مطالعه تأثیر الیش و اثر اندازه دانه بر خواص ساختاری، الکتریکی و مغناطیسی ساختار

محسن حسونی، بوریس کاملی، هادی سلامتی، مهیش ایرانی و آزاده عظیمی

1. آزمایشگاه مغناطیسی و ابررسانایی، دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان 23511-88158 ایران
2. گروه فیزیک، دانشکده پیام نور، نجف آباد، نجف آباد 81434 51585، ایران

(دریافت مقاله: 98/6/31؛ دریافت نسخه نهایی: 1397/12/23)

چکیده
در این مقاله بررسی از مغناطیسی ساختار الیش در آزمایشگاه لاژ، مطالعه شده است. الیش به این معنی که برای روند افزایش مغناطیسی ساختار در ماده مورد نظر از طریق افزایش مغناطیسی ساختار در ماده مورد نظر استفاده می‌شود. بررسی مغناطیسی ساختار الیش در ماده مورد نظر، باعث پدیده‌ی تغییرات نرمال در ماده مورد نظر می‌شود.

واژه‌های کلیدی: مغناطیسی ساختار مغناطیسی

1. مقدمه
مغناطیسی ساختار الیش در اکسیدهای منگنز، با ساختار پروسکاتی و با لایه‌های مختلف که خواص بیشتر نظیر و کاربردی زیادی از خود نشان می‌دهد. بررسی مغناطیسی ساختار الیش در مغناطیسی ساختار مغناطیسی تعدادی از این ترکیبات اولین بار در سال 1950 توسط جانکر و ویوی سانتین انگلیش[1] اولین مدل نظامی مربوط به آنها که به مدل یاد داگنی مشهور است در سال 1951 توسط زنر ارائه شد[2]. در سال 1994 با کشف بررسی ساختار الیش در مغناطیسی ساختار

فوق العاده پترک، دور جدیدی از مطالعات نظری و تجربی بر روی این ترکیبات آغاز شد[5] در ضمن این مطالعات، خواص

جلاب توجه که تنها دیگری نیز مشاهده شد. مدل‌های نظری مختلفی بررسی مغناطیسی ساختار الیش در میدان نظریه تعدادی از آنها بی‌پایدار مدل تبدیل دوگانه هستند[6] و 7. اگرچه

تعدادی از آنها بر پایه مدل تبدیل دوگانه هستند[6] و 7. اگرچه
زیادی را در نظر گرفته، زیرا هرکدام از درجات آزادی سیستم مانند بار، ابر نکارده و سایر انواع متمرکز در بزرگترین غیر متفاوت سیستم سهم دارند. نتایج دیگر اینکه در موارد باید این عوامل را هم در نظر گرفته باعث رشد کش قوی بین درجات آزادی باعث وجود اندازه فازهای منحنی در سیستم مگناپاتی‌ها می‌شود. با تغییر مقادیر همبستگی بین درجات آزادی، سیستم از یک فاز به دیگر فاز می‌گذرد. در بعضی موارد چندین فاز متفاوت مثل فازهای الکریک، مغناطیسی و بلوری به هم رخ می‌دهد.

تغییرات مگناپاتی‌های پروسپتاتی‌های قابل‌توجه‌تر جالب تتبيچ است که منجر به کاربردهای فراوان آنها می‌شود. به طور مثال می‌توان با استفاده در حافظه‌های مغناطیسی، حسگر میدان‌مغناطیسی، حسگر فشار، هد مغناطیسی، استفاده از آنها به‌جای فیبرهای نرم و جادب انواع رادار اشاره کرد. برای آشایی مقدماتی با مگناپاتی‌ها در ادامه برخی از این فیزیک‌های این تحقیقات از آنها می‌شود.

۱.۱ ساختار بلوری

فرمول شیمیایی مگناپاتی پروسپتاتی به صورت $\text{A}_x \text{B}_y \text{MnO}_z$ می‌باشد که در آن A، B، و C سه فلز شامل La^{3+}، Sr^{3+}، یا Mn^{2+} هستند و x، y، و z عددی از طریق دوگانه با تغییر در هر یک از آنها، تغییرات می‌کنند. به عنوان مثال، در صورتی که x، y، و z مشابه باشد، ساختار بلوری به صورت LaMnO_3 می‌باشد.
ساختار الکترونی منگنیزی

شکل 2. شکاف‌گذی تراز ۳d پون منگنیز با توجه به ترازهای $S_{1/2}$ و $S_{3/2}$ نشان می‌دهد. سمت چپ: پون مکری، منگنیز در یک محیط با تقارن مکعبی سمت راست: پون مرکب در یک محیط با تقارن چارکویشی.

2.1 ساختار الکترونی منگنیزی

عدد اتمی منگنیز 25 و آرایش الکترونی آن در حالت پایه به صورت $[Ar]3d^{5}$ است. لایه آخر اتم منگنیز به صورت لاپس نیمهبر ۱۴می‌باشد که دارای تیپ چکانه است. این اسم هنگامی که در ساختار پلوری منگنیزیا قرار می‌گیرد به صورت Mn^{2+} و Mn^{4+} در می‌آید. نماینده که پون منگنیز در MnO_2 داخل هسته و معادل Mn^{2+} قرار می‌گیرد، تراز ۳d آن تحت تأثیر وجود میدان‌های پلوری ناشی از تشکیل این هسته و جوهر شکافته می‌شود. این پذیرد در شکل ۲ نشان داده شده است.

2.1.1 تابدل دوگانه

مطالعات نظری منگنیزیا در سال‌های اولیه بر روی روند فاز فرومغناطیسی آنها متمرکز بود. در سال ۱۹۵۱ اولین بار زمرد تابدل دوگانه را برای توجه فاز فرومغناطیسی ارائه کرد(۹). تابدل دوگانه را برای توجه فاز فرومغناطیسی ارائه کرد(۹). زمرد تابدل دوگانه را برای توجه فاز فرومغناطیسی ارائه کرد(۹). در اند لایه الکترونی رسانش در نظر گرفتند. در ایل لایه (!(کارمل را لایه d و الکترون‌های رسانش را الکترون‌های لاپس تا تشکیل

می‌باید. علناً انتخاب نام تابدل دوگانه تابدل الکترونی بین دو پون منگنیز است که با واسطه کری آرایش الکترونی انجام می‌آورد.
می‌شود، جهت اسپین‌های اکتیو منقطع شده نیست.

در بُردِم چنین تبدیلی که در حالت‌های اسپین‌هایی که از
فاده‌های تبیین می‌کنند و درجاگاه خود در ترداب و
هوی یکی که در ترداب و سردر سردار به‌خوبی صورت می‌باید.
گردد. اما زمانی که دمای بالاتر به دمای کوری است،
جهت گیری اسپین‌های نامنظم می‌شود و این نامنظم شدن،
جهت اسپین‌ها تا جابجایی بی‌دسته می‌کند که در دمایی
بالاتر از دمای کوری سیستم به‌خوبی صورت می‌گیرد.

می‌شود و در تبیین می‌باشد. بنابراین مناظر می‌باشد.

بُردِم چنین تبدیلی که از ناحیه مشابه ترداب و
سازنده‌های اکسیژن با بِردِم
همان‌گونه که از شکل 3 دیده می‌شود، بندهای اکسیژن
تنش بیل‌الرباطی بین بندهای مگنتر را بازی می‌کنند. اساس
این‌ها دوگانه و به‌سیستانی به‌خوبی صورت که جهت اسپین
این‌ها اکسیژن هنگام انتقال در شبکه بُردِم
می‌شود. اسپین‌های اکسیژن با بِردِم
جهت فرایند باعث می‌شود که اسپین‌های اکسیژن به سیستم
در دمای‌های بالاتر از دمای کوری می‌شود. از آنجایی که اسپین
به بِردِم آماده فاز فرآیندی با مغناطیسی می‌باشد. این‌ها
دوار یا دوگانه را می‌توان با توجه به شکل 3 به این صورت
توجیه کرد که این‌ها می‌باشد. بنابراین مناظر می‌باشد.

بدُرگر در اطراف دمای کوری دیگری می‌شود. این
مطلب یک توصیف به‌صورت ساده از مغناطیسی می‌باشد.

در نتیجه دمای کوری به‌سیستانی می‌باشد. این‌ها
مدل تبادل دوگانه راهنماخی خوبی برای کاهش مطالعات
مگناطیسی در گذشته به‌سوی است. اما این مدل به‌نهایی کافی
می‌باشد.
شکل 4. مکانیسم نباید دوگانه در دمای تنگی کودک کلاسیک

تشییع و پدیده‌های پیچیده‌ای که در نمودارهای فازی
مکانیک‌های مشاهده می‌شود، با توضیح نمی‌دهد.

4.1. اثر یان-تیر

یکی از مهم‌ترین تغییرات که در ساختار بلوری مکانیک‌ها اتفاق
می‌افتد و باعث می‌شود تغییرات گوناگون در این ترکیبات
باشد یان-تیر است. نتایج این آزمایش‌ها بار در بار
در مکانیک‌ها اکنون مشخص شده است که اثر
یان-تیر نقش بسزای مهمی در خواص مکانیک‌ها دارد.
برای توجه به‌سری از این خواص به کار می‌رود.

یک مکانیکی که در یک ساختار بلوری قرار می‌گیرد تبعیض
است و وجود این تبعیض موثر ناپایداری ساختار مشوی
برای رسیدن به حالت پایدار ترازهای انرژی شکافته می‌شود.
تا ساختار به حالت انتزاعی و بیشترین پایداری برسد.
این تغییر و شکافنی ترازهای وابسته در شکل ایجاد می‌کند.
برداشت نشان می‌دهد که ناشی از پرده دریافت‌های گیج
است اثر یان-تیر مشاهده می‌شود.

MR

5.1. مغناطیس‌مکانیک

همانطور که اشاره شد مغناطیس‌مکانیک ایین ترکیبات در اثر
احتمال بی‌شیشه مغناطیس‌مکانیک به شدت تغییر می‌کند. این اثر که به
مشهور است در این ترکیبات تا ۱۰۰/۱۰ نیز گزارش شده‌است.
2. زیرا را نام برد:
الف) ساختار بلوری آلاینده: که تحت تأثیر منجر به فاز زنده‌بز خواص الکتریکی آلاینده‌ها نسبت سطح به حجم افزایش یابد که خود منجر به افزایش نسبت مولکول‌های مرکزی و فاز زنده می‌شود.
د) مؤثرات شیمیایی در تاثیر منجر به فاز زنده جانشینی می‌گردد و می‌تواند منجر به ایجاد فازهای جدید تأثیر کند.
ه) خواص الکتریکی آلاینده‌ها: قرار گرفتن آلاینده‌های گونه TMR (فلزهای نازک) در محدوده‌ها می‌تواند باید آور سیستم (GMR) باشد.
و) دما و مدت زمان کلکس‌سازی: با افزایش دما و مدت زمان کلکس‌سازی احتمال برقراری ارتباط بین زمان‌ها و فاز ناحیه‌ای افزایش داده شده و حتی در بعضی موارد جنبه‌ها نفوذ ناخالصی در زمان‌ها را فراهم کند.

2.1. مغناطیس‌مثابه در مغناطیس‌مثابه و فازات ضعیف
همان‌گونه که فهرست تأثیر CMR مربوط به یک جنگ مغناطیسی بین دو سطح که همین موضوع را به لحاظ کاربردی محدود می‌کند. بایستی نشان داده شود، CMR، زیان برای ایده‌های مغناطیسی در مغناطیسی ضعیف، برای این دسته از مواد صرورت گرفتم است. نتایج تحقیقات زیادی برای افزایش CMR در مغناطیسی پروپارکی انجام شده است. این تحقیقات را می‌توان با دسته‌ای مرتب کرد.

1) افزایش CMR در مغناطیسی پس‌بلوری با کچک‌کردن

2) منیورهای حجمی با استفاده از روش صرفاً درند (LBMO) LaBaMnO

3) منیورهای TMR که با استفاده از روش صرفاً درند (LBMO) LaBaMnO

4) منیورهای CMR به سطح (LBMO) LaBaMnO

5) منیورهای CMR به آب (LBMO) LaBaMnO

6) منیورهای CMR به دسته‌های TMR

7) منیورهای CMR به دسته‌های TMR
بررسی اثر ریز شدن اندامهای نمونه $\text{La}_{x/3}\text{Sr}_{y/3}\text{MnO}_3$ از نمونه ساختاری قریب به تنهی شد که همگی آنها در دما
1300 درجه سانتی‌گراد کلیکسازی شدند. قریب به حاصل پودر
شد و سپس پودر حاصل به فلز گلود به قطر یک سانتی متر به
مدت زمانی مختلف (10–900 (h)) از دستگاه آسانسیور به
سروت 40 در دقیقه قرار داده شد. پس از آن دور مخلوط
تکلیف روي انجام شد در هر مخلوط پودر به مدت 24 ساعت
در دمای 1200 درجه سانتی‌گراد قرار گرفت. پس از هر تکلیف
پودر حاصل به مدت یک ساعت با دستگاه سایز گسازی دیگر
درصد وزنی به ترکیب $\text{La}_{x/3}\text{Sr}_{y/3}\text{MnO}_3$ x TiO2
و به مدت 24 ساعت در دمای 1200 درجه سانتی‌گراد کلیکسازی
شد. پودرهای پلی-پایول به نسبت 0.5 و 10 درصد وزنی به ترکیب $\text{La}_{x/3}\text{Sr}_{y/3}\text{MnO}_3$ x TiO2
فشار در مخلوط پرس کاری. برای تعیین قریب/ها
انتحاب شد و با دمای پیشنهادی 240 درجه سانتی‌گراد فقط به مدت 1
ساعت کلیکسازی شد. نمونه‌های
$\text{La}_{x/3}\text{Sr}_{y/3}\text{MnO}_3$ x TiO2
با 5، 7 و 9 درصد وزنی به مخلوط ساختمان شدند. دما کلیکسازی
1300 درجه سانتی‌گراد و مدت زمان آن 24 ساعت، در نظر گرفته شد. نمونه
$\text{La}_{x/3}\text{Sr}_{y/3}\text{MnO}_3$ x TiO2
در این پژوهش از پلی‌پایول به عقیده باید مورد استفاده قرار
گرفته است. نتایج حاصل از
براشفت شده X برای نمونه‌های مختلف در شکل 5 نشان داد
شبه ایست قله‌های مشاهده و در شکل مربوط به فاز
با SLMO. همانطور که نشان داده شد، هوا اladığı
$\text{La}_{x/3}\text{Sr}_{y/3}\text{MnO}_3$ x TiO2
درس این تکلیف آمرف پودر و دارای ساختار بلوری بود.
شکل X نشان می‌دهد که نمونه‌ها لوزیزه به
صورت نسبتاً منظم در هر یکی از گرده‌های
$\text{La}_{x/3}\text{Sr}_{y/3}\text{MnO}_3$ x TiO2
درصد وزنی در دمای 1000 درجه سانتی‌گراد به مدت 12 ساعت
کلیکسازی شدند. انتحاب دمای 1000 درجه سانتی‌گراد به
حدود 200 درجه سانتی‌گراد خطر از دمای کلیکسازی تکلیف
اولیه ایست. به این دلیل است که در اين مدت مهاد از تکلیف
$\text{La}_{x/3}\text{Sr}_{y/3}\text{MnO}_3$ x TiO2
\[
\text{SEM} \text{ نمونه‌های } \text{La}_{x/3}\text{Sr}_{y/3}\text{MnO}_3 \text{ x TiO2}
\]
فراوانی‌گریس‌های برمگین‌سازی‌های لمینیت یا همچنین رفتارزی‌های سایه‌ای نمونه‌های نمایشگری شده باعث شده که ممکن باشد در برخی نواحی توسط نمایندگان پی‌بانده شده است. همچنین ریت‌بانده نمونه‌ها تخلخل‌هایی را در پردازه‌های صورتی است که به نظر می‌رسد x = 10 نمونه‌های x = 0 با به نظر نمایشگری شده است. در این موضوع نشان می‌دهد که استوکومتری فاز ppy در نمونه‌ها اساساً تغییر نکرده و این باید به نظر می‌رسد که در حین ساختار نوعی تغییر نکرده است. به دو در نمونه‌ها یکگانه که از مشخص است مقدار مغناطیسی با افزایش غلظت با کاهش پیدا می‌کند. این کاهش مغناطیسی را می‌توان مرتبط با کاهش درصد حجمی ppy و افزایش حجمی نمونه‌های x = 10 نمونه‌ها از تغییر به دو در نمونه‌ها افزایش دیده می‌شود که هم‌نه نمونه‌های x = 0.

شکل 6: نمونه‌های XRD

شکل 7: نمونه‌های SEM

شکل 8: نمونه‌های SEM

ناهید عیسایی و همکاران: مطالعه‌های تغییرات باعث شده نمونه‌های ppy در میدان مغناطیسی ۱۰ و فرکانس ۱۳۳ هرتز می‌دهد. ملاحظه نمونه‌های ppy در حین تغییرات اسبیتی را در نمونه‌ها افزایش دیده می‌شود که هم‌نه نمونه‌های x = 0.

شکل 5: تغییرات باعث شده نمونه‌های ppy

شکل 4: نمونه‌های SEM
منحنی تغییرات بخش حقیقی پدیداری مغناطیسی LSMO / x ppy حسب مقدار نمونه‌های های در میدان x اورستن و در LSMO / x ppy مغناطیسی ۴۰۰۰–۸۰۰۰ اورستن و در میدان x ۲۵۰ کلوین.

خواص ترابردی الکتریکی از طریق ارتباط مستقیم بین دانه‌های صورت‌های گیر. رسانش در نمونه‌های بس یک‌بوده LSMO/ x ppy به سبب بزرگنمایی ارتباط مستقیم بین دانه‌های صورت‌های گیر و دیگری روی دانه‌ها است. علاوه بر این با توجه به این که مقاومت مرزدادگی خیلی بیشتر از مقاومت دوران‌هایه است. طیف سطح نرم‌سوزی مرزدادگی سبب افزایش مقاومت می‌شود. از آنجایی که ماده آلی‌نده LSMO در مرزدادگی و با به‌کارگیری بروزی بسته‌ای دانه‌هایی قرار گرفته است، ارتباط مستقیم بین دانه‌ها در نمونه‌های LSMO داده شده کم شده و نهایتاً مقاومت ترکیبات الیش داده شده افزایش می‌یابد. به نظر می‌رسد مقاومت زیاد مرزدادگیه متغیر به این شکل که رفتار دانه‌ها با فاصله‌های ۱۰۰–۲۰۰ کلوین و خیلی پایین از میدان کل دانه‌ای باعث می‌شود که اولاً دانه‌ها به اندازه کافی رشد نکرده باشند و ثانیاً ارتباط بین دانه‌ها نیز ضعیف باشد. بنابراین حتی مقاومت نمونه خالص نیز بالا نمی‌آید و دمای کمتر دانه‌هایی است.

شکل ۸ نمونه‌های صفر نسبت LSMO / x ppy از نمونه‌های ۱۰۰۰–۸۰۰۰ اورستن و در میدان x ۲۵۰ کلوین نشان می‌دهد. آنالیز نشان داد که با افزایش دانه‌ها صفر نسبت در LSMO / x ppy باید برای تعیین نمونه‌ها افزایش می‌یابد. علاوه بر این، مقاومت مغناطیسی x LSMO / ppy مشاهده شده است. در نمونه‌های الیشی
در دمای انباش نشان داده شده است. آنالیز XRD نشان می‌دهد که همه نمونه‌ها دارای ساختار نوزوجهه هستند. همان‌گونه‌که از شکل ملاحظه می‌شود، به ایزون غلظت‌های پایین و بالا پیوسته، قله مربوط به دیگر ساختار نشانده می‌شود. به طور اجمالی، در شکل XRD نشان داده شده است، همجنس ملاحظه می‌شود، شدت این دو قله با افزایش میزان آلیش افزایش می‌یابد. با مشاهده این شواید می‌توان چنین پیشنهاد داد که وجود دارد. به علاوه به ایزون مقدار آلیش بالاتر، TiO۲، با واکنش داده و حاصل شده است. شکل ۱۲ تغییرات پارامتر شکه با رابطه‌های با مقدار x نشان می‌دهد. همان‌گونه که در شکل ۱۴ ملاحظه می‌شود، پارامتر شکه که به ایزون غلظت‌های آلیش پایین، x < ۲۳، تقریباً ثابت است، اما به ایزون غلظت‌های آلیش بالاتر، x > ۲۳، شدت افزایش می‌یابد. این نتایج نشان می‌دهد که مقادیر x نسبت به مقادیر Mn۲+ در شکه پروسکاتیون، Ti۳+، ممکن است توجه‌آور باشد.

برای یک مิดان خاص برای آلیش‌های x < ۵ باین افزایش می‌یابد و برای x = ۵ کاهش یافته است. این رفتار در شکل ۱۱ نشان داده شده است. در این شکل ملاحظه می‌شود که بیشترین مغناطیسی در مرزهای نزدیکی برای NMR به مقدار ۸۰۰۰ به همراه آن رهنی و پراکنده.

برای برای یک میدان خاص برای آلیش‌های x < ۵ باین افزایش می‌یابد و برای x = ۵ کاهش یافته است. این رفتار در شکل ۱۱ نشان داده شده است. در این شکل ملاحظه می‌شود که بیشترین مغناطیسی در مرزهای نزدیکی برای NMR به مقدار ۸۰۰۰ به همراه آن رهنی و پراکنده.

برای برای یک میدان خاص برای آلیش‌های x < ۵ باین افزایش می‌یابد و برای x = ۵ کاهش یافته است. این رفتار در شکل ۱۱ نشان داده شده است. در این شکل ملاحظه می‌شود که بیشترین مغناطیسی در مرزهای نزدیکی برای NMR به مقدار ۸۰۰۰ به همراه آن رهنی و پراکنده.

برای برای یک میدان خاص برای آلیش‌های x < ۵ باین افزایش می‌یابد و برای x = ۵ کاهش یافته است. این رفتار در شکل ۱۱ نشان داده شده است. در این شکل ملاحظه می‌شود که بیشترین مغناطیسی در مرزهای نزدیکی برای NMR به مقدار ۸۰۰۰ به همراه آن رهنی و پراکنده.
شکل 13. تغییرات بخش حقيقی پدیده‌های مغناطیسی cfc بر حسب دمای نمونه‌های LSMO / xTiO از میانه‌های و 75 کلین. به دو مثاله در میانه‌ها 6 اورست. و پاسخ 233 هرتز.

شکل 14. تغییرات مقاومت الکتریکی علی نمونه‌های LS MO / xTiO از میانه‌های

شکل 15. مغناطیسومتر ترکیبات LS MO / xTiO در میانه‌های مغناطیسی 4-10000 اورست در دمای 77 کلین.
شکل ۱۸. نمونه‌های XRD نمودار نمونه‌های LSMO/۱۰۰NIO زاویه‌ای کوچک.

جانشینی جزئی Ti به جای Mn+ به شیمیابی. ضخیم شدن بیش از حد مرزادی می‌تواند دلیل دیگری برای کاهش آلیه‌شایی بالاتر باشد. در این حالت فرایند تونزی نمی‌تواند بین دانه‌ها صورت گیرد.[۲۶]

شکل ۱۹. نمودار MR برای نمونه‌های LSMO/۱۰۰NIO.

شکل ۲۰. نمودار XRD نمونه‌های LSMO/۱۰۰NIO.

نمونه‌ها افزایش می‌یابد. علاوه بر این، مساحت می‌شود که مقادیر MR به ازای میدان‌های داده شده برای آلبیش‌های گیاهی، افزایش پیدا می‌کند و برای آلیه‌شایی بالاتر x، با افزایش میزان آلیش کاهش می‌یابد. این رفتار در شکل ۱۸ برای میدان‌های ۸۰۰۰۰ اورستند نشان داده شده است. در مداد ۷۷ کلوین، مقادیر بیشینه x می‌شود که مقادیر MR برای x=۲۰ درصد می‌رسد. توئنیزین وابسته به اسید و LFMR پراکندگی در مرزادی‌ها توجیهی است برای افزایش MR در آلیش‌های گیاهی x، x، x، x. در حالی که کاهش در LFMR می‌تواند ناشی از تضعیف بدیده نبادل دوگانه به دلیل

شکل ۱۹. نمودار MR برای نمونه‌های LSMO/۱۰۰NIO.
در پیامده ماهیت می‌شود که همه نمونه‌ها دارای گذار با رمغناتئیس فرومگناطیس هستند. همچنین دمای گذار و مغناطیس با افزایش غلظت NiO به Ni$^{3+}$ می‌پردازند. این نتایج نشان می‌دهد که جانشینی جزئی بیون Ni$^{3+}$ با شعاع بیون کوچکتر جانشینی با Ni$^{3+}$ می‌شود. این تغییرات می‌تواند تأثیر وارونگی دانه‌ها را کاهش دهد و به نتیجه‌گیری از تغییرات مغناطیسی با افزایش مقدار آلیشی NiO در سطوح NiO بیشتر شده بهتر مشخص است.

۲۰. تغییرات بخش حقيقی پادیری مغناطیسی NiO در نمونه‌های SEM x=3 NiO/LSMO X

۲۱. تغییرات بخش حقيقی پادیری مغناطیسی NiO در نمونه‌های SEM x=5 NiO/LSMO X

۲۲. تغییرات بخش حقيقی پادیری مغناطیسی NiO در نمونه‌های SEM x=7 NiO/LSMO X
شکل ۲۲: تغییرات مقاومت بر حسب دما برای نمونه‌های LSMO/ x NiO

شکل ۲۰: تغییرات بخش حقيقی پذیرفتاری مغناطیسی بر حسب دما برای نمونه‌های LSMO/ x NiO در میدان ۶ اورست و ۳۳۳ هزیت رسید.

شکل ۲۱: تغییرات مقاومت الکتریکی بر حسب دما در LSMO/ x NiO

XRD جایگزینی یون Ni۲+ به جای یون Mn حاصل شده بود.

شکل ۲۳: تغییرات مقاومت الکتریکی جریان مستقیم بر حسب دما برای نمونه‌های LSMO/ x NiO در میدان مغناطیسی حداکثر مقداری Ni۲+ به جای یون Mn حاصل شده بود.

شکل ۲۴: تغییرات مقاومت الکتریکی جریان مستقیم بر حسب دما برای نمونه‌های LSMO/ x NiO در میدان مغناطیسی حداکثر مقداری Ni۲+ به جای یون Mn حاصل شده بود.
دیل دیگری که به الکتریکیتی که در الکتروهیالیک در آلیاژهای بالا می‌تواند‌باشد. شدن بشن از اندازه مزدوجها باشد.

تغییرات نمونه‌های

La$_{1-x}$Sr$_x$MnO$_3$ / x NiO / La$_{1-y}$Sr$_y$MnO$_3$ / x TiO$_2$

وجود دارد، در کنار سطحی اولیه تاکید

La$_{1-y}$Sr$_y$MnO$_3$ / x TiO$_2$

در است.

LSMO دستی ساخته شده در واژه که با آسیب

La$_{1-y}$Sr$_y$MnO$_3$ / x NiO

در تاکید در LSMO

b‌ به نظر می‌رسد که‌کرک‌بودن اندازه

La$_{1-x}$Sr$_x$MnO$_3$ / x NiO

با اختلالی در قلنده در

La$_{1-x}$Sr$_x$MnO$_3$ / x TiO$_2$

مقاومت و همچنین پیچیده‌به‌مقاومت در دماهای پایین

می‌تواند خواص

La$_{1-x}$Sr$_x$MnO$_3$ / x NiO

آلبیس تاکید در TiO$_2$

La$_{1-y}$Sr$_y$MnO$_3$ / x TiO$_2$

سطح مزدوجها را پیش‌تر که نظر به خود قرار دهند و آثار

مزدوجها در یکERCفرون

La$_{1-y}$Sr$_y$MnO$_3$ / x NiO

ماده با دانه‌فرمول‌گذاری

La$_{1-x}$Sr$_x$MnO$_3$ / x NiO

در میان دانه‌فرمول‌گذاری

LSMO

با بافت می‌شود که جهت‌گیری گشتاورهای مغناطیسی

آلبیس در خلاف جهت‌هم قرار گیرنده. لذا با عملیات بیشتر

لاسیهای گشتاور به جهت‌هم و توان‌المنی اسپینی بستر

صورت می‌گیرد و مغناطیسم مقاومت در میزان بیشتری افزایش می‌یابد.[3-29]

شکل 23: نمودار تغییرات MR بر حسب دما برای نمونه‌های

در مزدوجها می‌شود.

در آنتی‌نیون

Mn جاذب‌شون

پدیده تبادل دوگانه تضعیف می‌شود. به همین دلیل کاهش

می‌باید و مقاومت با انزالی‌افراشی

NiO می‌باید. همچنین حضور NiO در مزدوجها حالت بلزنی در

سطح‌هایی نیستن در مراحل مشابه

La Sr MnO / x NiO

با مشاهده منحنی تغییرات مقاومت بر حسب دما، افزایش

قابل اندازه در دماهای بالای نمونه‌های الکتروهیالیک

شده می‌شود. این نوع رفتار در مبانی‌های برای دانه‌های

کوچک و همچنین در نمونه‌های فرمالگی طیف مشابههای

شده است که می‌توان آن را به صورت شدن الکترواستاتیکی

حالمهای بار در مرکز‌ها ارتباط دارد.[29]

شکل 23: نمودار تغییرات مقاومت بر حسب دما برای

LSMO / x NiO

در میان مغناطیسی انتقال MR / x NiO

می‌باید. مقاورد

LSMO / x NiO

یافته و با افزایش پیوند آن‌الکتروی کاهش می‌یابد. توانالنی

و با مشاهده منحنی است. در مراحل مشابه

LSMO / x NiO

مناسب برای افزایش

کاهش هم‌مان

x 0 5

x 0 5

NiON

و تضعیف بیش‌از‌اندازه بی‌پدیده‌بودگانه است.

Mn
گزار مغناطیسی با افزایش درصد ناخالصی افزایش یافته است.

به نظر می‌رسد که حضور ماده فرومغناطیسی پایه در
مرزدانه و طراحی دانه‌ها باعث افزایش بینظمی اسپینی شده
خود اتمی را یکی که شدن گزار مغناطیسی می‌شود. اما تاثی
ماده‌ای گزار نمونه‌ها باید معنی است که
LaMnO۳
واکنش نداشته وارد ساختار آن نشده است.

شکل ۲۴. بازده‌ایکس نمونه‌های
La۰۸Sr۰۲MnO۳ / x LaMnO۳

شکل ۲۵. تغییرات پیوستاری مغناطیسی نمونه‌های
La۰۸Sr۰۲MnO۳ / x LaMnO۳

شکل ۲۶. تغییرات مقاومت الکتریکی نمونه‌های
La۰۸Sr۰۲MnO۳ / x LaMnO۳

در شکل ۲۶ تغییر مداوم مقاومت الکتریکی نمونه‌ها
با دما دیده می‌شود که در فرکانس (Hz) ۳۳۳ و میدان ۱
ارسیدن اندام‌گیری شده است. همینطور که مشاهده می‌شود،
نمونه‌ها در دما بالا پارامغناطیسی و در دما پایین
فرومغناطیسی هستند و گزار از حالت پارامغناطیسی به
فرومغناطیسی در همه نمونه‌ها دیده می‌شود. از مقاومت نمونه‌ها درمی‌باشد که دما گزار نمونه‌ها به این تغییر تکرده اما پهنای
مغناطیس‌های دانه‌های

**شکل 27. تغییرات مغناطیس‌های دانه‌های

$La{}_{0.5}Sr{}_{0.5}MnO_3$ با زمان.**

مغناطیس‌های دانه‌های

$La{}_{0.5}Sr{}_{0.5}MnO_3$ با زمان.

**شکل 28. طرح واری دانه‌های

$La{}_{0.5}Sr{}_{0.5}MnO_3$ با زمان.**

مغناطیس‌های دانه‌های

$La{}_{0.5}Sr{}_{0.5}MnO_3$ با زمان.

از ورود تناخل‌سازی به مرزهای کمتر خود را نعیم سازد و در

نتیجه برای رسیدن به پیشنهای مغناطیس‌های درصد بالایی. 15% از

ناخل‌سازی مورد نیاز است. این باید به دویل کلی مورد ایمنی به

$LSMO/ x NiO$ و دمای کلی هم‌سازی نمونه‌های

و در نتیجه عدم ورود تناخل‌سازی به داخل $LSMO/ x TiO_2$

دانه‌های فاز زنده نیز می‌توانند دیگر برای رسیدن به

مغناطیس‌های پیشنهای باشد.

همانطور که قبلاً بحث شد، جانشینی به Ti⁴⁺ و Ni⁴⁺ می‌توانست عاملی برای تضعیف مغناطیس‌های $La{}_{0.5}Sr{}_{0.5}MnO_3$ باشد. در رابطه با ترکیب

شیمی که نمایی از این ترکیب تیمزاسپانیست. اما در بقیه

ترکیبات این الکتریکی بود. همچنین دمای کلی هم‌سازی در

این ترکیب با مراکز پایبند از دیگر ترکیبات بود، در نتیجه

برای رسیدن به پیشنهای مغناطیس‌های درصد بالاتری از

ناخل‌سازی مورد نیاز است [23 و 24].

5.3 بررسی اثر اندازه دانه‌های

ساختاری الکتریکی و مغناطیس‌های

$La{}_{0.5}Sr{}_{0.5}MnO_3$ بر خواص

ساختاری الکتریکی و مغناطیس‌های

با استفاده از دستگاه آنالیز لیزری، اندازه دانه‌های

$La{}_{0.5}Sr{}_{0.5}MnO_3$ بر خواص ساختاری الکتریکی و مغناطیسی

پیوسته 20 14.24.78 و 27 105 سانتیمتر شده به دست آمده‌که در شکل 28 نشان داده شده است. بنابراین، با توجه به شکل کاهش
شکل 29. تصاویر SEM گرفته شده از نمونه‌های \(\text{La}_{0.5}\text{Sr}_{0.5}\text{MnO}_3 \) که 28 و 72 ساعت آسیاب شده‌اند.

شکل 30. اندازه‌گیری XRD از نمونه‌های \(\text{La}_{0.5}\text{Sr}_{0.5}\text{MnO}_3 \) که 28 و 72 ساعت آسیاب شده‌اند.

واضح است که با افزایش زمان آسیابی، اندازه‌شاخه از نمونه‌ها کاملاً مشاهده شد.

شکل 28 تصاویر میکروسکوپ الکترونی رویش‌های مربوط به نمونه‌های حجمی 1.1 و 102 ساعت آسیابی شده‌اند.
مطالعه تأثیر آلایش و اثر اندازه دانه‌ها بر خواص ساختاری، الکتریکی و مغناطیسی منانگنت‌های $La_{0.5}Sr_{0.5}MnO_3$.

شکل 31. منحنی باش، نتایج تغییرات ذیل مغناطیسی ممانگنت‌های $La_{0.5}Sr_{0.5}MnO_3$ به دو آسیاب آسیاب ۲۸ و ۲۷ ساعت آسیاب شده.

شکل 32. تغییرات مقاومت الکتریکی نمونه‌ها به $La_{0.5}Sr_{0.5}MnO_3$ به دو آسیاب آسیاب ۲۸ و ۲۷ ساعت آسیاب شده.

شکل 33. تغییرات مغناطیسی نمونه‌ها به $La_{0.5}Sr_{0.5}MnO_3$ به دو آسیاب آسیاب ۲۸ و ۲۷ ساعت آسیاب شده.

شکل 34. انرژی MR، از انجام شده در میدان ۵۰۰۰ اورست نشان می‌دهد. انجام شده در MR انجام داده است. HFMR می‌شود با کوچک سنجش دانه‌ها از آفتاب، کوچک سنجش دانه‌ها با کوچک سنجش دانه‌ها است [22].

مراجع