Investigation of $\bar{K}N - \pi\Sigma$ interaction effects on K^-pp system using Faddeev method

J Esmaili¹, ², ³, S Z Kalantari¹, S Maeda⁴, Y Akaishi², ⁵ and T Yamazaki², ⁶

1. Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
2. Advanced Meson Lab., RIKEN, Nishina Center, Wako, Saitama 351-0198, Japan
3. Department of Physics, Faculty of Science, Shahrekord University, P. O. Box 115, Shahrekord, Iran
4. Department of Physics, University of Hokkaido, Sapporo, Japan
5. College of Science and Technology, Nihon University, Funabashi, Chiba 274-8501, Japan
6. Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
E-mail: jesmaili@ph.iut.ac.ir

(Received 9 May 2012 ; in final form 23 June 2012)

Abstract
Coupled-channels Faddeev-Yacubovsky as well as AGS calculations of three-body, $J^\pi = 0^-$ $\bar{K}(NN)_{I=1}(I = \frac{1}{2})$ quasibound state in the $\bar{K}NN - \pi\Sigma N$ system were performed in momentum space and the dependence of the three-body energy on the two-body $\bar{K}N - \pi\Sigma$ interaction was investigated.

Keywords: $\Lambda(1405)$, kaonic nuclei, deeply bound kaonic nuclear states, K^-pp, Kapur-Peierls

For full article, refer to the Persian section