Electromagnetically induced transparency in a plasmonic system comprising three metal-dielectric-metal parallel slabs: plasmon-plasmon interaction

M Moradbeigi, N Daneshfar, and T Naseri
Department of Physics, Razi University of Kermanshah, Kermanshah, Iran

E-mail: ndaneshfar@razi.ac.ir

(Received 25 August 2016 : in final form 19 May 2017)

Abstract
In this paper, electromagnetically induced transparency (EIT) in a system consisting of associated arrays of parallel slabs (metal-dielectric-metal) is studied. The transmission coefficient, the reflection coefficient and the absorption coefficient as function of the incident light frequency by using the transfer matrix method is calculated and numerically discussed. Influence of the thickness of slab and the type of plasmonic metal on the induced transparency has been investigated. It is shown with decreasing the thickness of intermediate slab of length L_2 (dielectric slab), the induced transparency increases due to the strong plasmon–plasmon couplings.

Keywords: electromagnetically induced transparency, plasmon–plasmon coupling

For full article, refer to the Persian section