شیب سازی نسبتی معادله ولاسوف برای انقباض بالاسم به خلاء

مونا میری‌دی، رضا شکوهی و حسین عباسی

1. دانشکده فیزیک دانشگاه شهید بهشتی تهران
2. دانشکده علوم پایه دانشگاه شهید کریمی

پست الکترونیک: moridi_m@aut.ac.ir

چکیده

شیب سازی نسبتی معادله ولاسوف برای انقباض بالاسم به خلاء، به عنوان یکی از منظوره‌های کلیدی در فیزیک اتمی و نانوهکم‌شناسی به‌شمار می‌رود. این اثر از دیدگاه شیمیایی برای بزرگ‌سازی و نگهداری سرعت اجرای واکنش‌های شیمیایی، در تولید و تکمیل مواد کره‌ای و صنعت‌های نانو استفاده می‌شود.

واژه‌های کلیدی: معادله ولاسوف، انقباض بالاسم، شیب سازی

1. مقدمه

مسائل انقباض بالاسم به‌طور عمومی به‌خلاء که در چند دهه اخیر مورد توجه قرار گرفته است در جو و هوا مختلف فیزیک، از جمله اختیاراتیک [1] و 2. و در آزمایش‌های برهم‌کنش پالس‌های لیزری شدید با هدف‌های جامد با گازی مشاهده شده است [3-11]. یک ساز و کار در این آزمایش‌ها این است که وقتی یک لیزر پر قدرت به هدف می‌تابد یک اثر انتوئوی براندی در بافت هدف شکل می‌گیرد. این تغییرات جدایی بار باعث به وجود آمدن میدان الکتریکی قوی می‌شود که متغیر میدان الکتریکی قوی به‌طور خودکار شد خواهد شد [12-15]. الکترونی های برآورده نه تنها در شنای دانه‌ای‌ها اثر می‌کنند بلکه برای ایجاد جریان سریع در آن‌ها

همگونی به‌روش ماده مهم می‌باشد [16 و 17].

اولین کار جدی در زمینه انقباض بالاسم به خلاء توسط گروه و همکاران انجام شد [18]. آنها از یک مدل بالاسمی نیمه- به‌عثای برای مطالعه انقباض بالاسم استفاده کردند و یک حل جدید - مشابه یک حل انقباض تحت تغییر شیمیایی ارائه دادند. در مدل نیمه- به‌عثای فرض می‌شود بالاسم در زمان اولیه (قبل از شروع انقباض) نیم فضای x را بر کره و نیم فضای دیگر خلاء باشد. در این مدل، الکترون‌ها در طول فرآیند انقباض نتیجه در نظر گرفته می‌شود. حل خود- مشابه یک حل تقریبی از مسئله انقباض بالاسم به خلاء است و حل

1. Fast ignition

2. Inertial Confinement Fusion (ICF)

3. Semi-infinite

4. Self-similar
هم حركت هیدرودینامیکی و هم حركت‌های حرارتی ذرات

در مدل‌های انسیمب‌های پلاسمای با نور، باید مطابقت خود را در محدوده نسبی اندازه زمان و از مدل‌های دینامیک انسیمب‌های تابیت تاکنون مطالعه و در جهت بررسی

فرقان اندک‌تنوشی برای پلاسمای این در این زمان انجام داده است [21 و 20] و ما به منظور بردن به تأثیر دمایی انسیمب و ایجاد به

الکترون‌ها بر انسیمب‌های محدود به خلاء به مطالعه این

فرقان با در نظر گرفتن اثرات جدایی بار بردرختیم.

در مقاله حاضر، انسیمب‌های انسیمب‌های یپرخورد به خلاء

باید در نظر گرفت. اثرات نسبی و ایجاد به دمای الکترون‌ها

برای یک مدل الکترون‌ها با مدل الکترون‌ها با

معادله شناسی نسبی مطالعه می‌شود. نتایج توزیع اولیه

الکترون‌ها ماکسولی شده است

باید یک سری از و از مدل‌های تابیتی کنند.

ساختار مقاله به صورت زیر است: در بخش 2 مدل فیزیکی

انسبت، معادلات پایه، شرایط اولیه و مزایا توصیف شده‌اند. در

بخش 3 شیب سایزی و نتایج به دست آمد از شیب‌سایزی ارائه شده‌اند. نتایج گیری در بخش 4 داده است.

2. مدل فیزیکی انسیمب

2.1 معادلات پایه

به منظور بررسی اثرات نسبی در انسیمب‌های پلاسمایی یپرخورد

به خلاء الکترون‌های در نظر گرفته‌ام که یک بار بر

با جرم m_i و e الکترون با جرم m_e و e نشکل

شده است. فرض شده است در زمان $t = 0$ دامی یون‌ها در

مقایسه با الکترون‌ها به تاکسی به T_e (پیوسته)، به طوری که

توان یون‌ها را سردر در نظر گرفت. در مدل فیزیکی که برای

بررسی انسیمب‌های الکترون‌ها در نظر گرفته‌ام از معادله‌ای

این دینامیک الکترون‌ها استفاده کمیم. از آنجا که اثرات نسبی

الکترون‌ها مانند نشکل از معادله‌ای که در یک

بعد به صورت زیر بیان شده است

\[\frac{df}{dt} + \frac{p}{\rho_m} \frac{df}{dx} + e \frac{df}{dx} = 0. \]

\[f = f(x, p, t) \]

که کمک آن فقط با در نظر گرفتن اثرات جدایی بار به صورت

عندی امکان‌پذیر است. با استفاده از معادله‌ای اولورس به جای

تقربش‌بسته‌نگی، در دینی انسیمب‌های جهانی، شکل می‌گیرد

که یون‌ها در آن تا سرعت‌های توزیع‌سرعت حرارتی

الکترون‌ها شتاب می‌گیرند [19 و 20]. در مدل

به‌نهایت، پیواسته نامحدود است و یون‌هایی که در

جهت یون قرار دارند می‌توانند به صورت نامحدود شتاب

بگیرند. ریزک واقعی برای بررسی مدل انسیمب‌های

علاوه از طریق پلاسمای محدود است [21-23]. در پلاسمای

محدود، انسیمب‌های برای سندرم با پلاسمای الکترون‌های

پلاسمای هم‌ارز است. به طوری که ارزیگی گرامی آن‌ها به انرژی جنبشی

پرداخت می‌شود. از این طریق ارزیگی لمب، برای انسیمب

پلاسمای با خلاء تأمین شده. در این مدل به دلیل محدود

بودن الکترون‌های یون‌ها لنز باتریت است

به‌نوعی مدل‌های مطرح برای بررسی انسیمب‌های پلاسمای

بخل‌ها غم‌پلی مدل‌های هیدرودینامیکی برده است. در این مدل‌ها

الکترون‌ها و یون‌ها به شکل شاره در نظر گرفته می‌شوند

[24-27] برخی از این اثرات دمای نسبی در قابل گنبد

مدل‌های امکان‌پذیر به‌نوعی و لازم است دینامیک جنبشی ذرات

را در نظر بگیریم. در نظرگیری جنبشی دینامیک تابیت توزیع ذرات

بسبب مهم می‌باشد. برای انسیمب‌های پلاسمای با خلاء

قابل‌توجه است، انشیمب‌های الکترونی که در

شکل $K_B T_e - m_e c^2$، (5) و [11] همچنین در فراانیام یک می‌توانند در دمای

درد معمولاً در حد دمای‌های نسبی بالا می‌باشد. این صورت

\[1. \ Ion \ front \]

\[2. \ Finite \ plasma \]
آنجا که این مجموعه یک سلسله مقدار اولیه و مزیتی را توصیف می‌کند ابتدا باید شرایط اولیه و مزیتی مناسب با مسئله را تعریف کرد.

2.2 شرایط اولیه و مزیت
فرض کنید یون‌ها در ابتدا در برابر پلاسمای شرایط مسکون باشند. در مسئله انبساط مقطع اولیه‌ای که برای چگالی‌های یون و الکترون در نظر گرفته می‌شود مقطعی جایگزینی است (برای مثال فرض مورد استفاده در فرآیند هیموتی مهنتهایی به روش مانند). همچنین برای شیمی‌سازی حالت واقعی در این انبساط پلاسمای مقطع جایگزینی می‌باشد و برای به‌داشتمانی‌های محور در مزرعه پلاسمای خالص باشد. بنابراین از مقطعی مطلوب باید با رابطه (6) به عنوان چگالی‌های اولیه یون و الکترون استفاده کرده‌ایم (شکل 1):

\[n_i(x) = n_i(x^0) = n_i \frac{\gamma}{\pi} \arctan \left(\frac{|x| - L/\gamma}{d} \right) \exp \left(-\frac{|x| - L/\gamma}{d} \right) \]

چگالی یون‌ها در پلاسمای مختلط نسبت (وسط پلاسمای محیط) \(n_i \) محاسبه می‌شود. \(L \) و \(x^0 \) پهنه مقطع و پارامتری است که با استفاده از آن می‌توان شیب مقطع چگالی در مزرعه پلاسمای و خلاء را تعیین کرد. هنگامی که قدر \(d \) کوکبرکش به شیب مقطع تندر توییت یک چگالی سطحی مطلوب با طریقه که جدول 10 را به کار می‌برد و می‌شود به طوری که حالت \(d = 0 \) با یک چگالی سطحی مطلوب است. در اینجا مقدار تابع \(K_B \) مطلب دنبال کردن و \(\gamma \) شیب چگالی الکترون‌ها در پلاسمای مختلط نشده است.

در دمای‌های نسبی از تابع توزیع تعدادی جاناتر - سیگنا (مکسکولی نسبی) استفاده می‌شود که در یک بعد به صورت زیر تعریف می‌شود:

\[f(\mu) = \frac{n_\mu}{v m e K_\mu(\mu)} \exp\left(-\mu \gamma \right) \]

که \(\mu = m e^2 / K_B T_e \) پارامتر دما و \(K_\mu(\mu) \) نتایج بسیل تعمیم \(K_B(\mu) \) است. جامعه

\[\gamma = \sqrt{1 + \frac{p^2}{m_i^2 \epsilon^2}} \]

که در آن \(\epsilon \) سرعت نور در خلاء است. تانسیل الکترووستاتیکی است که در مدل‌های پلاسمای صدق می‌کند.

\[\frac{\partial \phi}{\partial x} = 4 \pi \epsilon (n_e - n_i) \]

که در آن \(n_i \) و چگالی الکترون است و از

\[n_e = \int f(x, p, t) \, dp \]

چون یون‌ها سر در نظر گرفته شده‌اند، استفاده از معادلات شارهای برای بررسی تحویل آنها انتخاب مناسبی است. بنابراین خواهیم داشت:

\[\frac{\partial n_i}{\partial t} + \frac{\partial}{\partial x} (n_i v_i) = 0 \]

\[\frac{\partial v_i}{\partial t} + v_i \frac{\partial}{\partial x} (n_i v_i) = - \frac{e}{m_i} \frac{\partial \phi}{\partial x} \]

معادلات (4) و (5) به ترتیب معادلات پوستوگی و حركة در هیدرودینامیک معمولی هستند که در آنها یک سرعت شارهای یون‌ها است. معادلات (1) و (5) مجموعه‌ای بسیاری را تشکیل می‌دهند که در ادامه به شیمی‌سازی آن پرداخته شده است. از

\[\text{Jüttner-Synge} \]
3. شیب‌سازی

برای شیب‌سازی معادلات (1) (7) (5) (6) (4) (3) (2) (1) می‌تواند به صورت تابع یک در حالت (5) به تابع توزیع مکانیکی تبدیل گردد.

\[\frac{K_B T_0 \approx m_e c^2}{\text{یافته است}} \]

به تابع توزیع مکانیکی تبدیل گردد.

\[\phi(x \to \pm \infty, t) = 0, \quad \partial \phi/\partial x(x \to \pm \infty, t) = 0. \]

است.

\[\text{Characteristics method} \]

\[\text{Leap frog method} \]
شکل ۳. چگالی بیونه بر حسب موقتی در زمان \(\omega_{\text{p}} t = 8\).

شکل ۲. میدان الکتریکی در محل جهه بیونه به صورت تابعی از زمان.

بررسی شکل ۳ نشان می‌دهد که در زمان \(\omega_{\text{p}} t = 8\) میزان چگالی الکترون‌ها به صورت تابعی از زمان تغییر می‌کند. در حالت نسبیتی و غیرنسبیتی در شکل ۲ نمایش داده شده است. مطالعه بیانگر این تغییرات در حالت نسبیتی بیون‌ها از سرعت برگرکی نسبت به حالت غیرنسبیتی شتاب می‌گیرند. شکل ۵ نشان می‌دهد که در زمان \(\omega_{\text{p}} t = 8\) میزان چگالی الکترون‌ها به صورت تابعی از زمان تغییر می‌کند. در حالت نسبیتی و غیرنسبیتی میدان الکتریکی در حاله نسبیتی قوی‌تر از میدان در حالت غیرنسبیتی است. بنابراین انساز الکترودها در حالت نسبیتی به سرعت افزایش می‌یابد. میدان الکتریکی نشان می‌دهد که در زمان \(\omega_{\text{p}} t = 8\) میزان چگالی الکترون‌ها به صورت تابعی از زمان تغییر می‌کند. در نتیجه میدان الکتریکی به سرعت افزایش می‌یابد.
شکل 8. توزیع توده الکترون‌ها پیاده‌سازی شده در زمان $t = 6$. \(n_{pe} \)

شکل 9. توزیع توده الکترون‌ها پیاده‌سازی شده در زمان $t = 8$. \(n_{pe} \)

نتایج گیری

در این مطالعه، با استفاده از یکی از الکترون‌پیمایی و یک

بعده، تأثیر دمای نسبی و استحکام به الکترون‌ها در انباص

بی‌وسعتی بی‌بی‌گرا به خلاء بررسی شد. در این مدل الکترون‌ها

از معادله اثربخش نسبی تغییر می‌کند و یون‌های سردو با

معدلات شارای توصیف می‌شوند. با انتخاب تابع توزیع اولیه

الکترونی مناسب برای دماهای نسبی در حالت تعادل، توزیع

جاندار-سیگنال مشاهده شد که فشار اولیه الکترون‌ها با اندک

زیاد است که یک میدان قوی شکل می‌گیرد به طوری که انباص

پلاسمای سریع تر از میدان و سرنوشت الکترون‌ها با اکثری

شثار می‌گیرد، بنابراین اگر دما و پلاسمای با اندازه کافی بالا

پایان آراد نسبی قابل ملاحظه خواهند شد و در بررسی

انباص پلاسماس با پای نظر گرفته شود.

مرجع

1. Pure electron cloud

2. Rarefaction wave
14. T Cecotti, A Lévy, H Popescu, F Reau, P D’Oliveira, P Monot, J P Geindre, E Lefebvre, and