On the energy gain enhancement of DT+D³He fuel configuration in nuclear fusion reactor driven by heavy ion beams

S Khoshbinfar¹ and S A Taghavi²
1. Department of Physics, Faculty of Science, University of Guilan, Iran
2. Department of Physics, Damghan University, Damghan, Iran

E-mail: skhoshbinfar@guilan.ac.ir

(Received 24 December 2014; in final form 12 April 2016)

Abstract
It is expected that advanced fuels be employed in the second generation of nuclear fusion reactors. Theoretical calculations show that in such a fuel, a high plasma temperature about 100 keV is a requisite for reaction rate improvement of nuclear fusion. However, creating such a temporal condition requires a more powerful driver than we have today. Here, introducing an optimal fuel configuration consisting of DT and D³He layers, suitable for inertial fusion reactors and driven by heavy ion beams, the optimal energy gain conditions have been simulated and derived for 1.3 MJ system. It was found that, in this new fuel configuration, the ideal energy gain, is 22 percent more comparing with energy gain in corresponding single DT fuel layer. Moreover, the inner DT fuel layer contributed as an ignition trigger, while the outer D³He fuel acts as particle and radiation shielding as well as fuel layer.

Keywords: nuclear fusion reactor, heavy ion beam, inertial confinement fusion, DT+D³He fuel configuration, high energy gain

For full article, refer to the Persian section