The study of the physical properties of Ni-Cu-Zn ferrite nanoparticles by the auto-combustion method

A Abareshi, M Houshiar, S Porzamani and L Jamilpanah
Department of Physics, Shahid Beheshti University, Evin, Tehran, Iran

(Received 14 March 2017; in final form 15 November 2017)

Abstract
In this paper, 5 different samples of Ni-Cu-Zn nanoparticles (Ni0.8-xCu0.2Zn0.2Fe2O4) with different compositions of x=0.2,0.4,0.6,0.8 were synthesized through the auto-combustion method, using glycine as the fuel; then, the structural, magnetic and optical properties of these samples were investigated. Characterization of these samples was done using XRD, FTIR, UV-Visible, SEM and SEM. XRD data proved the existence of a spinel structure for all samples. FTIR spectra showed the existence of an oxygen-metal M-O bond at tetrahedral and octahedral bonds. SEM images also revealed the semispherical shape of particles. Using the UV-Visible spectrum, we found that by increasing the amount of the Cu dopant, the gap energy of Ni-Cu-Zn nanoparticles was decreased; also, the results of VSM showed that saturation magnetization was decreased by increasing the amount of the Cu dopant.

Keywords: Ni-Cu-Zn nanoparticles, auto-combustion method, spinel structure, magnetic properties

For full article, refer to the Persian section