نقش امواج درونی از ایجاد ساختار لايهای در چربی‌های تبادلی شناوری بین دو حوضه دریاپی بسته (حوضه‌های جنوبی و میانی خزر)

چکیده
ساختارهای لايهای در محیط‌های دریاپی عده‌ای مورد توجه قرار گرفته است. با ایجاد این ساختارها به پدیده‌هایی مانند بخش دوگانه، امواج درونی و اخلاتا دوگانه شده تلاطمی نسبت داده شده است. در این مقاله با بررسی ساختارهای قائم دیوار و چگالی در دریاپی لايهای خزر ساختارهای لايهای به وضوح مشاهده شده که این امواج درونی در حوضه که در بخش جنوبی چهار ساختارهای لايهای در چربی‌های تبادلی شناوری بین دو حوضه دریاپی بسته (حوضه‌های جنوبی و میانی خزر) رخ داده و به بازدید دریای لیمان این امواج لايهای در چربی‌های تبادلی شناوری بین دو حوضه دریاپی بسته (حوضه‌های جنوبی و میانی خزر) ارجاع داشته بوده است.

وژده کلیدی: امواج درونی، ساختار لايهای، گردش ترموهالیاژ، دریای خزر

1. مقدمه
با وجود اینکه مشاهدات میدانی در محیط‌های دریاپی، اغلب نشان دهنده ساختار لايهای در آبهای اقیانوسی به ویژه در گرم‌شکن (thermocline) و هالوکلین می‌باشد، ساختار لايهای از نظر چگونگی ایجاد و همراهی مورد توجه بوده است.

2. پدیده‌های مختلفی از جمله همراهی بخش دوگانه، اخلاتا در اثر شکست امواج درونی و ساختارهای نرم‌مای و همکاران [1] در محیط آزمایشگاهی نشان دادند که جریان خروجی از پلومهای در محیط‌های چینمهدی شده و

3. دریافت نسخه نهایی: 1249

4. چکیده
ساختارهای لايهای در محیط‌های دریاپی مورد توجه قرار گرفته است. با ایجاد این ساختارها به پدیده‌هایی مانند بخش دوگانه، امواج درونی و اخلاتا دوگانه شده تلاطمی نسبت داده شده است. در این مقاله با بررسی ساختارهای قائم دیوار و چگالی در دریاپی لايهای خزر ساختارهای لايهای به وضوح مشاهده شده که این امواج درونی در حوضه که در بخش جنوبی چهار ساختارهای لايهای در چربی‌های تبادلی شناوری بین دو حوضه دریاپی بسته (حوضه‌های جنوبی و میانی خزر) رخ داده و به بازدید دریای لیمان این امواج لايهای در چربی‌های تبادلی شناوری بین دو حوضه دریاپی بسته (حوضه‌های جنوبی و میانی خزر) ارجاع داشته بوده است.
مدخل: امواج درونی ایجاد می‌کند که سرعت آنها به طرف پایین و سرعت گروه آنها به طرف بالا است. در این حالت سرعت قارا و شکم اینجا ساکن با سرعت قارا، فاصله‌ای بین پلنگ‌های فیلترشکاکسی‌های (Filling Box) می‌شود (۱). این شناخت داده که این ساختار با فاصله ۵ نا (۷) بررسی ساختار قاتل دریایی دما و سرعت در دریاچه کستنی نشان داد که در ساختار قاتل قاتل‌های فیزیکی آب که احتمالاً معضویتی دارد، به طوری که با حل معادلات حاکم، به تحلیل این ساختارها پرداخته‌ای، در این مطالعه بررسی‌سازی‌های قاتل آب، یکی در حوضه دمایی و جنوبی دریاچه خزر براساس مراحل دریایی میدانی می‌باشد. این بررسی ساختارهای قاتل دریایی خزر از درمانگاه‌های داخلی این فاصله دریاچه دریاچه می‌باشد. کارهایی از اینکه دریاچه خزر وارد شده است. ویلی روز جنبه‌های فیزیک دریا در فضاهای میدانی مطالعه خاص، به صنایع فیزیک دریایی درون آ به ترتیب دریایی خزر، به ویژه منطقه آبشار می‌پردازد. به طوری که این بررسی، از نظر مسائلی همچنین انحلال مواد در تبادل بین دو حوضه عمیق دریایی خزر (گردن شحرود)، ضرایب انحلال افقت و قائم، امواج درونی و ساختارهای خزری، آلودگی‌های دریایی، کاورشنایی صنایع زیردریایی، مخلوط‌های گردن‌ها و غیره که در این دریاچه بزرگ و مناسب قرار گرفته است، حائز اهمیت می‌باشد.

۲. دریای خزر
دریای خزر، بزرگترین دریاچه جهان می‌باشد که بین دو قاره آسیا و اروپا واقع شده و در دو عرض جغرافیایی ۲۳° و ۳۳ تا ۷° و ۲۶ تا ۵۳° و ۲۵ تا ۳۰ و ۵۸ تا ۶۸ شمالی و طول جغرافیایی ۶۳ تا و ۳° تا و ۳۳ تا و ۳۳۳° و ۲۳۰° را پوشانده است. حجم آب دریای خزر به توسط کشورهای ایران،
شکل ۱. (الف) نقشه دریای خزر و ایستگاه‌های اندازه‌گیری.

شکل ۱. (ب) سطح مقطع دریای خزر بر حسب فاصله از ساحل جنوبی دریای خزر در امتداد محور جنوبی- شمالی.

به اینکه گرادیان‌های قائم کناره هستند، فواصل مکانی انداده‌گیری‌ها بیشتر شده است.

شکل ۲. نمودار ارتفاع قائم شوری را برای ایستگاه‌های مختلف از ۱ تا ۹ نیشته می‌دهد. همان طور که ملاحظه می‌شود، به طور هستند، بوش شناخته خوری از انجام قائم آب‌های مایان دریای خزر را خورشیدی که در هر ایستگاه، اندازه‌گیری نا عمل حداکثر ۳۰۰ متر در جهت بی‌فاصله مکانی شناختی کم در حدود ۳/۵ متر انجام شده است، اما برای عمق‌های بیشتر، با توجه به اینکه گرادیان‌های قائم کناره هستند، فواصل مکانی انداده‌گیری‌ها بیشتر شده است.
شکل ۳. نیم‌مرخه‌ای قائم دما برای استگاه‌های مختلف از ۱ تا ۸
(برای بررسی واحدهای هنگامی که دما برای استگاه‌های مختلف از ۱ تا ۸
دو وارد و ... اضافه شده است).

با چگالی پتانسیل (σθ) ثابت قابل مشاهده می‌باشد. البته در
این شکل آباده‌های رسم شده مربوط به چگالی پتانسیل است.
به طوری که با توجه به رابطه ما بین چگالی پتانسیل و
چگالی (ρ) یعنی (ρ = 10 × 10^(-3) σθ)، می‌توان با تقریب
خوبی، تغییرات چگالی پتانسیل را با تغییرات چگالی، مناسب
دانتس.

شکل ۴. نیم‌مرخه‌ای قائم در دما برای استگاه‌های مختلف از ۱ تا ۸
(برای بررسی واحدهای هنگامی که دما برای استگاه‌های مختلف از ۱ تا ۸
دو وارد و ... اضافه شده است).

مانگنز شوری از خروجی جنوبی به طرف خروجی شمالی
افزایش می‌یابد. ساختار لایه‌ای در این نیم‌مرخه‌ها، در عمق حدود
۴۵۰-۱۵۰ متری به ویژه برای استگاههای ۵ که تقریباً روز پیش
آب‌روان قرار دارد به خوبی قابل مشاهده می‌باشد.

شکل ۵. نیم‌مرخه‌ای قائم دما برای استگاه‌های اندامگیر
۱ تا ۹ نشان می‌دهد، در این شکل، کاهش مانگنز دما در
آب به طرف شمال کامل مشاهده است. همینطور ساختار
لایه‌ای نیز در آنها تا حدی مشخص می‌باشد. البته قابل ذکر است
که لایه‌ای در جنوب شرقی (S) و دما
متغیرت و این کننده از نظر چگالی، مسیری از طرفی
با توجه به اینکه ضرب پخش مولکولی شوری (kg)
۱۰۰ برابر کمتر از مقدار آن برای گروه
(B) است، بنابراین لایه‌های
نارتک، در حین حرکت گرمای خود را از دست داده ولی شوری
خود را حفظ نمی‌نماید. در نتیجه در نیم‌مرخه‌ای قائم شوری
(شکل ۳)، نسبت به نیم‌مرخه‌ای قائم دما (شکل ۲)، ساختار لایه‌ای
ایجاد شده برادر مدت زمان طولانیتری باقی می‌ماند. پس انظار
می‌روکد که در نیم‌مرخه‌ای قائم شوری ساختار لایه‌ای بارزتر
ظاهر شود.

شکل ۶. نیم‌مرخه‌ای قائم چگالی را برای استگاه‌های مختلف
نشان می‌دهد. در این شکل نیز ساختار لایه‌ای به ویژه لایه‌های
شکل ۵ ج) نمودار تغییرات افقي پهنايي (kg/m^3) برحسب فاصله از ساحل جنوبی در روي خزر در امتداد محور جنوبی-شمالی در اعماق مختلف (به طوری که به ترتيب 30، 50، 75، 100، 150، 200 و 250 متر می‌باشد).

شکل ۵ ح) نمودار تغییرات افقي پهنايي برحسب فاصله از ساحل جنوبی در روي خزر در امتداد محور جنوبی-شمالی در اعماق مختلف (به طوری که به ترتيب 30، 50، 75، 100، 150، 200 و 250 متر می‌باشد).

شکل ۴) نمودار تغییرات افقي پهنايي برحسب فاصله از ساحل جنوبی در روي خزر در امتداد محور جنوبی-شمالی در اعماق مختلف (به طوری که به ترتيب 3 و 4 پک واحد ایستگاه در واحد و ... اضافه شده است).
طرح مایلگین در جهت شمال-جنوب هستند، دارای تغییرات مویی شکل نیز می‌باشند. تغییرات نوسانی این پارامترها در فاصله‌های مویی را به ویژه در حوضه جنوبی تا عمق تقریبی 500 متر نشان می‌دهند. همیشه این نمونه‌های اندام‌گیری انتهایی

نتیجه یکی از رابطه (عدد 70 متر) است. این رابطه تغییرات افقي در عمق به معنی مختلف نشان می‌دهد که کاهش مویی مانند ساختر مویی در نقاط خاص باعث راه‌اندازی گرافیک در نواحی گردیده است. این نتایج در شکل‌های 4 (الف، پ.) نیز مشاهده می‌شود که عمق این آب در حوضه سیاره‌ای حدود 20 متر بوده اما به طرف جنوبی، مرز عمق تقریباً 10 متر می‌رسد. تا بتوان این رابط را با این نتایج مشاهده می‌کنیم با عمق مویی بین 30 تا 50 متر یک دامنه تغییرات شدیدی هستند و همچنین این تغییرات منجر به سرعت استراحتی در حدود

\[U^* = \frac{U}{N^*} \]

\[p < 5 \times 10^{-3} \text{ m} \]
شکل ۶. افق J: خطوط هم شوری حداکثری در امتداد محور جنوبی-شمالی دریای خزر (سطح آب دارای عمق صفر است).

دهندگی هموفت پخش دوگانه خیلی کم در جهت آب است.

بنابراین عامل ایجاد این نتایج در راه‌های باران در محلی خاصی پیکر جستجو نمود. عامل دیگر می‌تواند امواج درونی ناشی از چرخش سرولی شناوری منفی به صورت بلوام بهنی از حوضه شمالی به حوضه جنوبی باشند. هنگامی که جریان از روی یکشته آبشوران سرولی شناوری می‌شود، مشاهده‌های جدول 5 نشان می‌دهند که جریان فروشین تا عمق حدود ۱۰۰ متر در جهت قائم، در حوضه جنوبی نشت می‌کند. این جریان در

dر شکل ۶ آمده است.

به طوری که \(\alpha \) ضریب تغییر چگالی ناشی از تغییر دما، \(\Delta T \) تغییرات دما، \(\beta \) ضریب تغییر چگالی ناشی از تغییر شوری، \(\Delta S \) تغییرات شوری هستند. نسبت چگالی باید در حد \(0.1 \) باشد تا هموفت پخش دوگانه رخ دهد [۱۲]. در این نمودارها اغلب حداکثر صفر با منفی است که نشان
شکل 6: فاصله‌ی بین نقاط دما در ایستگاه‌های پروانه‌ای (حوضه جنوبی)، 5 (روی عکس)، 6 (حوضه بین‌میانی)، 7 (روی عکس) و 8 (حوضه خلیج فارس). (برای بررسی پراکندگی به اندازه‌های ایستگاه 5 و 6 در واحد اضافه شده است.)

شکل 7: ارتفاع سطح دریا در ایستگاه‌های پروانه‌ای (حوضه جنوبی)، 5 (روی عکس) و 6 (حوضه بین‌میانی)، 7 (روی عکس) و 8 (حوضه خلیج فارس). (برای بررسی پراکندگی به اندازه‌های ایستگاه 5 و 6 در واحد اضافه شده است.)

شکل 8: تغییرات نسبی تراکمی در ایستگاه‌های پروانه‌ای (حوضه جنوبی)، 5 (روی عکس) و 6 (حوضه بین‌میانی)، 7 (روی عکس) و 8 (حوضه خلیج فارس). (برای بررسی پراکندگی به اندازه‌های ایستگاه 5 و 6 در واحد اضافه شده است.)

شکل 9: نمودار فاصله‌ی بین نقاط شاره‌ای در ایستگاه‌های پروانه‌ای (حوضه جنوبی)، 5 (روی عکس) و 6 (حوضه بین‌میانی)، 7 (روی عکس) و 8 (حوضه خلیج فارس). (برای بررسی پراکندگی به اندازه‌های ایستگاه 5 و 6 در واحد اضافه شده است.)

شکل 9: نمودار فاصله‌ی بین نقاط الکتریکی در ایستگاه‌های پروانه‌ای (حوضه جنوبی)، 5 (روی عکس) و 6 (حوضه بین‌میانی)، 7 (روی عکس) و 8 (حوضه خلیج فارس). (برای بررسی پراکندگی به اندازه‌های ایستگاه 5 و 6 در واحد اضافه شده است.)
شکل ۱۰. نیمیه قائم نسبت چگالی برای ایستگاه‌های ۴ (حوضه جنوبی)، ۵ (روی پهنه)، ۶ (حوضه میانی) اعمال بر حسب متر می‌باشد.

حوضه بسته جنوبی می‌تواند باعث تحریک امواج درونی شود، به طوری که در مشاهدات آزمایشگاهی هم نشان داده شده است [۱۴]. مثلاً، قائم این امواج درونی که منجر به لایه‌های برخی می‌شود، می‌تواند جهه ایجاد شده در جریان خروجی را به سمت حوضه میانی چین داده و لایه‌ای نمایند [۱۱]. به طوری که ضخامت لایه‌های ایجاد شده، توسط جریان خروجی ناشی از پلیم در یک محتاط است (براساس رابطه ۲۴ وانگ و همکاران) عبارت است از:

$$\lambda = \sqrt{\frac{vH}{W}}$$ (۲)

در این رابطه، H معنی فرود جریان خروجی است که در اینجا عمق میان‌گین آب روی پهنه می‌باشد و حدود ۱۵۰ متر است. به همین جریان خروجی است که در اینجا می‌تواند به پدیده افق جریان شناوری باشد. به عبارت دیگر، جریان خروجی در رود پهنه در محدوده زیر معنی کنترل ۱۰۰ کیلومتر. که در حدود ۱۰ کیلومتر است. به طوری که درون آبخشگاه پدیده می‌باشد که حدود ۱۲۰ m است. با جایگزینی این مقادیر در رابطه (۲) و محاسبه می‌شوید، که ضخامت لایه‌های مشاهده شده در نیم‌پزشکی شکل ۷ مطلوب می‌نماید. این لایه‌ها همان طور که

$$U = \frac{37}{E^2 F H^2 W^{-1}}$$ (۳)

که در آن F شار شناوری پلیم می‌باشد و بر اساس است: $F = qg'$

$$q = \frac{1}{g}$$ (۴)

در این رابطه، q ضریب حجم آب پلیم خروجی از حوضه میانی به حوضه جنوبی است که حدود ۵۰ متر مکعب بر ثانیه است. در حالی که g حدود ۲/۱۰ متر هر مکعب نانومتر است. بنابراین می‌تواند با جایگزینی این مقادیر در معادله $F = 3 \times 10^3 m^3 s^{-1}$
(3) سرعت جریان خروجی پلو مدرک در حضور جنوبی خزر حدود
۵۰۰۰ سمـ به دست می‌آید که حداکثر سرعت جریان از حضور
میانی به جنوبی است.

(4) بحث و نتایج
جریان نفوذی گرانشی در دریاها، یکی از عوامل ایجاد سختار
لایه‌ای می‌باشد. در نظر گرفتن این تفاوت نفوذ آب با چگالی
موضع به دلیل محیط چینی بندی شده می‌شود و این جریان
می‌تواند دیواری ضخامت کم یا زیاد نسبت به عمق محیط
اقدام بکند. این ایجاد سختار در حالت دوم نفوذ آب روی
لایه‌های میانی با چگالی متفاوت تقریباً ۳-۲۰ خورد.

عمل اصلی وجود آن در این نوع جریان‌ها، اختلال سنون
آب چین‌بند شده یا تغییر محیط است. پیش‌بینی ابتدایی می‌تواند
به روش‌های متفاوتی انجام شود:

۱- تغییر شکست مداوم امواج در ساحل
۲- در موقعیت ورودی آب رودخانه‌ها یا فاضلاب در دریا (که
باعث درون آبی‌سختاری اختلال شده، ایجاد یک چگالی متوسط
سنون آب ایجاد می‌نماید).
۳- طوفان شدید معلول در داخل دریا (که می‌تواند سنون آب را
به طور محکوم مخلوط کند و در نتیجه پیدا کردن اختلال را به وجود
آورد.)

به طور کلی، ایجاد مشاهده و اختلال باعث ایجاد گرادیان شدید
افقت چگالی و نفوذ آب مخلوط شده به داخل دریا می‌شود.
همچنین عامل شکاره‌ای باعث گسترش افقت شاره‌های مخلوط شده
در داخل محیط چین‌بندی شده می‌گردد. البته در صورت ایجاد
مدافع متفاوت اختلال، یک لایه نفوذی به وجود می‌آید که به‌طور
پیوسته به داخل سنون آب در راستای افقت گسترش می‌یابد.
قابل ذکر است که اگر ۵۵۰ به روش آن در اثر اتصال کانال
ابن جریان‌های کوچک می‌شود. پرامترهای کششی کنده‌ای این
جریان عدد فوردود F و عدد ریلندز \(Re = \frac{\rho v L}{\mu}\) می‌باشد.

[۱۱] در این رابطه \(v\) ضریب و نشانگی جریان شناختی است.

هنگامی که محیط دارای صفحه چگالی پیوسته است، ترکت
شکل ١١. تصویری از انیمیشنی به روش‌های هندسی ایجاد شده در آزمایشگاه توسط پلمر سرآذریزندگی از روش شبیه‌سازی مخزن [ایدختی، و نوروزی، ٢٠٠٤].

جوشی سرآذریزندگی شده و آب حوضه میانی به اعماق حوضه جنوبی انتقال می‌یابد. اگر آب از اعماق زیاد حوضه جنوبی به سمت حوضه میانی جاری می‌شود، پس با توجه به خطوط هم چگال، کریدر آب از انیمیشن به حوضه میانی انتقال گرفته و به سمت حوضه جنوبی و سپس آب از اعماق تندیک بستر حوضه جنوبی به سمت حوضه میانی جاری می‌شود. قابل توجه است که این تکه با توجه به دست آمده از شبیه‌سازی فیزیکی و مطالعات داده‌شاپ در روش شبیه‌سازی هندسی ایجاد شده توسط پلمر سرآذریزندگی از روش شبیه‌سازی مخزن در روش شبیه‌سازی به‌طور کلی با روش شبیه‌سازی مخزن است. پس از گذشت زمان، خط رنگی ناشی از پلمر به‌طور مختلی که در دو مشاهده شده می‌شود در می‌آید. به طوری که شکل لایه‌بندی شده نمایان می‌شود (١٢). اینجا ناشی از پلمر سبب ایجاد ساختار لایه‌ای می‌گردد.

تشکیل‌دهنده این تکه‌ها در محیط آزمایشگاه و مختل واقعی هم‌روندی و تطبیق حسای را تشکیل می‌دهند. برای تشکیل امواج درونی و جسترش آنها در محیط آزمایشگاه و مختل واقعی هم‌روندی و تطبیق حسای را تعریح کننده لازم است. به طوری که در آزمایشگاه، پلمر آب شور موجب تشکیل مخزنی به‌طوری کف حوضه می‌شود. اما در حیث جریان شعاعی تندیک کف رونده قسمت
نتیجه‌گیری
عامل اصلی ایجاد جریان ماده‌ای بین دو حوضه دریا خزر، گراندیان افقی چگال است. به طوری که این فرآیند اموج‌گذاری درونی ایجاد شده و روز این ماده به اثر می‌گذارد و نشان وجود اموج درونی ساختار لاشهای مشاهده شده می‌باشد. وجود ساختار لاشهای سبب ایجاد پدیده شکست اموج صوتی

مراجع