) Chapter 5. M Rashid, “Simple analytical method to design electrostatic einzel lens”, in Proceedings of the DAE Symp. On Nucl. Phys. 56, (2011) 1132. T Schenkel, Q Ji, A Persaud, and A V Sy, “Advanced penning ion source”, (2016), Patent 9,484,176; Other: 14/018,028 United States Other: 14/018,028 LBNL, English. Available: http://www.osti.gov/scitech/servlets/purl/1330706. م مسلمی پورکانی، "طراحی و شبیه‌سازی عوامل مؤثر بر خروجی یک چشمه یونی پنینگ"، پایان نامه کارشناسی ارشد، دانشگاه صنعتی شاهرود (1396). م مسلمی پورکانی، ا ابراهیمی بسابی، م سوهانی. "بررسی چیدمان­های آهنربای دائمی در چشمة یونی پنینگ"، سومین کنفرانس ملی شتابگرهای ذرات و کاربردهای آن (1396). T Kalvas, “Development and use of computational tools for modelling negative hydrogen ion source extraction systems”, Research report/Department of Physics, University of Jyväskylä (2013). K D Basanta and Sh Anurag, Review of Scientific Instruments, 79 (2008) 123305. C L Ndlangamandla, “The design, development and fabrication of a Microwave Proton Ion Source at iThemba LABS”, M.Sc. Thesis, University of Zululand (2006). م مسلمی پورکانی، ا ابراهیمی بسابی و م سوهانی، "بررسی ترابرد باریکه یونی از یک چشمه یونی بر اساس لنزهای الکترواستاتیکی تعلیقی و منفرد" کنفرانس فیزیک ایران (1396). A V Sy, “Advanced Penning-type ion source development and passive beam focusing techniques for an associated particle imaging neutron generator with enhanced spatial resolution”, dissertation, University of California, Berkeley, (2013). Z Yang et al., Nuclear Instruments and Methods in Physics Research Section A 685 (2012) 29. B K Das and A Shyam, Review of Scientific Instruments, 79, 12 (2008) 123305. L Jidong, Y Zhen, D Pan, H Xiaozhong, and Z Kaizhi, Nuclear Science and Techniques, 24, 4 (2013) 40201. J Yu, J Yan, Z Song, Z Wang, and W Zhao, Nuclear Instruments and Methods in Physics Research Section A 531, 3 (2004) 341. W He et al., Review of scientific instruments, 77, 3 (2006) 03A330. Z Nouri, R Li, R Holt, and S Rosner, Nuclear Instruments and Methods in Physics Research Section A 614, 2 (2010) 174. T Wang et al., Review of Scientific Instruments, 83, 6 (2012) 063302. Y H Yeon et al., “Development Study of Penning Ion Source for Compact 9 MeV Cyclotron”, Proceedings of Cyclotrons 2013, Vancouver, BC, Canada. ر صلحجو و همکاران، مجلة پژوهش فیزیک ایران ۱۵، ۲، ویژة نامه، تابستان ۱۳۹. W He et al., Review of Scientific Instruments, 77, 3 (2006) 03A330. M Abdelrahman et al., Chinese physics C 36, 4 (2012) 344. B A Soliman et al., Chinese Physics C 35, 1 (2011) 83. H Liebl, “Applied Charged Particle Optics”. Springer. Chapter 1 (2008). M Abdelrahman, Ain Shams Engineering Journal, 3, 1 (2012) 71. I G Brown, “The physics and technology of ion sources”, John Wiley & Sons (2004) Chapter 5. M Rashid, “Simple analytical method to design electrostatic einzel lens”, in Proceedings of the DAE Symp. On Nucl. Phys. 56, (2011) 1132. T Schenkel, Q Ji, A Persaud, and A V Sy, “Advanced penning ion source”, (2016), Patent 9,484,176; Other: 14/018,028 United States Other: 14/018,028 LBNL, English. Available: http://www.osti.gov/scitech/servlets/purl/1330706. م مسلمی پورکانی، "طراحی و شبیه‌سازی عوامل مؤثر بر خروجی یک چشمه یونی پنینگ"، پایان نامه کارشناسی ارشد، دانشگاه صنعتی شاهرود (1396). م مسلمی پورکانی، ا ابراهیمی بسابی، م سوهانی. "بررسی چیدمان­های آهنربای دائمی در چشمة یونی پنینگ"، سومین کنفرانس ملی شتابگرهای ذرات و کاربردهای آن (1396). T Kalvas, “Development and use of computational tools for modelling negative hydrogen ion source extraction systems”, Research report/Department of Physics, University of Jyväskylä (2013). K D Basanta and Sh Anurag, Review of Scientific Instruments, 79 (2008) 123305.
Dear user; Recently we have changed our software to Sinaweb. If you had already registered with the old site, you may use the same USERNAME but you need to change your password. To do so at the first use, please choose انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان Iranian Journal of Physics Research 1682-6957 انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان 1600 10.47176/ijpr.20.1.25223 Original Article Classical phase diagram of the Rashba-Hubbard model in the strongly correlated limit on square lattice Classical phase diagram of the Rashba-Hubbard model in the strongly correlated limit on square lattice Mortazavizade Z 1 Mosadeq H 1 Zare M-H 2 Department of Physics, Faculty of Science, Shahrekord University, Shahrekord, Iran Department of Physics, Faculty of Science, Qom University of Technology, Qom, Iran 21 05 2020 20 1 117 124 13 05 2019 07 04 2020 2020 https://ijpr.iut.ac.ir/article_1600.html

In this work, we investigate the interacting electrons on a square lattice in the presence of Rashba spin-orbit coupling. We first obtain the effective spin model from the Rashba-Hubbard model in the strongly correlated limit using the second perturbation theory. The effective spin model includes isotropic Heisenberg terms, nearest- and next-nearest-neighbor interactions, as well as the anisotropic ones as Kane-Mele and Dzyaloshinski-Moriya interactions. We proceed to study the influence of Rashba spin-orbit coupling on the stability of the magnetic phases of isotropic Heisenberg using Luttinger-Tisza and variational minimization classical methods. Our classical calculations show that the anisotropic terms leads to the instability of the Neel, classical degenerate and collinear phases of the isotropic Heisenberg model on the square lattice into an incommensurate planar phase. The spiral magnetic order in the two-dimensional frustrated magnets can be disordered by considering the quantum fluctuations. In a heterostructure including a noncollinear magnet and a singlet superconductor, singlet Cooper pairs can be converted to triplet pairings due to the broken spin rotational symmetry. Therefore, we can engineer a topological superconductor using noncollinear magnet in a heterostructure system.  

spin-orbit coupling in-plane spiral order Luttinger-Tisza and variational methods
P Fazekas, “Lecture note on electron correlation and magnetism”, London, World Scientific (1999). L Balents, Nature 464 (2010) 199. P W Anderson, Science, 235 (1987) 1196. P A Lee, N Nagaosa, X -G Wen, Rev. Mod. Phys. 78 (2006) 17. H C Jiang, Z Wang, and L Balents, Nature Phys. 8 (2012) 902. AY Kitaev, Annals of Phys. 303 (2003) 2. A Y Kitaev, Annals of Phys. 321 (2006) 2. M Sasaki, K Hukushima, H Yoshino, and H Takayama, Phys. Rev. Lett. 99 (2007) 137202. Y Li and et. al., Sci. Rep. 5 (2015) 16419. Y Singh and P Gegenwart, Phys. Rev. B 82 (2010) 064412. J A Sears and et. al., Phys. Rev. B 91 (2015) 144420. A Biffin and et. al., Phys. Rev. B 90 (2014) 205116. N Reyre and et. al., Science 317 (2007) 1169. C Chang Tsuei, arXiv:cond-mat/1306.0652. J M Luttinger and L Tisza, Phys. Rev. B 70 (1946) 954. D H Lyons, and T A Kaplan, Phys. Rev. 120 (1960) 1580. B Doucot, D L Kovrizhin, and R Moessner, Annals of Phys. 399 (2018) 239. O I Utesov, AV Sizanov, and AV Syromyatnikov, Phys. Rev. B 92 (2015) 125110. R S Keizer, and et al., Nature 439 (2006) 825. T S Khaire and et. al,. Phys. Rev. Letter. 104 (2010) 137002. J W A Robinson, J Witt, and M Blamire. Sience. 329 (2010) 59. A F Volkov, A Anishchanka, and K B Efetov, Phys. Rev. B 73 (2015) 104412. C W J Beenakker, Annu. Rev. Condens. Matter Phys. 4 (2013) 113. A Greco, and A P Schnyder, Phys. Rev. Letter. 120 (2018) 177002. R Ghadimi, M Kargarian, and S A Jafari, Phys. Rev. B99 (2019) 115122. X Lu, and D Senechal, Phys. Rev. B98 (2018) 245118. A Greco, M Bejas, and A P Schnyder, arXiv:cond-mat/1910.14621. P Fazekas, “Lecture note on electron correlation and magnetism”, London, World Scientific (1999). L Balents, Nature 464 (2010) 199. P W Anderson, Science, 235 (1987) 1196. P A Lee, N Nagaosa, X -G Wen, Rev. Mod. Phys. 78 (2006) 17. H C Jiang, Z Wang, and L Balents, Nature Phys. 8 (2012) 902. AY Kitaev, Annals of Phys. 303 (2003) 2. A Y Kitaev, Annals of Phys. 321 (2006) 2. M Sasaki, K Hukushima, H Yoshino, and H Takayama, Phys. Rev. Lett. 99 (2007) 137202. Y Li and et. al., Sci. Rep. 5 (2015) 16419. Y Singh and P Gegenwart, Phys. Rev. B 82 (2010) 064412. J A Sears and et. al., Phys. Rev. B 91 (2015) 144420. A Biffin and et. al., Phys. Rev. B 90 (2014) 205116. N Reyre and et. al., Science 317 (2007) 1169. C Chang Tsuei, arXiv:cond-mat/1306.0652. J M Luttinger and L Tisza, Phys. Rev. B 70 (1946) 954. D H Lyons, and T A Kaplan, Phys. Rev. 120 (1960) 1580. B Doucot, D L Kovrizhin, and R Moessner, Annals of Phys. 399 (2018) 239. O I Utesov, AV Sizanov, and AV Syromyatnikov, Phys. Rev. B 92 (2015) 125110. R S Keizer, and et al., Nature 439 (2006) 825. T S Khaire and et. al,. Phys. Rev. Letter. 104 (2010) 137002. J W A Robinson, J Witt, and M Blamire. Sience. 329 (2010) 59. A F Volkov, A Anishchanka, and K B Efetov, Phys. Rev. B 73 (2015) 104412. C W J Beenakker, Annu. Rev. Condens. Matter Phys. 4 (2013) 113. A Greco, and A P Schnyder, Phys. Rev. Letter. 120 (2018) 177002. R Ghadimi, M Kargarian, and S A Jafari, Phys. Rev. B99 (2019) 115122. X Lu, and D Senechal, Phys. Rev. B98 (2018) 245118. A Greco, M Bejas, and A P Schnyder, arXiv:cond-mat/1910.14621.
Dear user; Recently we have changed our software to Sinaweb. If you had already registered with the old site, you may use the same USERNAME but you need to change your password. To do so at the first use, please choose انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان Iranian Journal of Physics Research 1682-6957 انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان 1601 10.47176/ijpr.20.1.38781 Original Article Resonant instability of axion cloud Resonant instability of axion cloud Namjoo M H 1 Ebadi R School of Astronomy, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran 1. School of Astronomy, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran 2. Department of Physics, Sharif University of Technology, Tehran, Iran 21 05 2020 20 1 125 137 24 08 2019 09 04 2020 2020 https://ijpr.iut.ac.ir/article_1601.html

The presence of sufficiently light particles in the fundamental Lagrangian could trigger instability in rotating black holes, the so-called superradiance instability. In particular, axion and axion-like-particles (ALPs) are good candidates to prompt such an instability. As a result, a high-density axion cloud forms around the black hole. The system of black holes and the axion cloud surrounding it is called a gravitational atom. Examining the evolution of this gravitational atom could lead to the discovery of an axion or introduce new constraints on their parametric space. The axion cloud becomes unstable under certain conditions when axion-photon interactions and axion self-interactions are considered. The nature of these instabilities is the parametric resonance. In this paper, we obtain an upper bound for the rate of this instability. The results show that for the simplest axion models, this instability occurs at a very low rate because, before the resonance becomes effective, self-interactions cause the axion cloud to collapse. But for some exotic models, the resonance rate could be large enough to introduce observable effects. In addition, we will show that the parametric resonance caused by self-interactions never happens at a significant level.

superradiance instabilities Kerr blackhole parametric resonance axion
R D Peccei and H R Quinn, Phys. Rev. Lett. 38 (1977) 1440. S Weinberg, Phys. Rev. Lett. 40 (1978) 223. F Wilczek, Phys. Rev. Lett. 40 (1978) 279. E Armengaud et al., [IAXO Collaboration], arXiv:1904.09155 [hep-ph]. B Lakic et al., [CAST Collaboration], PoS HEP 2005 (2006) 022. L F Abbott and P Sikivie, Phys. Lett. B 120, (1983) 133. [Phys. Lett. 120 B 133 (1983)]. M Dine and W Fischler, Phys. Lett. B 120 (1983) 137. [Phys. Lett. 120 B 137 (1983)]. J E Kim and G Carosi, Rev. Mod. Phys. 82 (2010) 557. J Preskill, M B Wise and F Wilczek, Phys. Lett. B 120 (1983) 127. [Phys. Lett. 120 B, 127 (1983)]. 10. L Bergstrom, New J. Phys. 11 (2009) 105006. 11. M Fairbairn, R Hogan, and D J E Marsh, Phys. Rev. D 91, 2 (2015) 023509. 12. N Du et al., [ADMX Collaboration], Phys. Rev. Lett. 120, 15 (2018) 151301 doi:10.1103/ Phys. Rev. Lett. 120. 151301 [arXiv:1804.05750 [hep-ex]]. 13. B Majorovits et al., [MADMAX interest Group], arXiv:1712.01062 [physics.ins-det]. 14. B.R Safdi, Z Sun, and A Y Chen, arXiv:1811.01020 [astro-ph.CO]. 15. T Liu, G Smoot, and Y Zhao, arXiv:1901.10981 [astro-ph.CO]. 16. R Brito, V Cardoso, and P Pani, Lect. Notes Phys. 906 (2015) 1. 17. F V Day and J I McDonald, arXiv:1904.08341 [hep-ph]. 18. V Cardoso, R Brito and J L Rosa, Phys. Rev. D 91, 12 (2015) 124026. 19. V Cardoso, P Pani, and T T Yu, Phys. Rev. D 95, 12 (2017) 124056. 20. A Arvanitaki and S Dubovsky, Phys. Rev. D 83 (2011) 044026. 21. A Arvanitaki, M Baryakhtar, and X Huang, Phys. Rev. D 91, 8 (2015) 084011. 22. R Brito, S Ghosh, E Barausse, E Berti, V Cardoso, I Dvorkin, A Klein, and P Pani, Phys. Rev. Lett. 119, 13 (2017) 131101. 23. J G Rosa and T W Kephart, Phys. Rev. Lett. 120, 23 (2018) 231102. 24. T Ikeda, R Brito, and V Cardoso, Phys. Rev. Lett. 122, 8 (2019) 081101. 25. A Hook, arXiv:1812.02669 [hep-ph]. 26. C A Baker et al., Phys. Rev. Lett. 97 (2006) 131801. 27. C Vafa and E Witten, Phys. Rev. Lett. 53 (1984) 535. 28. J E Kim, Phys. Rept. 150 (1987) 1. 29. M Srednicki, Nucl. Phys. B 260 (1985) 689. 30. D J E Marsh, Phys. Rept. 643 (2016) 1 [arXiv:1510.07633 [astro-ph.CO]] 31. J E Kim, Phys. Rev. Lett. 43 (1979) 103.   32. M A Shifman, A I Vainshtein, and V I Zakharov, Nucl. Phys. B 166 (1980) 493. 33. M Dine, W Fischler and M Srednicki, Phys. Lett. 104B 199 (1981). 34. A R Zhitnitsky, Sov. J. Nucl. Phys. 31 (1980) 260. 35. M P Hertzberg and E D Schiappacasse, JCAP 1811, 11 (2018) 004. 36. S L Detweiler, Phys. Rev. D 22 (1980) 2323. 37. V Cardoso and S Yoshida, JHEP 0507 (2005) 009. 38. S R Dolan, Phys. Rev. D 76 (2007) 084001. 39. W E East and F Pretorius, Phys. Rev. Lett. 119, 4 (2017) 041101. 40. W E East, Phys. Rev. Lett. 121, 13 (2018) 131104. 41. Y B Zel’dovich, 1971. Pis. Zh. Eksp. Teor. Fiz. 14, 270 (1971). 42. Y B Zel’dovich 1972. Zh. Eksp. Teor. Fiz. 62 (1971) 2076. 43. W H Press and S A Teukolsky, Nature 238 (1972) 211. 44. S A Teukolsky, Astrophys. J. 185 (1973) 635. 45. W H Press and S A Teukolsky, Astrophys. J. 185 (1973) 649. 46. S A Teukolsky and W H Press, Astrophys. J. 193 (1974) 443. 47. D N Page, Phys. Rev. D 13 (1976) 198. 48. M H Namjoo, A H Guth, and D I Kaiser, Phys. Rev. D 98, 1 (2018) 016011. 49. D Baumann, H S Chia, and R A Porto, Phys. Rev. D 99, 4 (2019) 044001. 50. M Yoshimura, Prog. Theor. Phys. 94 (1995) 873. 51. M Yoshimura, hep-ph/9603356. 52. I I Tkachev, Phys. Lett. B 261 (1991) 289. 53. A Riotto and I Tkachev, Phys. Lett. B 484 (2000) 177. 54. C Chicone, “Ordinary Differential Equations with Applications”. Springer-Verlag, New York (1999). 55. K. T. Hecht, Quantum Mechanics, Springer (2000). 56. M Boskovic, R Brito, V Cardoso, T Ikeda, and H Witek, Phys. Rev. D 99, 3 (2019) 035006. 57. H Yoshino and H Kodama, Prog. Theor. Phys. 128 (2012) 153. 58. H Yoshino and H Kodama, Class. Quant. Grav. 32, 21 (2015) 214001. E A Donley, N R Claussen, S L Cornish, J L Roberts, E A Cornell, and C E Wieman, Nature 412 (2001) 295. R D Peccei and H R Quinn, Phys. Rev. Lett. 38 (1977) 1440. S Weinberg, Phys. Rev. Lett. 40 (1978) 223. F Wilczek, Phys. Rev. Lett. 40 (1978) 279. E Armengaud et al., [IAXO Collaboration], arXiv:1904.09155 [hep-ph]. B Lakic et al., [CAST Collaboration], PoS HEP 2005 (2006) 022. L F Abbott and P Sikivie, Phys. Lett. B 120, (1983) 133. [Phys. Lett. 120 B 133 (1983)]. M Dine and W Fischler, Phys. Lett. B 120 (1983) 137. [Phys. Lett. 120 B 137 (1983)]. J E Kim and G Carosi, Rev. Mod. Phys. 82 (2010) 557. J Preskill, M B Wise and F Wilczek, Phys. Lett. B 120 (1983) 127. [Phys. Lett. 120 B, 127 (1983)]. 10. L Bergstrom, New J. Phys. 11 (2009) 105006. 11. M Fairbairn, R Hogan, and D J E Marsh, Phys. Rev. D 91, 2 (2015) 023509. 12. N Du et al., [ADMX Collaboration], Phys. Rev. Lett. 120, 15 (2018) 151301 doi:10.1103/ Phys. Rev. Lett. 120. 151301 [arXiv:1804.05750 [hep-ex]]. 13. B Majorovits et al., [MADMAX interest Group], arXiv:1712.01062 [physics.ins-det]. 14. B.R Safdi, Z Sun, and A Y Chen, arXiv:1811.01020 [astro-ph.CO]. 15. T Liu, G Smoot, and Y Zhao, arXiv:1901.10981 [astro-ph.CO]. 16. R Brito, V Cardoso, and P Pani, Lect. Notes Phys. 906 (2015) 1. 17. F V Day and J I McDonald, arXiv:1904.08341 [hep-ph]. 18. V Cardoso, R Brito and J L Rosa, Phys. Rev. D 91, 12 (2015) 124026. 19. V Cardoso, P Pani, and T T Yu, Phys. Rev. D 95, 12 (2017) 124056. 20. A Arvanitaki and S Dubovsky, Phys. Rev. D 83 (2011) 044026. 21. A Arvanitaki, M Baryakhtar, and X Huang, Phys. Rev. D 91, 8 (2015) 084011. 22. R Brito, S Ghosh, E Barausse, E Berti, V Cardoso, I Dvorkin, A Klein, and P Pani, Phys. Rev. Lett. 119, 13 (2017) 131101. 23. J G Rosa and T W Kephart, Phys. Rev. Lett. 120, 23 (2018) 231102. 24. T Ikeda, R Brito, and V Cardoso, Phys. Rev. Lett. 122, 8 (2019) 081101. 25. A Hook, arXiv:1812.02669 [hep-ph]. 26. C A Baker et al., Phys. Rev. Lett. 97 (2006) 131801. 27. C Vafa and E Witten, Phys. Rev. Lett. 53 (1984) 535. 28. J E Kim, Phys. Rept. 150 (1987) 1. 29. M Srednicki, Nucl. Phys. B 260 (1985) 689. 30. D J E Marsh, Phys. Rept. 643 (2016) 1 [arXiv:1510.07633 [astro-ph.CO]] 31. J E Kim, Phys. Rev. Lett. 43 (1979) 103.   32. M A Shifman, A I Vainshtein, and V I Zakharov, Nucl. Phys. B 166 (1980) 493. 33. M Dine, W Fischler and M Srednicki, Phys. Lett. 104B 199 (1981). 34. A R Zhitnitsky, Sov. J. Nucl. Phys. 31 (1980) 260. 35. M P Hertzberg and E D Schiappacasse, JCAP 1811, 11 (2018) 004. 36. S L Detweiler, Phys. Rev. D 22 (1980) 2323. 37. V Cardoso and S Yoshida, JHEP 0507 (2005) 009. 38. S R Dolan, Phys. Rev. D 76 (2007) 084001. 39. W E East and F Pretorius, Phys. Rev. Lett. 119, 4 (2017) 041101. 40. W E East, Phys. Rev. Lett. 121, 13 (2018) 131104. 41. Y B Zel’dovich, 1971. Pis. Zh. Eksp. Teor. Fiz. 14, 270 (1971). 42. Y B Zel’dovich 1972. Zh. Eksp. Teor. Fiz. 62 (1971) 2076. 43. W H Press and S A Teukolsky, Nature 238 (1972) 211. 44. S A Teukolsky, Astrophys. J. 185 (1973) 635. 45. W H Press and S A Teukolsky, Astrophys. J. 185 (1973) 649. 46. S A Teukolsky and W H Press, Astrophys. J. 193 (1974) 443. 47. D N Page, Phys. Rev. D 13 (1976) 198. 48. M H Namjoo, A H Guth, and D I Kaiser, Phys. Rev. D 98, 1 (2018) 016011. 49. D Baumann, H S Chia, and R A Porto, Phys. Rev. D 99, 4 (2019) 044001. 50. M Yoshimura, Prog. Theor. Phys. 94 (1995) 873. 51. M Yoshimura, hep-ph/9603356. 52. I I Tkachev, Phys. Lett. B 261 (1991) 289. 53. A Riotto and I Tkachev, Phys. Lett. B 484 (2000) 177. 54. C Chicone, “Ordinary Differential Equations with Applications”. Springer-Verlag, New York (1999). 55. K. T. Hecht, Quantum Mechanics, Springer (2000). 56. M Boskovic, R Brito, V Cardoso, T Ikeda, and H Witek, Phys. Rev. D 99, 3 (2019) 035006. 57. H Yoshino and H Kodama, Prog. Theor. Phys. 128 (2012) 153. 58. H Yoshino and H Kodama, Class. Quant. Grav. 32, 21 (2015) 214001. E A Donley, N R Claussen, S L Cornish, J L Roberts, E A Cornell, and C E Wieman, Nature 412 (2001) 295.
Dear user; Recently we have changed our software to Sinaweb. If you had already registered with the old site, you may use the same USERNAME but you need to change your password. To do so at the first use, please choose انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان Iranian Journal of Physics Research 1682-6957 انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان 1602 10.47176/ijpr.20.1.39001 Original Article Einstein-Yang-Mills black brane in ads space and dc color conductivity Einstein-Yang-Mills black brane in ads space and dc color conductivity Parvizi Sha 1 Sadeghi M 2 Department of Physics, School of Sciences, Tarbiat Modares University, Tehran, Iran Department of Physics, School of Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran 21 05 2020 20 1 139 145 16 09 2019 21 04 2020 2020 https://ijpr.iut.ac.ir/article_1602.html

Considering the SU(2) Yang-Mills theory in a 4-dimensional Einstein Gravity, we find a black brane solution in the AdS space. For this setup, by using the AdS/CFT holography, we find non-Abelian color conductivity of the gauge theory on the  boundary of the AdS space. Color conductivity is defined by the generalized Ohm’s law and computed by applying holography to the linear response theory.

color conductivity Holography linear response theory black brane
J M Maldacena, Int. J. Theor. Phys. 38 (1999) 1113. O Aharony, S S Gubser, J M Maldacena, H Ooguri, and Y. Oz, Phys. Rept. 323 (2000) 183. J Casalderrey-Solana, H Liu, D Mateos, K Rajagopal and U A Wiedemann, “Gauge/String Duality, Hot QCD and Heavy Ion Collisions,” arXiv:1101.0618.  D Mateos, Class. Quant. Grav. 24 (2007) S713. S Bhattacharyya, V E Hubeny, S Minwalla, and M Rangamani, JHEP 045 (2008) 0802. M Rangamani, Class. Quant. Grav. 26 (2009) 224003. J Bhattacharya, S Bhattacharyya, S Minwalla, and A Yarom, JHEP, 147 (2014) 1405. P Kovtun, J. Phys. A45 (2012) 473001. D F Litim and C Manuel, Nucl. Phys. B 562 (1999) 237.  10. S Grozdanov, A Lucas, S Sachdev, and K Schalm, Phys. Rev. Lett. 115, 22 (2015) 221601. 11. M Baggioli and O Pujolas, JHEP 040 (2017) 1701. 12. B Goutéraux, E Kiritsis and W J Li, JHEP 122 (2016) 1604. 13. K Bitaghsir Fadafan, Phys. Lett. B 762 (2016) 399. 14. B L Shepherd and E Winstanley, Phys. Rev. D 93, 6 (2016) 064064. 15. N Banerjee and S Dutta, arXiv:1112.5345 [hep-th].. 16. D T Son, Nuclear Physics B (Proc. Suppl.) 192-193 (2009) 113. 17. D T Son and A O Starinets, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95. 18. G Policastro, D T Son, and A O Starinets, Phys. Rev. Lett. 87 (2001) 081601. 19. G Policastro, D T Son, and A O Starinets, JHEP 043 (2002) 0209. 20. A Donos and J P Gauntlett, JHEP 081 (2014) 1411. 21. S A Hartnoll, C P Herzog and G T Horowitz, Phys. Rev. Lett. 101 (2008) 031601. J M Maldacena, Int. J. Theor. Phys. 38 (1999) 1113. O Aharony, S S Gubser, J M Maldacena, H Ooguri, and Y. Oz, Phys. Rept. 323 (2000) 183. J Casalderrey-Solana, H Liu, D Mateos, K Rajagopal and U A Wiedemann, “Gauge/String Duality, Hot QCD and Heavy Ion Collisions,” arXiv:1101.0618.  D Mateos, Class. Quant. Grav. 24 (2007) S713. S Bhattacharyya, V E Hubeny, S Minwalla, and M Rangamani, JHEP 045 (2008) 0802. M Rangamani, Class. Quant. Grav. 26 (2009) 224003. J Bhattacharya, S Bhattacharyya, S Minwalla, and A Yarom, JHEP, 147 (2014) 1405. P Kovtun, J. Phys. A45 (2012) 473001. D F Litim and C Manuel, Nucl. Phys. B 562 (1999) 237.  10. S Grozdanov, A Lucas, S Sachdev, and K Schalm, Phys. Rev. Lett. 115, 22 (2015) 221601. 11. M Baggioli and O Pujolas, JHEP 040 (2017) 1701. 12. B Goutéraux, E Kiritsis and W J Li, JHEP 122 (2016) 1604. 13. K Bitaghsir Fadafan, Phys. Lett. B 762 (2016) 399. 14. B L Shepherd and E Winstanley, Phys. Rev. D 93, 6 (2016) 064064. 15. N Banerjee and S Dutta, arXiv:1112.5345 [hep-th].. 16. D T Son, Nuclear Physics B (Proc. Suppl.) 192-193 (2009) 113. 17. D T Son and A O Starinets, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95. 18. G Policastro, D T Son, and A O Starinets, Phys. Rev. Lett. 87 (2001) 081601. 19. G Policastro, D T Son, and A O Starinets, JHEP 043 (2002) 0209. 20. A Donos and J P Gauntlett, JHEP 081 (2014) 1411. 21. S A Hartnoll, C P Herzog and G T Horowitz, Phys. Rev. Lett. 101 (2008) 031601.
Dear user; Recently we have changed our software to Sinaweb. If you had already registered with the old site, you may use the same USERNAME but you need to change your password. To do so at the first use, please choose انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان Iranian Journal of Physics Research 1682-6957 انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان 1603 10.47176/ijpr.20.1.21012 Original Article Competition between spin-singlet and -triplet superconducting states in the doped extended Kitaev-Heisenberg model Competition between spin-singlet and -triplet superconducting states in the doped extended Kitaev-Heisenberg model Zare Mohammad-Hossein 1 Department of Physics, Faculty of Science, Qom University of Technology, Qom, Iran 21 05 2020 20 1 147 155 25 02 2020 26 04 2020 2020 https://ijpr.iut.ac.ir/article_1603.html

Recently, the extended Kitaev-Heisenberg model has been proposed to describe spin-orbital Mott insulators, such as iridate oxides and ruthenium chloride with honeycomb lattice. Using mean-field theory, we obtain the linear gap equations to find all possible superconducting phases in terms of different exchanges and doping levels. Our calculation based  on the hole-doped model, in the presence of the off-diagonal exchange  , shows the spin-triplet states can be stable in a larger area related to the doped Kitaev-Heisenberg model with K0. However, the finite ferromagnetic off-diagonal exchange solely cannot generate the triplet pairing instabilities in competition with the antiferromagnetic-Heisenberg and -Kitaev exchanges.

spin-orbit Mott insulator unconventional superconductivity extended kitaev-heisenberg model
P Fazekas, “Lecture note on electron correlation and magnetism”. London, World Scientific (1999). L Balents, Nature. 464 (2010) 199. X-G Wen and Q Niu, Phys. Rev. B 41 (1990) 9377. X-G Wen, Adv. Phys. 44 (1995) 405. D C Tsui, H L Stormer, and A C Gossard, Phys. Rev. Lett. 48 (1982) 1559. F D M Haldane, Phys. Rev. Lett. 51 (1983) 605. M Z Hasan and C L Kane, Rev. Mod. Phys. 82 (2010) 3045. X-L Qi and S-C Zhang, Rev. Mod. Phys. 83 (2011) 1057. A Kitaev, Ann. Phys. 321 (2006) 2. W Witczak-Krempa, G Chen, Y B Kim, and L Balents, Annu. Rev. Condens. Matter Phys. 5 (2014) 57. G Cao and P Schlottmann, Rep. Prog. Phys. 81 (2018) 042502. G Jackeli and G Khaliullin, Phys. Rev. Lett. 102 (2009) 017205. M Hermanns, I Kimichi, and J Knolle, Annu. Rev. Condens. Matter Phys. 9 (2018) 17. H Takagi, T Takayama, G Jackeli, G Khaliullin, and S E Nagler, Nature Reviews Physics. 1 (2019) 264. K W Plumb, J P Clancy, L J Sandilands, V V Shankar, Y F Hu, K S Burch, H Y Kee, and Y J Kim, Phys. Rev. B 90 (2014) 041112. S M Winter, Y Li, H O Jeschke, and R Valenti, Phys. Rev. B 93 (2016) 214431. R Yadav, R Ray, M S Eldeeb, S Nishimoto, L Hozoi, and J van den Brink, Phys. Rev. Lett. 121 (2018) 197203. A Banerjee, J Yan, J Knolle, C A Bridges, M B Stone, M D Lumsden, D G Mandrus, D A Tennant, R Moessner, and S E Nagler, Science.356 (2017) 1055. P A Lee, N Nagaosa, and X-G Wen, Rev. Mod. Phys. 78 (2006) 17. K L Hur and T M Rice, Ann. Phys. 324 (2009) 1452. A M Black-Schaffer and S Doniach, Phys. Rev. B 75 (2007) 134512. T Hyart, A R Wright, G Khaliullin, and B Rosenow, Phys. Rev. B85 (2012) 140510. D D Scherer, M M Scherer, G Khaliullin, C Honerkamp, and B Rosenow, Phys. Rev. B 90 (2014) 045135. Y-Z You, I Kimchi, and A Vishwanath, Phys. Rev. B 86 (2012) 085145. J Schmidt, D D Scherer, and A M Black-Schaffer, Phys. Rev. B 97 (2018) 014504. M H Zare, M Biderang, and A Akbari, Phys. Rev. B 96 (2017) 205156. G Baskaran, Z Zou, and P W Anderson, Solid State Commun. 63 (1987) 973. G Kotliar, Phys. Rev. B 37 (1988) 3664. M Sigrist and K Ueda, Rev. Mod. Phys. 63 (1991) 239. V M Katukuri, S Nishimoto, V Yushankhai, A Stoyanova, H Kandpal, S Choi, R Coldea, I Rousochatzakis, L Hozoi, and J van den Brink, New J. Phys. 16 (2014) 013056. R Yadav, N A Bogdanov, V M Katukuri, S Nishimoto, J van den Brink, and L Hozoi, Sci. Rep. 6 (2016) 37925. H-S Kim and H-Y Kee, Phys. Rev. B 93 (2016) 155143. A F Volkov, A Anishchanka and K B Efetov, Phys. Rev. B 73 (2015) 104412. C W J Beenakker, Annu. Rev. Condens. Matter Phys. 4 (2013) 113. P Fazekas, “Lecture note on electron correlation and magnetism”. London, World Scientific (1999). L Balents, Nature. 464 (2010) 199. X-G Wen and Q Niu, Phys. Rev. B 41 (1990) 9377. X-G Wen, Adv. Phys. 44 (1995) 405. D C Tsui, H L Stormer, and A C Gossard, Phys. Rev. Lett. 48 (1982) 1559. F D M Haldane, Phys. Rev. Lett. 51 (1983) 605. M Z Hasan and C L Kane, Rev. Mod. Phys. 82 (2010) 3045. X-L Qi and S-C Zhang, Rev. Mod. Phys. 83 (2011) 1057. A Kitaev, Ann. Phys. 321 (2006) 2. W Witczak-Krempa, G Chen, Y B Kim, and L Balents, Annu. Rev. Condens. Matter Phys. 5 (2014) 57. G Cao and P Schlottmann, Rep. Prog. Phys. 81 (2018) 042502. G Jackeli and G Khaliullin, Phys. Rev. Lett. 102 (2009) 017205. M Hermanns, I Kimichi, and J Knolle, Annu. Rev. Condens. Matter Phys. 9 (2018) 17. H Takagi, T Takayama, G Jackeli, G Khaliullin, and S E Nagler, Nature Reviews Physics. 1 (2019) 264. K W Plumb, J P Clancy, L J Sandilands, V V Shankar, Y F Hu, K S Burch, H Y Kee, and Y J Kim, Phys. Rev. B 90 (2014) 041112. S M Winter, Y Li, H O Jeschke, and R Valenti, Phys. Rev. B 93 (2016) 214431. R Yadav, R Ray, M S Eldeeb, S Nishimoto, L Hozoi, and J van den Brink, Phys. Rev. Lett. 121 (2018) 197203. A Banerjee, J Yan, J Knolle, C A Bridges, M B Stone, M D Lumsden, D G Mandrus, D A Tennant, R Moessner, and S E Nagler, Science.356 (2017) 1055. P A Lee, N Nagaosa, and X-G Wen, Rev. Mod. Phys. 78 (2006) 17. K L Hur and T M Rice, Ann. Phys. 324 (2009) 1452. A M Black-Schaffer and S Doniach, Phys. Rev. B 75 (2007) 134512. T Hyart, A R Wright, G Khaliullin, and B Rosenow, Phys. Rev. B85 (2012) 140510. D D Scherer, M M Scherer, G Khaliullin, C Honerkamp, and B Rosenow, Phys. Rev. B 90 (2014) 045135. Y-Z You, I Kimchi, and A Vishwanath, Phys. Rev. B 86 (2012) 085145. J Schmidt, D D Scherer, and A M Black-Schaffer, Phys. Rev. B 97 (2018) 014504. M H Zare, M Biderang, and A Akbari, Phys. Rev. B 96 (2017) 205156. G Baskaran, Z Zou, and P W Anderson, Solid State Commun. 63 (1987) 973. G Kotliar, Phys. Rev. B 37 (1988) 3664. M Sigrist and K Ueda, Rev. Mod. Phys. 63 (1991) 239. V M Katukuri, S Nishimoto, V Yushankhai, A Stoyanova, H Kandpal, S Choi, R Coldea, I Rousochatzakis, L Hozoi, and J van den Brink, New J. Phys. 16 (2014) 013056. R Yadav, N A Bogdanov, V M Katukuri, S Nishimoto, J van den Brink, and L Hozoi, Sci. Rep. 6 (2016) 37925. H-S Kim and H-Y Kee, Phys. Rev. B 93 (2016) 155143. A F Volkov, A Anishchanka and K B Efetov, Phys. Rev. B 73 (2015) 104412. C W J Beenakker, Annu. Rev. Condens. Matter Phys. 4 (2013) 113.
Dear user; Recently we have changed our software to Sinaweb. If you had already registered with the old site, you may use the same USERNAME but you need to change your password. To do so at the first use, please choose انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان Iranian Journal of Physics Research 1682-6957 انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان 1604 10.47176/ijpr.20.1.39821 Original Article Pumping electrolyte fluid using focal light and electric field in rectangular microchannel Pumping electrolyte fluid using focal light and electric field in rectangular microchannel Kiani-Iranpour R 1 Rasuli S N Department of Physics, University of Guilan, Guilan, Iran 1. Department of Physics, University of Guilan, Guilan, Iran 2. School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran 21 05 2020 20 1 157 176 08 12 2019 05 04 2020 2020 https://ijpr.iut.ac.ir/article_1604.html

The absorption of the focused light inside aqueous electrolyte locally heats it; thus, it creates a temperature field and temperature gradient around the light-absorbing region. Due to a phenomenon known as Soret effect, positive and negative ions move in the presence of the temperature field toward the warmer or cooler region. However, this tendency and its corresponding motion are not the same for two types of ions; therefore, it ends up with a locally charged region. This means creating a pure electric charge suspended in the light absorption area. Applying an external electric field to the fluid then exerts a force to the net charge and its surrounding fluid, resulting in the fluid’s motion. We investigate this problem for an electrolyte fluid enclosed between two parallel transparent dielectric blades closely located to each other. Based on analytic and finite element methods, we calculate the temperature field created by the Gaussian beam inside and outside the electrolyte. We then obtain its induced electric potential and charge density. Finally, we calculate the fluid velocity field and the total induced current. The analytical and numerical results well verify each other.  

microfluidics micropump Soret effect
B D Iverson and S V Garimella, Microfluid. and Nanofluid. 5 (2008) 145. G M Whitesides, Nature, 442 (2006) 368. D Mark et al., Chem. Soc. Rev. 39 (2010) 1153. E Brouzes et al., PNAS, 106 (34) (2009) 14195. P Yager et al., Nature, 442 (2006) 412. S J Kim et al., Nature Nanotech. 5 (2010) 297. س سیدریحانی، ع آزادبخت، ا میرزاحسین، م متقیان، و م بابایی، مجلۀ پژوهش فیزیک ایران، 19، 1 (1398) 101. 7. S N Seyed Reihani, A Azadbakht, E Mirzahossein, M Mottaghian, and M Babaei, Iranian J. Phys. Res. 19, 1 (2019) 101. W Sparreboom et al., Nature Nanotech. 4 (2009) 713. L Bocquet and E Charlaix, Chem. Soc. Rev. 39 (2010) 1073. E M Purcell, Am. J. Phys. 45 (1977) 3. E Lauga and T R Powers, Rep. Prog. Phys. 72 (2009) 096601. E Lauga, M P Brenner, and H A Stone, “Microfluidics: The no-slip boundary condition”, Handbook of Experimental Fluid Dynamics (2007) 1219. H Bruus, “Theoretical Microfluidics”, Oxford University Press, (2008). R B Schoch et al., Rev. Mod. Phys. 80 (2008) 839. H Daiguji, Chem. Soc. Rev. 39 (2010) 901. H A Stone, A D Stroock, and A Ajdari, Ann. Rev. Fluid Mech. 36 (2004) 381. T M Squires and S R Quake, Rev. Mod. Phys. 77 (2005) 977. J Melin and S R Quake, Ann. Rev. Biophys. Biomol. Struct. 36 (2007) 213. A Ajdari, Phys. Rev. E 61 (2000) R45. A Ramos et al., J. App. Phys. 97 (2005) 084906. A Castellanos et al., J. Phys. D: App. Phys. 36 (2003) 2584. F M Weinert et al., Phys. Rev. Let. 100 (2008) 164501. F M Weinert and D Braun, J. App. Phys. 104 (2008) 104701. F M Weinert et al., Phys. Chem. Chem. Phys. 13 (2011) 9918. R Kiani-Iranpour and S N Rasuli, arXiv: 1405.1602 (Submitted on 7 May 2014). R Kiani-Iranpour and S N Rasuli, under preparation. J R Blake, Math. Proc. Camb. Phil. Soc. 70 (1971) 303. N Liron and S J Mochon, Eng. Math. 10 (1976) 287. N Liron and J R Blake, J. Fluid Mech. 107 (1981) 109. C Pozrikidis, “Boundary integral and singularity methods for linearized viscous flow”, Cambridge University Press (1992). J Jamaati, H Niazmand, and M Renksizbulut, Int. J. Therm. Sci. 49 (2010) 1165. A Majee and A Würger, Soft Matter 9 (2013) 2145. S N Rasuli and R Golestanian, Phys. Rev. Let. 101 (2008) 108301. A Würger, Phys. Rev. Let. 101 (2008) 108302. G B Arfken and H J Weber, “Mathematical Methods for Physicists”,Academic Press (2005). W Russel, D Saville, and W Schowalter, “Colloidal Dispersions”, Cambridge University Press, Cambridge, U.K. (1988). S R de Groot and P Mazur, “Non-Equilibrium Thermodynamics”, Dover, New York (1984). A Majee and A Würger, Phys. Rev. E 83 (2011) 061403. J Happel and H Brenner, “Low Reynolds Number Hydrodynamics”,Kluwer, The Hague (1983). C Pozrikidis, “Fluid Dynamics Theory, Computation, and Numerical Simulation”, Springer Science + Business Media LLC (2017). R L Herman, “An Introduction to Fourier and Complex Analysis with Applications to the Spectral Analysis of Signals”, published by R L Herman (2016). W A Ebert and E M Sparrow, J. Basic Eng., 87(4) (1965) 1018. R Kiani-Iranpour and S N Rasuli, unpublished. B D Iverson and S V Garimella, Microfluid. and Nanofluid. 5 (2008) 145. G M Whitesides, Nature, 442 (2006) 368. D Mark et al., Chem. Soc. Rev. 39 (2010) 1153. E Brouzes et al., PNAS, 106 (34) (2009) 14195. P Yager et al., Nature, 442 (2006) 412. S J Kim et al., Nature Nanotech. 5 (2010) 297. س سیدریحانی، ع آزادبخت، ا میرزاحسین، م متقیان، و م بابایی، مجلۀ پژوهش فیزیک ایران، 19، 1 (1398) 101. 7. S N Seyed Reihani, A Azadbakht, E Mirzahossein, M Mottaghian, and M Babaei, Iranian J. Phys. Res. 19, 1 (2019) 101. W Sparreboom et al., Nature Nanotech. 4 (2009) 713. L Bocquet and E Charlaix, Chem. Soc. Rev. 39 (2010) 1073. E M Purcell, Am. J. Phys. 45 (1977) 3. E Lauga and T R Powers, Rep. Prog. Phys. 72 (2009) 096601. E Lauga, M P Brenner, and H A Stone, “Microfluidics: The no-slip boundary condition”, Handbook of Experimental Fluid Dynamics (2007) 1219. H Bruus, “Theoretical Microfluidics”, Oxford University Press, (2008). R B Schoch et al., Rev. Mod. Phys. 80 (2008) 839. H Daiguji, Chem. Soc. Rev. 39 (2010) 901. H A Stone, A D Stroock, and A Ajdari, Ann. Rev. Fluid Mech. 36 (2004) 381. T M Squires and S R Quake, Rev. Mod. Phys. 77 (2005) 977. J Melin and S R Quake, Ann. Rev. Biophys. Biomol. Struct. 36 (2007) 213. A Ajdari, Phys. Rev. E 61 (2000) R45. A Ramos et al., J. App. Phys. 97 (2005) 084906. A Castellanos et al., J. Phys. D: App. Phys. 36 (2003) 2584. F M Weinert et al., Phys. Rev. Let. 100 (2008) 164501. F M Weinert and D Braun, J. App. Phys. 104 (2008) 104701. F M Weinert et al., Phys. Chem. Chem. Phys. 13 (2011) 9918. R Kiani-Iranpour and S N Rasuli, arXiv: 1405.1602 (Submitted on 7 May 2014). R Kiani-Iranpour and S N Rasuli, under preparation. J R Blake, Math. Proc. Camb. Phil. Soc. 70 (1971) 303. N Liron and S J Mochon, Eng. Math. 10 (1976) 287. N Liron and J R Blake, J. Fluid Mech. 107 (1981) 109. C Pozrikidis, “Boundary integral and singularity methods for linearized viscous flow”, Cambridge University Press (1992). J Jamaati, H Niazmand, and M Renksizbulut, Int. J. Therm. Sci. 49 (2010) 1165. A Majee and A Würger, Soft Matter 9 (2013) 2145. S N Rasuli and R Golestanian, Phys. Rev. Let. 101 (2008) 108301. A Würger, Phys. Rev. Let. 101 (2008) 108302. G B Arfken and H J Weber, “Mathematical Methods for Physicists”,Academic Press (2005). W Russel, D Saville, and W Schowalter, “Colloidal Dispersions”, Cambridge University Press, Cambridge, U.K. (1988). S R de Groot and P Mazur, “Non-Equilibrium Thermodynamics”, Dover, New York (1984). A Majee and A Würger, Phys. Rev. E 83 (2011) 061403. J Happel and H Brenner, “Low Reynolds Number Hydrodynamics”,Kluwer, The Hague (1983). C Pozrikidis, “Fluid Dynamics Theory, Computation, and Numerical Simulation”, Springer Science + Business Media LLC (2017). R L Herman, “An Introduction to Fourier and Complex Analysis with Applications to the Spectral Analysis of Signals”, published by R L Herman (2016). W A Ebert and E M Sparrow, J. Basic Eng., 87(4) (1965) 1018. R Kiani-Iranpour and S N Rasuli, unpublished.
Dear user; Recently we have changed our software to Sinaweb. If you had already registered with the old site, you may use the same USERNAME but you need to change your password. To do so at the first use, please choose انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان Iranian Journal of Physics Research 1682-6957 انجمن فیزیک ایران ناشر: دانشگاه صنعتی اصفهان 1605 10.47176/ijpr.20.1.20263 Original Article The effect of operating parameters on the dead time of Geiger-Muller counter using non-paralyzing model by two-source method The effect of operating parameters on the dead time of Geiger-Muller counter using non-paralyzing model by two-source method Rahimi N 1 Tajik M 1 School of Physics, Damghan University, Damghan, Iran 21 05 2020 20 1 177 185 18 01 2019 13 05 2020 2020 https://ijpr.iut.ac.ir/article_1605.html

This paper has investigated the effect of operating parameters such as ambient temperature and applied voltage on the dead time of a thin-walled Geiger-Muller (GM) counter using non-paralyzing model and two-source method. Experimental studies have been conducted using 137Cs and 90Sr sources at voltages ranging from 600 to 800 V and in the temperature range of -27-70 0C. The results of the investigations for applied voltage indicate that the dead time behavior in terms of voltage can be classified into three distinct regions. In region I (low voltages), the dead time decreases with increasing voltage, in region II (voltage close to the operating voltage), the dead time is almost constant. The dead time in region III (voltages above 740V) increases slowly and linearly with increasing voltage. The variation in the dead time in the region I is greater than region III. Region II with the minimum dead time and minimum variation of the operating voltage is the best operating region. Studies show that the variation of dead time and the range of the dead time plateau (District II) for 137Cs and 90Sr sources is different. The dead time was using 137Cs source was obtained between 58 and 78 ms and using 90Sr source between 79 and 130 ms. In general, the variations of dead time versus voltage for each of Regions I, II and III for 90Sr source are lower than 137Cs source. Experimental results also show that the dead time increases with increasing temperature.

Geiger-Muller counter deadtime temperature dependence applied voltage
G F Knoll, “Radiation Detection and Measurements”, Fourth Edition, John Wiley and Sons, USA (2010). H G Stever, Phys. Rev. 6 (1942) 52. J W Muller, Nucl. Instrum. Methods 112 (1973) 47. W Feller, “On Probability Problems in the Theory of Counters”. In: R. Courant Anniversary Volume. Studies and Essays. Interscience, New York (1948) 105. A Patil, Missouri University of Science & Technology, Rolla, PhD Thesis(2010). S H Lee, R P Gardner, Appl. Radiat. Isotopes 53 (2000) 731. A Patil, S Usman, Nucl. Technol. 165 (2009) 249. A Peeva, D Guleva, Nucl. Instrum. Methods 44 (1966) 314. S P Puri, Ind. J. Phys. 22 (1956) 214. 10. T Akyurek, M Yousaf, X Liu, S Usman, Radiation Meaosurements73 (2015) 26. 11. S J Thomson and J L Wishlade, J. Sci. Instrum. 39 (1962) 570. 12. LND Inc. Oceanside, New York, USA http://www.lndinc.com/products/category/ (accessed 18.12.14). G F Knoll, “Radiation Detection and Measurements”, Fourth Edition, John Wiley and Sons, USA (2010). H G Stever, Phys. Rev. 6 (1942) 52. J W Muller, Nucl. Instrum. Methods 112 (1973) 47. W Feller, “On Probability Problems in the Theory of Counters”. In: R. Courant Anniversary Volume. Studies and Essays. Interscience, New York (1948) 105. A Patil, Missouri University of Science & Technology, Rolla, PhD Thesis(2010). S H Lee, R P Gardner, Appl. Radiat. Isotopes 53 (2000) 731. A Patil, S Usman, Nucl. Technol. 165 (2009) 249. A Peeva, D Guleva, Nucl. Instrum. Methods 44 (1966) 314. S P Puri, Ind. J. Phys. 22 (1956) 214. 10. T Akyurek, M Yousaf, X Liu, S Usman, Radiation Meaosurements73 (2015) 26. 11. S J Thomson and J L Wishlade, J. Sci. Instrum. 39 (1962) 570. 12. LND Inc. Oceanside, New York, USA http://www.lndinc.com/products/category/ (accessed 18.12.14).