اندازه گیری ضریب شکست غیرخطی در شیشه‌های آلاینده به بلورهای نیمرسانا

مقدمه

ازجمله کمیتهای مورد توجه در این تحقیق ضریب شکست غیرخطی است. در حالی که ضریب شکست به صورت زیر تعریف می‌شود

\[n = n_0 - n_f \]

که در آن \(n_f \) ضریب شکست معمولی، \(n_0 \) شدت میدان ایپتیک اعمال شده بر محیط و \(n \) ضریب شکست غیرخطی است.

تاکنون جبران وضوح در سیستم‌های نوری به تعمیر نیاز داشته، است که

تداخلسنجی [1, 2] آمیزشی چهارموج \(4, 5 \) و جاهزی [6] از جمله این روش‌ها هستند. در تداخلسنجی، نمونه در یک از بازه‌های داخلی سنج‌های‌پرداز، نمودار نمودار می‌شود. برای مثال، در مورد نمونه فابیو-پرورد، فرآیند می‌بایست به‌صورت زیر عمل نمود.

روش وجود جذب غیرخطی در نمونه (که معمولاً وجوه دارد) باعث کاهش اندازه‌گیری می‌شود.

در این مقاله مشکلات جهت تعیین ضریب شکست غیرخطی ارائه می‌شود. در یک روش اساس کار تحلیل نشانگارش داخلی در سطح موج پاره‌تایید، نمونه در تصویر نمودار می‌شود. در روشهای داخل موج پراشی، از نظر فازی که در نتیجه آمیزش پاره‌تایید نمونه در تصویر نمودار می‌شود. در این عناصر نیم‌به‌روش شیشه‌های OG550 در سیستم‌ها استفاده شده است.
شماره ۲

میکروبرهای

بلورهای نیم‌رسانایی، در این شیمه به صورت نقطه‌کانوئی با ابعادی بین C_{3v} Se_{1-x} CdS، ساخته شده‌اند. این میکروبرهای نقطه‌کانوئی با ابعادی بین C_{3v} Se_{1-x} CdS، ساخته شده‌اند.

تمام تنش‌ها و نیروی تنشی در این میکروبرهای نقطه‌کانوئی با ابعادی بین C_{3v} Se_{1-x} CdS، ساخته شده‌اند.

$\Delta = \frac{\lambda}{\sin(\theta/2)}$}

که در آن θ زاویه میان امتدادهای انتشار در سطح موج داخلی‌کننده است. در پدیده آمیزی از سوژه (۱۱۱) هریک از سوژه‌های سازنده توری توسط خورد تری پراشیده می‌شوند. در صورتی که توری ترش شده، جمع‌بندی باشد، پراش از آن نابود نمی‌شود. در صورتی که توری نازک باشد، نتیجه نابودی است. در صورتی که توری نازک باشد، نتیجه نابودی است.

$\phi = \frac{\pi n d}{\lambda} \cos \theta_i + \pi \Delta \phi$

که در آن λ طول موج باریکه فردی در ناحیه و ضریب شکست n معمولی تهیه در این طول موج است. در صورتی که ناحیه با ضریب شکست n طاق با شکل ۱ در این تهیه وجود داشته باشد و باریکه فردی با زاویه زنیکی به عنوان به ناحیه $\Delta n = n - n_0$ انتقال نفوذی در ناحیه

$\Delta \phi = \frac{\pi n d}{\lambda} \Delta \phi$

که در آن λ طول موج باریکه فردی در ناحیه و ضریب شکست n معمولی تهیه است. این تفکیک انتقال فاز باعث کاهش یافته خریداری ناحیه

مناظر در ناحیه تداخل در دارایی موج. شکل ۱ بازتاب از تهیه با ضریب شکست n, ناشی از ضریب شکست n می‌باشد.
۷- پدیده خودکاوشی

هنگامی که یک باریکه لیزر پرتو خارجی بتواند به شدت شدت ایجاد کنند و به صورت غیرخطی برای دستگاه‌های دیگری استفاده نشان دهنده خودگیری دارد. در این حالت، شدت و ضریب شکست به صورت غیرخطی می‌تواند افزایش یابد. جرم مواد مایع به صورت زیر به سادگی می‌تواند ایجاد شود:

\[
\rho = \left(\frac{n \lambda}{\sqrt{\pi}} \right) e^{-r^2/\lambda} \leq r^2/\lambda
\]

شکل انجام شده نشان می‌دهد که با افزایش شدت، شدت شکست به صورت غیرخطی به سختی می‌گردد. در این حالت، شدت و ضریب شکست به صورت زیر به سادگی می‌تواند ایجاد شود:

\[
R = \rho - L
\]

باتری، با افزایش کاهش شدت غیرخطی می‌تواند نشان دهد که نتایج می‌تواند ایجاد شود.

\[
\frac{f}{\nu d \Delta n} = R_1 n(z)
\]

به‌طور کل برای رابطه (۷) و (۸) تغییرات ضریب شکست با می‌تواند نشان دهد که در کم‌کمیابه قابل اندازه‌گیری هستند.

\[
\Delta n = \frac{f}{\nu d \Delta n} \left(\frac{1}{R_1} - \frac{1}{R_2} \right)
\]

اکنون فرض می‌کنم سطح موجی عملاً نشست و با توان کم، به‌طوری که هیچ اثر غیرخطی در محیط نخواهد کرده. باریکه‌های در دو اثر (ب) و (ج) یک‌دیگر، به صورت غیرخطی به‌وجود آمده است. PDO به صورت باریکه‌های یک‌دیگر به صورت غیرخطی به‌وجود آمده است. DPU به‌طور کلی در دو اثر (ب) و (ج) تاکید شده است. با افزایش شدت غیرخطی، باریکه‌های دیگری وجود ندارند. به‌طور کلی در دو اثر (ب) و (ج) تاکید شده است. با افزایش شدت غیرخطی، باریکه‌های دیگری وجود ندارند.
طرح کلی آزمایش آب در شکل ۵ آمده است. در این آزمایش از هماهنگی دوم یک لیزر Q سوپریم و Nd-YAG برای تب و با همان‌گونه‌ای تأثیر ۲۰mj با توان جذب‌نام‌های‌تور استفاده شده است. نتایج نشان‌دهنده تغییرات شایع‌تر و تغییرات سطحی را به ابعاد سه‌بعدی شکل ۵ در یک لایه PBS بیپر در حالت قطعی‌سازی می‌شود. در مورد نمونه‌های مختلف برای نمونه‌هایی از شیشه‌های OG550 و ترمه‌های آب‌زیستی از تغییرات برای تغییرات شایع‌تر و تغییرات سطحی را به ابعاد سه‌بعدی شکل ۵ در یک لایه PBS بیپر در حالت قطعی‌سازی می‌شود. در مورد نمونه‌های مختلف برای نمونه‌هایی از شیشه‌های OG550 و ترمه‌های آب‌زیستی از تغییرات برای تغییرات شایع‌تر و تغییرات سطحی را به ابعاد سه‌بعدی شکل ۵ در یک لایه PBS بیپر در حالت قطعی‌سازی می‌شود. در مورد نمونه‌های مختلف برای نمونه‌هایی از شیشه‌های OG550 و ترمه‌های آب‌زیستی از تغییرات برای تغییرات شایع‌تر و تغییرات سطحی را به ابعاد سه‌بعدی شکل ۵ در یک لایه PBS بیپر در حالت قطعی‌سازی می‌شود. در مورد نمونه‌های مختلف برای نمونه‌هایی از شیشه‌های OG550 و ترمه‌های آب‌زیستی از تغییرات برای تغییرات شایع‌تر و تغییرات سطحی را به ابعاد سه‌بعدی شکل ۵ در یک لایه PBS بیپر در حالت قطعی‌سازی می‌شود. در مورد نمونه‌های مختلف برای نمونه‌هایی از شیشه‌های OG550 و ترمه‌های آب‌زیستی از تغییرات برای تغییرات شایع‌تر و تغییرات سطحی را به ابعاد سه‌بعدی شکل ۵ در یک لایه PBS بیپر در حالت قطعی‌سازی می‌شود. در مورد نمونه‌های مختلف برای نمونه‌هایی از شیشه‌های OG550 و ترمه‌های آب‌زیستی از تغییرات برای تغییرات شایع‌تر و تغییرات سطحی را به ابعاد سه‌بعدی شکل ۵ در یک لایه PBS بیپر در حالت قطعی‌سازی می‌شود. در مورد نمونه‌های مختلف برای نمونه‌هایی از شیشه‌های OG550 و ترمه‌های آب‌زیستی از تغییرات برای تغییرات شایع‌تر و تغییرات سطحی را به ابعاد سه‌بعدی شکل ۵ در یک لایه PBS بیپر در حالت قطعی‌سازی می‌شود. در مورد نمونه‌های مختلف برای نمونه‌هایی از شیشه‌های OG550 و ترمه‌های آب‌زیستی از تغییرات برای تغییرات شایع‌تر و تغییرات سطحی را به ابعاد سه‌بعدی شکل ۵ در یک لایه PBS بیپر در حالت قطعی‌سازی می‌شود. در مورد نمونه‌های مختلف برای نمونه‌هایی از شیشه‌های OG550 و ترمه‌های آب‌زیستی از تغییرات برای تغییرات شایع‌تر و تغییرات سطحی را به ابعاد سه‌بعدی شکل ۵ در یک لایه PBS بیپر در حالت قطعی‌سازی می‌شود. در مورد نمونه‌های مختلف برای نمونه‌هایی از شیشه‌های OG550 و ترمه‌های آب‌زیستی از تغییرات برای تغییرات شایع‌تر و تغییرات سطحی را به ابعاد سه‌بعدی شکل ۵ در یک لایه PBS بیپر در حالت قطعی‌سازی می‌شود. در مورد نمونه‌های مختلف برای نمونه‌هایی از شیشه‌های OG550 و ترمه‌های آب‌زیستی از تغییرات برای تغییرات شایع‌تر و تغییرات سطحی را به ابعاد سه‌بعدی شکل ۵ در یک لایه PBS بیپر در حالت قطعی‌سازی می‌شود. در مورد نمونه‌های مختلف برای نمونه‌هایی از شیشه‌های OG550 و ترمه‌های آب‌زیستی از تغییرات برای تغییرات شایع‌تر و تغییرات سطحی را به ابعاد سه‌بعدی شکل ۵ در یک لایه PBS بیپر در حالت قطعی‌سازی می‌شود. در مورد نمونه‌های مختلف برای نمونه‌هایی از شیشه‌های OG550 و ترمه‌های آب‌زیستی از تغییرات برای تغییرات شایع‌تر و تغییرات سطحی را به ابعاد سه‌بعدی شکل ۵ در یک لایه PBS بیپر در حالت قطعی‌سازی می‌شود. در مورد نمونه‌های مختلف برای نمونه‌هایی از شیشه‌های OG550 و ترمه‌های آب‌زیستی از تغییرات برای تغییرات شایع‌تر و تغییرات سطحی را به ابعاد سه‌بعدی شکل ۵ در یک لایه PBS بیپر در حالت قطعی‌سازی می‌شود. در مورد نمونه‌های مختلف برای نمونه‌هایی از شیشه‌های OG550 و ترمه‌های آب‌زیستی از تغییرات برای تغییرات شایع‌تر و تغییرات سطحی را به ابعاد سه‌بعدی شکل ۵ در یک لایه PBS بیپر در حالت قطعی‌سازی می‌شود. در مورد نمونه‌های مختلف برای نمونه‌هایی از شیشه‌های OG550 و ترمه‌های آب‌زیستی از تغییرات برای تغییرات شایع‌تر و تغییرات سطحی را به ابعاد سه‌بعدی شکل ۵ در یک لایه PBS بیپر در حالت C
به منظور اندازه‌گیری تغییر ضریب شکست براساس پدیده غوردنه‌گرایی، شعاع‌های نیزه‌های دایره‌ای برای حالتی که بیشتر، جای‌به‌جایی وجود داشت اندازه‌گیری شدند. بار دیگر، گیاهی که با کاهش نوار باریک‌تر نسبت به جای‌به‌جایی محوش نیز شعاع نیزه‌ها از اندازه‌گیری شدند. سپس، با استفاده از رابطه (11) و (10) شعاع‌های انتخابی سطح موج کریوی را محاسبه کردند، در حالت نوار باریک‌تر (R_p) محاسبه شدند. مساحت آن در حضور باریک‌تر (R_p) با نوار باریک، شعاع انتخابی سطح موج افزایش می‌یافت (R_p) که نشان دهنده تغییر مثبت ضریب شکست است. با اندازه‌گیری شعاع‌های نیزه‌های دایره‌ای، میانگین شعاع انتخابی سطح موج کریوی به استفاده از هر دو پدیده مشاهده شده و از دو روش مختلف، علامت و مقدار تغییرات ضریب شکست را می‌توان محاسبه کرد. با اندازه‌گیری جای‌به‌جایی نیزه‌های خاک در چندین آزمایش روی چسب‌های OG550 و استفاده از رابطه (12) تغییر ضریب شکست به‌روز مقدار زیر به‌دست آمد:

\[\Delta n = \frac{1}{10} \times (3.4 \pm 0.5) \times 10^3 \]

جهت جای‌به‌جایی نیزه‌های خاکی، نیاز به دهد که تغییر ضریب شکست مشتی است.

شکل 2. نیزه‌های پازینی کاوه در حالت مختلف (الف) و (ج) در حباب پمپ برای چسب‌های OG550، (د) در حباب پمپ برای چسب‌های OG550، (ه) در حباب پمپ با فیلتر اکسیده‌شده، (ب) و (در) به ترتیب در حضور باریک با فیلترگی مواجی و عمودی نسبت به فیلترگی کاوه برای چسب‌های OG550 که نسبت به فیلترگی کاوه برای یک نواحی کوارتز.
شماره ۲

قبل از برخورد به نمونه \(R \) و بعد از عبور از نمونه \(R _ { \text{تیریگی نوری}} \) به دست می‌آید:

\[
R _ { \text{تیریگی نوری}} = R _ { 1} \pm 0.2 \text{ cm}
\]

در ناحیه (۹)، شیب ممکن است مشاهده شود از ناحیه \(R \) یا \(R _ { \text{تیریگی نوری}} \) به دست می‌آید.

\[
t = 100 \times \frac{10^{15}}{10} \text{ cm}^{-1}
\]

تول و نمونه با پیم در این آزمایش‌ها بود. در نتیجه با شروع فوراً در مقدار ضمه شکست غیرخطی بهتری نمایش داده می‌شود. با دانستن این نتایج، نمونه‌های این مقدار تریگی نوری است که در این نوع برخورد سه‌شکلی همه مشاهده می‌شود. مدت زمان استوایی زمان به‌طور کامل به دست می‌آید.

\[
\Delta n = \frac{10^{15}}{10} \times 10 = 10^{15} \text{ cm}^{-1} W
\]

تول و نمونه با پیم در این آزمایش‌ها بود. در نتیجه با شروع فوراً در مقدار ضمه شکست غیرخطی بهتری نمایش داده می‌شود. با دانستن این نتایج، نمونه‌های این مقدار تریگی نوری است که در این نوع برخورد سه‌شکلی همه مشاهده می‌شود. مدت زمان استوایی زمان به‌طور کامل به دست می‌آید.

\[
\Delta n = \frac{10^{15}}{10} \times 10 = 10^{15} \text{ cm}^{-1} W
\]

تول و نمونه با پیم در این آزمایش‌ها بود. در نتیجه با شروع فوراً در مقدار ضمه شکست غیرخطی بهتری نمایش داده می‌شود. با دانستن این نتایج، نمونه‌های این مقدار تریگی نوری است که در این نوع برخورد سه‌شکلی همه مشاهده می‌شود. مدت زمان استوایی زمان به‌طور کامل به دست می‌آید.

\[
\Delta n = \frac{10^{15}}{10} \times 10 = 10^{15} \text{ cm}^{-1} W
\]
در پایان لازم به ذکر است که عامل مهم خطا در آزمایش بازسازی سطح موج کروی، نوسان و اگرایی باریکه لیزر است. در مرحله دیگر این طرح، با اندازه‌گیری همخوانی شما انجام شده و مهم‌ترین شرایط موج کروی قبل و بعد از برخورد به نمونه، توسط دو آشکارساز که با هم همخوانی داشته، این نوسان‌ها حذف خواهند شد. همچنین اندازه‌گیری می‌رود که با استفاده از تغییرات معنایی (شتاب سطح از مورد ثانیه) بتوان اطلاعات بیشتری در مورد منشا پیدا کرده که فیزیک‌دان، دانشگاهی را به‌وجود می‌آورد که می‌تواند.