The effect of laser irradiation on electrical and structural properties of ZnO thin films

F Eskandari, M Ranjbar, P Kameli, and H Salamati
Physics Department, Isfahan University of technology, Isfahan 84156-83111
E-mail: ranjbar@cc.iut.ac.ir

(Received 7 March 2012; in final form 6 October 2012)

Abstract
In this paper, ZnO thin film was prepared by sol-gel process on glass substrates. The deposited films were dried at 100 and 240 °C and then annealed at 300, 400 and 500 °C. The two-probe measurement showed that resistance of as-prepared films is very high. The KrF excimer (λ=248 nm) laser irradiation with 1000 pulses, frequency of 1 Hz and 90 mJ/cm² energy on surface of film resulted in the reduction of the films electrical resistance. X-ray diffraction (XRD) patterns confirmed the improved hexagonal wurtzite structure of film, and AFM and FE-SEM analyses showed regular and spherical grain was formed on the surface. The particle size was increased from ~10 to ~30 nm after laser irradiation. Generally, it was showed that electrical, structural and morphological properties of films improve considerably by laser irradiation.

Keywords: ZnO thin films, transparent conductor oxide, pulsed laser, XRD, AFM

For full article, refer to the Persian section