فاضلة اطلاعاتی و کاربرد آن در سری‌های زمانی

بهروز میرزا، طلوع تیبان و مهسا شریفیان پور

دانشکده فیزیک، دانشگاه صنعتی اصفهان

(دریافت مقاله: ۱۳۸۶/۸/۱۳ ؛ دریافت نسخه نهایی: ۱۳۸۶/۱۱/۲۴)

چکیده

در این مقاله برای معادله سری‌های زمانی به دست آمده از سیستم‌های پیچیده روش جدیدی معرفی شده است. این روش بر پایه استفاده از فرم‌های آنتروپی و به‌کمک روش‌های تولید‌کننده آن ارائه شده است. برای حل معادله سری‌های زمانی به دست آمده از توزیع فاصل در سیستم بیلارد به صورت تقریبی، سیگنال الکتروکاردیو قلب برخاسته شده است. هم‌کلاً این روش می‌توان بیلارد آنالوگ و غیر آنالوگ همچنین قلب سالم را از قلب بیمار تشخیص دهد. این فرآیند می‌تواند در بررسی دیگر سری‌های زمانی نیز مورد استفاده قرار گیرد.

واژه‌های کلیدی: بیلارد، استاتیوکاردیوگرافی، کاربرد اطلاعاتی

1. مقدمه

در صدها سال اخیر بررسی سری‌های زمانی مختلف از اهمیت خاصی برخوردار گشته است. یک سری زمانی به‌شکلی از داده‌ها اطلاق می‌شود که در زمانی خط‌های منفی و افزایشی یکی یا دو می‌شود. در حالی که سری زمانی دو هدف دیگری می‌شود که یک مشخص ماهیت پیش‌بینی‌های که این سری زمانی را تولید کرده است.

2. پیشینه رفتار آینده سیستم مورد بررسی

با بررسی سری‌های زمانی می‌توان تا حدودی بیا مدل و وکار

سبیسته‌ها تولیدکننده آنها آشنا شد. بدین منظور با ارائه روشهای متاسب در هر مورد می‌توان به آشکارسازی خواص و رفتار آینده

سیستم پرداخته، به عنوان مثال می‌توان قسمت سه‌هم را در بیز

بورس پر اساس مدلی مناسب پیش کرده که به

روش تحلیل سری‌های قابل بررسی است. قلب انسان است. قلب انسان نمونه‌ای از یک سیستم پیچیده است. در اثر برهمکنش

1. Wavelet transform modulus maxima
2. Detrended Fluctuation Analysis
3. Multi fractal-DFA
4. Extended self-similarity
5. Recursive model
\(a_i \) تخمین شود. سپس تعداد حالات موجود در هر قسمت معین، و در نهایت تعداد حالات کل فضای فاز را به این صورت می‌آید.

\[\Omega = \Pi_i a_i \]

آنتروپی نسبت اطلاعات کالیکی - لیبل \(K (X) \) برای توزیع‌های

\[k(p_i^1, p_i^1) = \sum_i p_i^1 \ln \frac{p_i^1}{p_i^2} \]

برای توزیع‌های احتمالی پویه، به صورت زیر تعریف می‌شود.

\[K = \int \rho_1 (x) \ln \frac{\rho_1 (x)}{\rho_2 (x)} \, dx. \]

\(\rho_i^1(x) \) مقدار احتمال فاصله از توزیع مرجع \(K \geq \) \(K \) است و همچنین

\[\rho_i^2(x) \] مقدار احتمال کالیکی است که با استفاده از آن می‌توان دو توزیع \(p_i^1 \) و \(p_i^2 \) را از هم تمیز داد. اما با استفاده از \(K \) مناسب نیست.

\[\text{مناسب نیست.} \]

\[1 \text{- متنارن نیست.} \]

\[2 \text{- کنترل نیست.} \]

\[3 \text{- همواره نمی‌توان آن را به خوبی تعریف کرد.} \]

برای اجتناب از این مشکلات لین و راو "شکل متنارن شده را به نام کالیکی جالونسن - شانون معرفی کرده که \(K \) ریاضی آن به صورت زیر است:

\[J \left(\rho_1 (x), \rho_2 (x) \right) = H \left(\rho_1 (x) + \rho_2 (x) \right) - \frac{1}{2} H \left(\rho_1 (x) \right) - \frac{1}{2} H \left(\rho_2 (x) \right) \]

\[H (\rho) - \sum_i \rho_i \ln \rho_i \]

\[\text{تمایز آنتروپی} \]

\[H (\rho) \]

\[\text{اگر} \]

\[J = \text{ینی} \]

\[\text{یکی از میانگین خواهد در حیف شد.} \]

\[\text{نقطه اطلاعاتی اینفینیتی همین که \(J \) می‌باشد. در این صورت} \]

\[\text{که \\, \text{برای توزیع‌های چگالی پویه}} \]

\[\text{به منظور درک توزیع کالیکی در این صورت} \]

\[\text{دیگری را نیز مورد بررسی قرار داد.} \]

\[\text{آنترپری اطلاعاتی} \]

\[\text{آنترپری یکی از مهم‌ترین مفاهیم در حیف شد.} \]

\[\text{نقطه اطلاعاتی اینفینیتی همین که \(J \) می‌باشد. در این صورت} \]

\[\text{دیگری را نیز مورد بررسی قرار داد.} \]

\[\text{آنترپری اطلاعاتی} \]

\[\text{آنترپری یکی از مهم‌ترین مفاهیم در حیف شد.} \]

\[\text{نقطه اطلاعاتی اینفینیتی همین که \(J \) می‌باشد. در این صورت} \]

\[\text{دیگری را نیز مورد بررسی قرار داد.} \]

\[\text{آنترپری اطلاعاتی} \]

\[\text{آنترپری یکی از مهم‌ترین مفاهیم در حیف شد.} \]

\[\text{نقطه اطلاعاتی اینفینیتی همین که \(J \) می‌باشد. در این صورت} \]

\[\text{دیگری را نیز مورد بررسی قرار داد.} \]
2.3. روش بزرگ بندی و میانگین توکیز فواصل

در این روش ابتدا مقدار متوسط داده‌ها در یک توکیز را به بزرگ‌بندی با تعداد عضو یکسان تقسیم می‌کنیم. هر عضو از این بزرگ‌بندی را
\[A_j = \frac{1}{\sum (u_i^j)} \]
برده می‌شود.

ضریب بابه‌پردازی به‌دست آمده یا جوابهای دیگر مسابقه کره و میانگین فواصل در زمان
\[\rho_j^T = A_j (u_i^j)^T \]
در رابطه با توکیز مورد نظر را می‌گفتند.

\[J(p^*, p^T) = H \left(\frac{(p^*)^T + p^T}{2} \right) - H(p^*) - H(p^T) \]

جمع داده‌شده در رابطه با همان‌های نقش‌آوری‌یاب مسابقه کرده و میانگین فواصل در توکیز مورد بررسی می‌شود. در این روش، یکنفر از ۱ تا ۳ بار از مسابقه پیامدهای آن را برای کاربرد نظره‌داری می‌نماید.

۲.۳. روش توزیع‌های فاصله در اساس‌فاز و نسبی که این روش برای مسابقات توکیز مورد بررسی می‌شود، در این مقاله با استفاده از آگاهی‌های جانسون- شانون به ابتدای روشهای برای مطالعه سربهای زمانی پرداخته‌ایم.

در این روش برای مسابقه اصلی دو روش اصلی آنها در زیر آورده شده‌اند. در ابتدا با استفاده از یک گزارش از طرف آگاهی در یک مورد تغییر در راهنماهای میانگین تغییر می‌کند. هر قسمت مقدار اختلاف میانگین تغییر می‌کند. در هر مسابقه با توجه به خواص آن مقدار اختلافی با روشنی مسافر به‌دست می‌آید. سپس به مسابقه‌ای دو توکیز از پایگاه \(p^1 \) برداخته، به‌یعنی سری‌های که فاصله زمانی توزیع مورد نظر را به کمک مقدار احتمالات در هر قسمت از توکیز بر طبق رابطه (۳) پیامدها می‌باشند:

\[J(p^1, p^T) = H \left(\frac{(p^1)^T + p^T}{2} \right) - H(p^1) - H(p^T) \]

جمع داده‌شده در رابطه با همان‌های نقش‌آوری‌یاب مسابقه کرده و میانگین فواصل در توکیز مورد بررسی می‌شود. در این روش، یکنفر از ۱ تا ۳ بار از مسابقه پیامدهای آن را برای کاربرد نظره‌داری می‌نماید.

۲.۳. روش توزیع‌های فاصله در اساس‌فاز و نسبی که این روش برای مسابقات توکیز مورد بررسی می‌شود، در این مقاله با استفاده از آگاهی‌های جانسون- شانون به ابتدای روشهای برای مطالعه سربهای زمانی پرداخته‌ایم.

در این روش ابتدا مقدار متوسط داده‌ها در یک توکیز را به بزرگ‌بندی با تعداد عضو یکسان تقسیم می‌کنیم. هر عضو از این بزرگ‌بندی را
\[A_j = \frac{1}{\sum (u_i^j)} \]
برده می‌شود.

ضریب بابه‌پردازی به‌دست آمده یا جوابهای دیگر مسابقه کره و میانگین فواصل در زمان
\[\rho_j^T = A_j (u_i^j)^T \]
در رابطه با توکیز مورد نظر را می‌گفتند.

\[J(p^*, p^T) = H \left(\frac{(p^*)^T + p^T}{2} \right) - H(p^*) - H(p^T) \]

جمع داده‌شده در رابطه با همان‌های نقش‌آوری‌یاب مسابقه کرده و میانگین فواصل در توکیز مورد بررسی می‌شود. در این روش، یکنفر از ۱ تا ۳ بار از مسابقه پیامدهای آن را برای کاربرد نظره‌داری می‌نماید.

۲.۳. روش توزیع‌های فاصله در اساس‌فاز و نسبی که این روش برای مسابقات توکیز مورد بررسی می‌شود، در این مقاله با استفاده از آگاهی‌های جانسون- شانون به ابتدای روشهای برای مطالعه سربهای زمانی پرداخته‌ایم.

در این روش ابتدا مقدار متوسط داده‌ها در یک توکیز را به بزرگ‌بندی با تعداد عضو یکسان تقسیم می‌کنیم. هر عضو از این بزرگ‌بندی را
\[A_j = \frac{1}{\sum (u_i^j)} \]
برده می‌شود.

ضریب بابه‌پردازی به‌دست آمده یا جوابهای دیگر مسابقه کره و میانگین فواصل در زمان
\[\rho_j^T = A_j (u_i^j)^T \]
در رابطه با توکیز مورد نظر را می‌گفتند.

\[J(p^*, p^T) = H \left(\frac{(p^*)^T + p^T}{2} \right) - H(p^*) - H(p^T) \]

جمع داده‌شده در رابطه با همان‌های نقش‌آوری‌یاب مسابقه کرده و میانگین فواصل در توکیز مورد بررسی می‌شود. در این روش، یکنفر از ۱ تا ۳ بار از مسابقه پیامدهای آن را برای کاربرد نظره‌داری می‌نماید.
در مکانیک کلاسیک، دستگاهی که به عنوان مثال به دستگاهی که برای اندازه‌گیری شتاب حرکتی در دستگاه‌های که به صورت کلاسیکی در این دستگاه‌ها مورد استفاده قرار می‌گیرد، بیلیارد است. بیلیارد مدل‌های ساده‌ای هستند که به صورت کلاسیکی و کوانتومی مورد بررسی قرار می‌گیرند و گروه‌هایی مناسی برای دستگاه‌های فیزیکی نیز می‌باشند. (مرورهای بیشتری در تکنولوژی نانو به دست آمده است. با استفاده از فیزیک زیبای دو بیلیارد می‌توان پیدا کرد.) بیلیارد به‌طور عمده از فضا گفته می‌شود که یک مرز به‌طور نامنظم جای گذاری داشته باشد. غالباً متغیر از دستگاه بیلیارد حرکت آزاد جسمی در دو بعد با سطح صاف و با مرز بسته و غیر قابل فردیه است. (شکل 1) آفرینش دیفرانسیل دارای چنین از دستگاه‌هایی که به صورت خیالی قابل عبور و پیش بینی است. در این دستگاه مبتنی بر حرکت در داخل بیلیارد قابل عبور، در موضع جذابیت‌های بیشتری است. با پیش‌بینی حادثه و پیش‌بینی آشوبی این دستگاه، بیلیارد آشوبی است. بیلیارد‌ها به عنوان یکی از مسائل رفتار آشوبی رفتار نامنظم می‌باشند. بنابراین بیلیارد‌ها در دستگاه‌های آشوبی مورد توجه است. بیلیارد از مدل‌های دو بعدی است. مکان

شکل 1. نحوه به دست آوردن توزیع جدید از داده‌های اولیه. در مرحله الاف، فاصله هر یک از دو دیگر به دست آمده و در مرحله ب از این فاصله به دست آمده میانگین گیری می‌شود.

به‌ویژه در میان بیست این ترتیب ادامه می‌دهم. در پایان توزیع نقاط را بررسی می‌نماید. در شکل 2 نحوه محاسبه نقاط نشان داده شده است. با این روش شکل توزیع مخالفیابی و خیزه‌ای میانگین فاصله قابل قبول سالم و بیمار به دست آمده است.

شکل 2. نحوه محاسبه تعداد نقاط.

در مکانیک کلاسیک، دستگاهی در فضای نسبی می‌توان با حل معادلات حرکتی، تحلیل دستگاه را در فضای فاز تعیین کرد. این دستگاه‌ها با ناهنجاری‌های میکروسکوپی بیشکر، عادی و غیر آشوبی نیز معرفی می‌شوند. حاصل تحلیل را می‌توان دستگاه‌های کلاسیک وجود ندارد و معادله حرکت آنها با استفاده از روش‌های عددی حل می‌شود. در این مورد رفتار دستگاه در فضای فکری می‌توان به‌ویژه دو بعدی برای تجزیه دستگاه‌های علمی که در دست زمان، نسبتاً طولانی‌برخلاف دستگاه‌های علمی که قسمت کمی از فضای فاز را اخلاج می‌کنند، این دستگاه‌ها به‌طور کلی به صورت تعیینی از هم فاصله می‌گیرند. توصیف کمی این نوع رفتار توسط ابزارهای هم چون نمای‌های لایاتوف، سطح مقطع یونکار، انرژی مزیک و توبولوژی، با سالاره‌الروی و سایپی کلوزورف (16) انجام می‌شود. با توجه به تعریف که از آشوب در مکانیک کلاسیک وجود دارد، می‌توان دستگاه آشوبی و غیر آشوبی را به طور دقیق تعیین کرد.
شکل ۳. تصویر یک پیلیارد D بعدی که یک مرز D-۱ بعدی آن را محصور کرده است.

همدسی نکاتی از صفحه محدود به در نمای کاربرد می‌شود. که به‌هایان آن با دو پارامتر حداکثر و درسی وصل شده‌باشد. پیلیارد شکل می‌دهد که جوان آشوب بودن آن برابر اولین پاره‌توسط پوپوریژن‌های بسیار می‌باشد. شکل این پیلیارد شبه مزدوجی زمین فلوتال است (شکل ۴).

به همین دلیل این نوع پیلیارد با استادیوم نیز معرف است. نسبت صفحه پوپوریژن خط تصلح دهده در دارایی به شعاع دارایی، پاتریک درکسیپسی نامیده می‌شود. این میزان آمپر در استادیوم به تغییر این پارامتر وابسته است. کمیکنی رفتار ذره در داخل پیلیارد در ابعاد کوارتومی با یکشانه که این نسبت‌ها به قطعات گوتاکومی که در زمینه‌های مختلف تکنولوژی توأم کاربرد دارند به‌سیار مورد توجه قرار گرفته است.

برای بررسی آمپر در مکانیک کوارتومی توانای موج و ترازهای انزی فکاتوامی که در حد کلاسیک آنشیپستون می‌باشد می‌باشد. به‌ویژه موج و ترازهای دستگاه‌های که در حد کلاسیک غیرآنومالی می‌باشد می‌باشد. به‌منظور آنالیز نسبت پیلیارد نیز می‌توان به معنی [17] مراجعا کرد.

شکل ۴. پیلیارد استادیوم. شعاع و نصف طول پاره‌خط اتصال دهده در دارایی در شکل نشان داده شده است.

راهبرد (۴) را محاسبه کمی. برای استفاده از رابطه با دما نازلمند به دامنه میدان تابع موج در استادیوم می‌باشد. این میزان تابع موج‌های بپایه در نظر می‌گیریم و ضرایب سطح به ما می‌دهیم. جوان تابع موج‌های بپایه مقدار و عدد موج به‌سمت گریهای حساب تابع موج‌های بپایه، این امکان را به ما می‌دهد که مقدار آن را در هر نقطه و به‌ازای همه جهت گریهای حساب کنیم. حال برای یافتن تابع موج ترازهای مختلف استادیوم به روش عدیدی با توجه به این نکته که در یک تراز انتقال بردار یک همه تابع موج‌های یکی است، با نظر در نظر گرفتن فضای استادیوم به صورت مجموعاتی از نقاط در هر نقطه با محاسبه مقدار تابع موج‌های بپایه در نقطه مواد و برای نگرفتیزی بر روی تمام جهت گریهای بپایه اعمال مقدار نازلمند بسیار مقدار هر نقطه به سرعت تابع موج را بپایه انتقال و به‌همین ترتیب برای سایر نقاط ایجاد یک تابع می‌باشیم و به مجموعه از اعداد دست می‌باید که نشانگر مقدار تابع موج در یک تراز انتقال و در نظر مراحل بینایا مقدار تابع موج در هر نقطه برای سایر ترازهای دست می‌آید.

این نتایج با استفاده از مرجع [17] با دست آمده است.

در این مرحله با داشتن مقدار تابع موج می‌توان به کمک رابطه (۳) و طی مراحل زیر استفاده کرده. در ابتدا باید تابع موج‌های مورد استفاده را به‌نگار کرده. این میزان تابع موج‌های مورد استفاده را به‌نگار کرده. در ابتدا باید مجموعه از داده‌ها که نشانگر یک تراز انتقال است به‌عنوان مجموع مربعات آن‌ها را محاسبه و از آن جدید می‌گیریم. سپس تعداد اعداد مجموعه از داده‌ها را از این عناوین تکمیل کنیم تا مقدار عددی تابع موج مزدوج مورد نظر به‌نگار شود. در مرحله بعد برای دو ترازه‌که باید هر خواص فصل‌های شان را حساب کنیم مقدار رابطه

\[\sum p_i \ln p_i \]

 به‌صورت ذکر شده در زیر می‌باشیم. در ابتدا در هر

5. مقایسه سیستم غیر آنومالی دایره و سیستم آنومالی استادیوم با استفاده از روش اول

به کمک دیونیوسیو، اول نتایج یک بررسی که روی استادیوم و دایره انجام شده است را مقایسه کنیم. در این بررسی ما از رابطه (۳) برای انجام محاسبات استفاده می‌کنیم و به پراتیمی فاسله‌های تراز از ترازهای بالاتر در استادیوم و دایره می‌پردازیم. به عنوان مثال برای پایین‌ترین فصل‌های دو تراز دلخواه در استادیوم با زمان مقدار

Bunimovich
مجموعه داده‌ها به دو ابعدهای عضوی و عضوی نمودار پیشین نمودارهای آزمایشگاهی در این مقاله قابل مشاهده است. برای این آزمایش داده‌های و دست‌آمدهای استادیوم و داریه محاسبه کمی، همان طور که در شکل 5 قابل مشاهده است برای داریه توزیع به دست آمده، توزیع شیب گاوسی پیدا می‌کند. در استادیوم بیشتر به مقدار پارامتر استادیوم را می‌توانیم در نظر بگیریم. این همان مقدار را برای نافذ کردن مقدار پارامتر استادیوم می‌درمش و هنوز خیلی آموز نشده مثلاً 1/1000 = η. توزیع فرآیند شیب به توزیع فاصله در داریه داده‌ها به توزیع تقارنی گوسی است. با افزایش پارامتر استادیوم و آشوبی شدن استادیوم این توزیع مطالب شکل 6 به توزیع لوئنتز تبدیل می‌شود.

شکل 4. توزیع فاصله ترازها در داریه.

شکل 5. نمودار توزیع ترازها در استادیوم با پارامتر η.

5.1 بررسی توزیع حاکم بر فاصله ترازها در استادیوم و داریه
برای بررسی نتایج به دست آمده برای فاصله ترازها، یک روش بررسی نمودار فراوانی این داده‌ها است. برای رسوم نمودار فراوانی فاصله ترازها به دست‌آمدهای منحنی مقدار باید بازه بین بسته‌های فاصله ترازها تا گمینه مقدار فاصله را به سه‌تایه که لک تکمیل کردیم و در هر بازه از تعداد نقاط موجود در مجموعه داده‌های فاصله‌ها که مقداری در دو نویز داده‌ها در شرکت‌ها در فاصله مورد نظر به دست آید و به این ترتیب نمودار فراوانی بر حسب فاصله را رسم کرد. به‌طور کل، مقاله این ملاحظات توسط انجام آزمایش فاصله‌ها بر اساس تایل‌آنتروپی شانون انجام دهمه و فاصله ترازها را برای...
شکل ۷. افت و گزارش میانگین فاصله بازوهایی با ده عضو ارتباط به بیلارد دایره با ترزله منتقل

شکل ۸. افت و گزارش میانگین فاصله بازوهایی با هفت عضو ارتباط به بیلارد دایره با ترزله منتقل

نمودارها از لحاظ شکل کل تفاوت چندانی با هم ندارند. این مطلب در شکل ۷ که نشان دهنده میانگین فاصله بازوهایی با هفت عضو برای همان در ترزل است، نیز دیده می‌شود. هرچه تعداد سری به‌دست آمده را به صورتی که در روش دوم پیان شده، رسم می‌کنیم در شکل ۷ میانگین فاصله بازوهایی با هشت عضو برای دو ترزل منتقل نشان داده شده است. همانطور که مشخص است
شکل 9. افت و کاهش میانگین فاصله بارزهایی با ده عضو مربوط به بیلیارد استادیوم با ترکیب متغیر و $\eta = 2$.

شکل 10. افت و کاهش میانگین فاصله بارزهایی با بیست عضو مربوط به بیلیارد استادیوم با ترکیب متغیر و $\eta = 2$.

محاسبه‌ی میانگین هر ترکیب بازه‌هایی با ده عضو و بیست عضو تقسیم شده است. در شکل 9 میانگین فاصله‌ی بازه‌هایی با ده عضو و شکل 10 میانگین فاصله‌ی با بیست عضو مربوط به بیلیارد استادیوم با پارامتر دگرگونی $\eta = 2$ را در نظر می‌گیریم. میانگین فاصله را برای دو ترکیب مختلف.
۷. بیروست سری زمانی سیگنال‌های الکتروکلینیک قلب با روش دوم

این روش برای چند سری زمانی قلب سالم و بیمار به ارزیابی قلب‌های متفاوت صورت گرفته است. این روش با سه سری زمانی قلب سالم و بیمار در نظر گرفته و آنها را به بیماری‌های ۵‌گروه و ۶۰۰ عضو تقسیم می‌کند. روش گفته شده در قسمت (۲) را به کار می‌برم. هر یک از گروه‌های فاصله‌های بیماری به‌صورتی که در روش دوم یک سه‌گروه، رسم می‌کنم. در شکل‌های ۱۱ و ۱۲ به ترتیب میانگین فاصله‌های بیماری با نت عضو مربوط به دو قلب سالم و میانگین فاصله‌های بیماری با نت عضو بیماری، در شکل‌های ۱۲ و ۱۳ بیمار ناشناخته شده است. این دو شکل قطعاً شبیه به هم ندارند و با دیدن آنها می‌توان بر این قلب سالم را از بیمار تشخیص داد. همان‌طور که از شکل ۱۱ آشکار است، میانگین فاصله قلب‌های اثرگذار و خیزه‌های زیادی دارد. اما در مقابل این فاصله‌های میانگین، قلب‌های بیمار نسبت به قلب سالم کمتر است. در نتیجه، رسم شده در شکل ۱۱ تفاوت چندانی با هم ندارند. اما در نتیجه، رسم شده در شکل ۱۲ تفاوت‌هایی با هم دارند. این تفاوت‌ها ناشی از نوع خاص بیماری قلبی است که افراد متفاوت دارند. شکل‌های ۱۳ و ۱۴ به ترتیب میانگین فاصله‌های بیماری با ۱۰ عضو را برای قلب سالم و بیمار ناشناخته می‌بینند. نتایج همیشه ممکن که افت و

۸. نتیجه‌گیری

در این مقاله با معرفی و روش جدید در به کارگیری فاصله الکتروکلینیک با بررسی سری‌های زمانی بیماری و قلب پرداخته شده است. به کمک این روش‌ها می‌توان بیماران آموزش و خیزه‌های میانگین فاصله‌های بیماری با ۱۰ عضو را برای قلب سالم و بیمار ناشناخته می‌بینند. نتایج همیشه ممکن که افت و
شکل 11، افت و افزایش نرخ‌های میانگین فاصله بین عضو مربوط به قلب سالم.

شکل 12، افت و افزایش نرخ‌های میانگین فاصله بین عضو مربوط به قلب بیمار.
شکل ۱۳. افت و خیزهای میانگین فاصله بازه‌های با ده عضو مربوط به قلب سالم.

شکل ۱۴. افت و خیزهای میانگین فاصله بازه‌های با ده عضو مربوط به قلب بیمار.
شکل ۱۵. توزیع افت و خیزه‌های میانگین فاصله بازدهی با پنج عضو مربوط به قلب سالم.

شکل ۱۶. توزیع افت و خیزه‌های میانگین فاصله بازدهی با پنج عضو مربوط به قلب بیمار.
شکل 17. توزیع افت و خطرات میانگین فاصله پایه‌ای با ده عضو مربوط به قلب سالم.

شکل 18. توزیع افت و خطرات میانگین فاصله پایه‌ای با ده عضو مربوط به قلب بیمار.

قدرتانی نویسندگان از آقای دکتر فرهاد شهبازی و آقای دکتر کیوان سامانی به خاطر راهنمایی‌های ارزش‌انگیز صمیمانه تشکر و قدردانی می‌کنند.

قسمت زمانی در سری‌های زمانی

نخستین شاخص از زیست‌شناسی و بیماری‌شناسی در دیگر سری‌های زمانی نیز مورد استفاده قرار گرفت.
17. حمید مصداق، بررسی آشوب یکلایاردهای کوانتمی با استفاده از شعاع ژیراسیون، رساله کارشناسی ارشد، دانشگاه فردوسی، دانشگاه صنعتی اصفهان (1385).

28. O A_6 6 ->6:,>D 76”