بررسی تغییرات گاف انرژی و تغییر اندازه نقطه‌های کوانتومی PbS تهیه شده در محلول کلوریدی

مرتئی ساسانی قم‌سری، فرید ناصح‌نیا و جمال‌الدین علی امکانی
سازمان انرژی اتمی ایران، مرکز تحقیقات لایزر، بخش لیزر حالت جامد، صندوق پستی
تهران- ایران
msasani@aeoi.org.ir

چکیده
در این مقاله اولین تهیه نقطه‌های کوانتومی (نژو بلوکه‌ای) سواروس برب (PbS) که به روش کلوریدی تهیه شده‌اند، با مکانیسم سیس نوعی تغییر در تغییرات الکترونی این ذرات در اثر کاهش اعدادهای تهیه نقطه‌های پیچیده (PbS) باعث می‌شود که تناظر نقطه‌های بلوکه مکانیسم سیس نوعی تغییر در تغییرات الکترونی این ذرات در اثر کاهش اعدادهای تهیه نقطه‌های پیچیده (PbS) باعث می‌شود که تناظر نقطه‌های بلوکه مکانیسم سیس نوعی تغییر در تغییرات الکترونی این ذرات در اثر کاهش اعدادهای تهیه نقطه‌های پیچیده (PbS) باعث می‌شود که تناظر نقطه‌های بلوکه مکانیسم سیس نوعی تغییر در تغییرات الکترونی این ذرات در اثر کاهش اعدادهای تهیه نقطه‌های پیچیده (PbS) باعث می‌شود که تناظر نقطه‌های بلوکه مکانیسم سیس نوعی تغییر در تغییرات الکترونی این ذرات در اثر کاهش اعدادهای تهیه نقطه‌های پیچیده (PbS) باعث می‌شود که تناظر نقطه‌های بلوکه مکانیسم سیس نوعی تغییر در تغییرات الکترونی این ذرات در اثر کاهش اعدادهای تهیه نقطه‌های پیچیده (PbS) باعث می‌شود که تناظر نقطه‌های بلوکه مکانیسم سیس نوعی تغییر در تغییرات الکترونی این ذرات در اثر کاهش اعدادهای تهیه نقطه‌های پیچیده (PbS) باعث می‌شود که تناظر نقطه‌های بلوکه مکانیسم سیس نوعی تغییر در تغییرات الکترونی این ذرات در اثر کاهش اعدادهای تهیه نقطه‌های پیچیده (PbS) باعث می‌شود که تناظر نقطه‌های بلوکه مکانیسم سیس نوعی تغییر در تغییرات الکترونی این ذرات در اثر کاهش اعدادهای تهیه نقطه‌های پیچیده (PbS) باعث می‌شود که تناظر نقاط

واژه‌های کلیدی: نقطه‌های کوانتومی PbS، تغییر کوانتومی

1. قدمه
نژو کریستالهای نیم‌رسانا با توجه به دامنه و سه‌گازه‌های که پیش‌تر در سال‌های اخیر بسیار مورد توجه محصون و پیش‌حالاند. در این ساختارهای نژوی توانای کاذب‌کاسه کوانتومی الکترون‌ها و حفره‌ها در داخل مورد محور سنت و منجر به انرژی که شده‌اند این ساختارهای، کاذب‌کاسه کوانتومی نژو نیم‌رسانا (ابی شبکه‌ها) مستند است که کاذب‌کاسه در یک بعد فضا محصور حاصله در طول یک بعد، تغییر شدید نمایان می‌کند است، اگر تغییر دو بعدی را معرفی کنیم ساختار را یک سیم

Quantum Wire
Quantum Confinement
Quantum Well
شکل ۱. دیاگرام ترازهای انرژی برای یک ذره کریوی با استفاده از تئوری مقدمانی [۲۳]. نماد Δ برای ترازهای تخمینی شده به فاصله جفت شدگی اسپین-مادور به کار رفته است.

الکترون - حفره در یک خوشه به وسیله تقریب جرم مومتر محاسبه می‌شود. در این حالت هر کدام از ترازهای انرژی ماده توده‌ای به ترازهای مجاری شکافته می‌شود. نوار هدایت به یک دسته ترازهای اشغال نشده نکته می‌شود. در حالت که نوار طرفیت با دیل جفت شدگی اسپین-مادور کریویت‌ها به دو دسته از ترازهای پر تعبیه خواهند شد (شکل ۱). همان طور که در این شکل پیداست، ترازها با یک تفاوت انتقالی بر جنس خورده‌اند [۵].

در این تقریب فرد و بزرگ انرژی برای گذاری به کمترین انرژی به صورت زیر محاسبه می‌شود:

$$
\Delta E = \frac{h}{2\pi} \left(\frac{1}{m_e} + \frac{1}{m_h} \right) \frac{e^2}{R}
$$

(۱)

در این مقاله ابتدا نمونه‌سازی سرپرستی به روش کلیوردی به شده و سیستم انرژی این ذرات و همچنین گاف انرژی آنها و تغییرات آن با تغییر اندازه ذرات براساس نظریه توربیک توانایی و با کمک طیف پرتو X مورد بررسی قرار خواهد گرفت.

۲ شرح اجمالی

ذرات نانوتیپ سولفور سرپرستی به جنگل روش می‌توان نهایی کرد که هر یک از این روش‌ها کاربرد میدان خاص خود را دارا است. از مهم‌ترین این روش‌ها می‌توان به نقل‌نمایی این ذرات در شیشه، پلیره و توزیع و یا تهیه آنها به صورت محالله کلیوردی بیان گرفت.
شکل ۳. طیف چگالی توان‌داتید کلوریدی PbS. (a): محلول زرد کم رنگ (b): محلول نیتروس اکسید کردن.

آنان را تحت کنترل در آورده و به یک اندام معین دست یافت. این در حالی است که روشهای سایرین که در مراجع مختلف بدان اشاره شده این قابلیت را دارا نیستند. در کارهای مشابه انجام شده از دمای سولفور هیدروژن استفاده شده است که این کار سرعت واکنش را به شدت بالا می‌رساند و امکان کنترل اندازه ذرات را از ما گیرد. همین امر باعث شده تا روش مالی‌گیری به عنوان یک روش ارائه‌دهنده و کم اعتماد مطرح گردد. در شکل ۲ طیف مربوط به جذب توان‌داتیدی در منطقه دیگر اندام ذرات بزرگتر (محلول نیتروس اکسید کردن) نشان داده شده است.

این از این محلول برای بررسی روشهای کنترل شده است. در مطالعه کلی، محلول PbS XRD در یک فیلیم نازک این ذرات که از محلول کلوریدی به شدت شده است، نشان داده شده است. این طیف به‌طور واضح ساختار PbS نشان می‌دهد و اساساً شبیه به همان طیف PbS نیترات است. با این تفاوت که در جنین حالتی شدت قله‌ها با حالت نیترات نهایی زیادی دارد، ضمن اینکه طیف نیز در قله‌ها به واسطه کوچک‌کردن اندام ذرات تغییر قابل توجهی می‌کند.

شکل ۴. اندازه نسبی میزان الهام‌دهنده سطح سطحی در حالت کمی که در سلول‌های کوتین قرار داشته و طیف جدید آنها به کمک دستگاه طیف‌سنج نوری هسته‌مایل مدل ۴۳۱۰ تهیه می‌شود. در اینجا با یک میدان نکته بسیار مهم می‌دانند که روش ما این می‌بایست را دارد که می‌توان از طریق کنترل سنتیک و واکنش تکثیر ذرات، اندامه
3.7.2. Photovoltaic and Thermoelectric Properties of PbS

The band structure of PbS is crucial for understanding its photovoltaic and thermoelectric properties. PbS is a direct-gap semiconductor with a band gap of approximately 0.4 eV. The conduction band minimum (CBM) is at the edge of the Brillouin zone, while the valence band maximum (VBM) is at the zone center.

Theoretical calculations using quantum mechanics predict that PbS has a direct band gap, which is confirmed experimentally. The direct band gap of PbS is a key factor in its photovoltaic applications, as it allows for efficient light absorption.

For thermoelectric applications, PbS is known for its good electrical and thermal properties. The Seebeck coefficient of PbS is positive, indicating its suitability for thermoelectric devices. The material also has a low thermal conductivity, which is beneficial for maintaining temperature gradients in thermoelectric coolers.

In summary, PbS is a promising material for photovoltaic and thermoelectric applications due to its direct band gap and good electrical and thermal properties. Further investigations are needed to optimize its performance in these applications.
قاب‌یابی تغییر‌های آنتزی در اندازه‌های کوانتومی PbSe نهایی شده در محلول کلریدی

ملاحظه‌ای را نشان می‌دهد. با استفاده از رابطه‌های (3) و (4) در این حالت شعاع این ذرات حداکثر 0.025 أمپر از آنها در مقیاسه این بررسی با تحقیقات فراوانی در طول دول، دیگر می‌باشد. از جمله می‌توان به تحقیقات گروه می‌سیک [19] اشاره کرد که اندازه‌های در بازه 3 nm گزارش کردند و یا اینکه در بررسی‌های جدیدتر توسط فری نام‌ها و همکاران [20]، قطر ذرات به دست آمده در حدود 0.003 nm یاباند. از این رو رساندن به چنین ابعادی (اندازه‌های کمتر از 3 nm در این تحقیق بسیار حائز اهمیت و قابل توجه می‌باشد.

مراجع