تحلیل رفتار DNA در گذر از ریز ساختارهای بر اساس معادله فوکر-پلانک و مدل سد آتروپی

ناهید ملکی جیرسرایی، ۱ آرین قاضی فاطمی، ۲ محمدی بنریکو و شاهین روانی ۳

۱. آزمایشگاه سیستم‌های بیضی‌ی، گرو فیزیک، دانشکده علوم پایه، دانشگاه الزهرا، اصفهان، تهران
۲. دانشکده فیزیک، دانشگاه صنعتی شریف، خیابان آزادی، تهران
۳. مرکز تحقیقات بیوفیزیک و بیوشیمی، دانشگاه تهران، خیابان اقتلاع، تهران

چکیده
حرکت مولکول‌های DNA از میان یک آزاده شوی شده است سایر یز نگهداری می‌زند مولکول‌های DNA به‌وسیله کامپوتر شیب زمین شده و معادله فوکر-پلانک حاکم بر رفتار آنها به قسمی سازی عده‌ی دیده‌ای دیانیک برنهی. با روش‌های جنگلی توانمند، واریانس و میانگین (م) در یک مکان معین برای مولکول‌های مختلف DNA و با اتصال به‌وسیله ناحیه حاشیه از نتایج پیشنهاد است. با یک پیشنهاد DNA در ریز‌ساختار متفاوت (-template DNA) روش فیزیک خود را برای DNA توانمند شیب زمین و در ریزی (template DNA) با طول متوسط می‌داند. میانگین vero ۱۵۰۰ در ریزی (template DNA) با طول متوسط می‌داند. میانگین vero ۱۵۰۰ نسبت به ۲۰۰۰ می‌داند.

واژه‌های کلیدی: فوکر-پلانک، مدل سد آتروپی، معادله لاتون، زمان تأخیر

۱. مقدمه
پیشرفت‌های چشمگیری اخیر در زمینه مولکول‌های، که عصر جدیدی را بر پیش‌کشی و پیش‌کشی‌گذاری گشوده است، منکسی بر‌اصلاح روش‌های مطالعه مولکول‌های زیستی است. این روش‌ها، مولکول‌های DNA است. بر اساس بیشتری در نتایج نوشتاری زنده DNA

است و انتقال می‌روید تفاوت فرایندی در تشخیص بیماری‌های بیماری‌های نوزادی کنن.
مجراهای مورد استفاده قابل برداشتن از این نوع مجارهای پهن بودند. ساختار این سیستم شیب بودند. البته باید مجا، شدت میدان الکتریکی و برخی از عوامل آزمایشگاهی دیگر که باید نوشتاران به کار رفته نمفتوند بودند. با وجود این یک اختلاف بایزی ناتوانی بودند.

شکل 1: دایگرام فاز حاصل از بهبود سایز پاترون‌های مولکول‌های کوچک

DNA سیستم می‌گردد. در زریم-1 مولکول‌های بزرگر و مولکول‌های کوچکر DNA پیشنهاد می‌گردد ور. رژیم-2 مولکول‌های کوچکر

پیشنهاد می‌گردد [19].

یکناوخیت جدا سازی کردن [5]. در سال 1992 وکمیوت و استفاده کردن و مشاهدات خود را با استفاده از میکروسکوپی ای فلوئورسکوپی و تفکیک مولکول‌های محرّق DNA در یک آرایه گزارش کردن [6]. با پیشنهاد صنعت ریزساختارها، تلاقی یکنواخت جداسازی مولکول‌های DNA با کمک آب‌های مصرفی گردید. با تعلیق ابتدای آرایه‌ها

پیشنهاد جداسازی DNAهای عملی جداسازی DNAها را با سرعت و وضعیت می‌توان عمل جداسازی [18].

چشمه‌گیری انجام داد [5].

\[y = 276,78 \times x^{-0,74424} \quad R= 0,97069 \]

\[y = 1881,3 \times x^{-0,96591} \quad R= 0,99737 \]

\[\text{Electric Field (V/cm)} \]

\[\text{DNA length (kbp)} \]

\[\text{r. Two-state migration} \]

\[\text{V. Inatomi} \]

\[\text{S. Streek} \]

1. Volkmuth
2. Austin
3. Han
4. Duong
فیزیک و علوم دیگر توصیف می‌کنند به‌وسیله فرآیندهای مارکوف پیوسته در زمان مورد مطالعه قرار گرفته‌اند [19,25]. یک روش مناسب برای حل یک معادله فیزیک‌پالانک، شبیه‌سازی عددی دینامیکی برای است. در این روش، با در نظر گرفتن از هر مدل معادله فیزیک‌پالانک یک مدل تبدیل صافی، از این مدل معادله دیفرانسیل و به‌کارگیری‌هایی از هر دو معادله، گام‌های عددی محدود، جمله اشتراک یا می‌توان از اعداد صافی، شبیه سازی کرد. اگر این روش را می‌توان به عناوان تولید مجموعهايی از مسیرهایی در نظر گرفت. با متوسط گیری، روندهای مسیرها می‌توانند درباره همان‌طوری‌اند.

آماری میانگین: \(A(t) \) و واریانس و هم‌چنین توان "

هم‌بستگی جند زمانی و \(A(t)B(t)C(t') \) و \(A(t)B(t') \) و غیر اطلاعاتی بسته‌ای [19] ما در تلاش بیشین را در گذر از شبکه‌های شش وجهی بررسی مولکول‌ها و DNA را مدل می‌کنیم. DNA فیزیک‌پیالانک را که در شبیه‌سازی پیشین با گام‌های مکانیکی انجام داده بودیم [19] اینبار با روش اول انجام دادیم. مقایسه‌ای این دو روش نشان داد که داده‌ها به گزارش آنها خواهد پرداخت.

2. مدل و شبیه‌سازی

در مدلی که در این مقاله برای حل DNA در زیر معرفی‌شده، روش صافی، شبیه‌سازی و روش DNA نظر گرفته شده. گام‌های صافی مسیری را طی می‌کند. (شکل 2) این گاه‌ها هم میانگین درون برای اتفاقات و اطمینان مولکول‌های میانگین و هم تأثیر گرفته از تبدیل صافی از حروف‌های شش وجهی می‌باشد و در داده‌ی زمان تاکری در مدل‌ها و DNA. در حالت میانگین مسیری DNA در این مدل، به نظر یک زنجر مارکف در نظر گرفته شده است. در این مدل، مولکول‌های DNA از مدل ساختگی توسط و اعضا فیزیک‌پیالانک با وابستگی به مشخصه‌پالانک در بشپرت یا DNA مکانیکی با وابستگی به مشخصه‌پالانک در بشپرت یا DNA. در این مدل، به نظر یک زنجر مارکف در نظر گرفته شده است. در این مدل، مولکول‌های DNA از مدل ساختگی توسط و اعضا فیزیک‌پیالانک با وابستگی به مشخصه‌پالانک در بشپرت یا DNA. در این مدل، به نظر یک زنجر مارکف در نظر گرفته شده است. در این مدل، مولکول‌های DNA از مدل ساختگی توسط و اعضا فیزیک‌پیالانک با وابستگی به مشخصه‌پالانک در بشپرت یا DNA. در این مدل، به نظر یک زنجر مارکف در نظر گرفته شده است. در این مدل، مولکول‌های DNA از مدل ساختگی توسط و اعضا فیزیک‌پیالانک با وابستگی به مشخصه‌پالانک در بشپرت یا DNA. در این مدل، به نظر یک زنجر مارکف در نظر گرفته شده است. در این مدل، مولکول‌های DNA از مدل ساختگی توسط و اعضا فیزیک‌پیالانک با وابستگی به مشخصه‌پالانک در بشپرت یا DNA. در این مدل، به نظر یک زنجر مارکف در نظر گرفته شده است. در این مدل، مولکول‌های DNA از مدل ساختگی توسط و اعضا فیزیک‌پیالانک با وابستگی به مشخصه‌پالانک در بشپرت یا DNA. در این مدل، به نظر یک زنجر مارکف در نظر گرفته شده است. در این مدل، مولکول‌های DNA از مدل ساختگی توسط و اعضا فیزیک‌پیالانک با وابستگی به مشخصه‌پالانک در بشپرت یا DNA. در این مدل، به نظر یک زنجر مارکف در نظر گرفته شده است. در این مدل، مولکول‌های DNA از مدل ساختگی توسط و اعضا فیزیک‌پیالانک با وابستگی به مشخصه‌پالانک در بشپرت یا DNA. در این مدل، به نظر یک زنجر مارکف در نظر گرفته شده است. در این مدل، مولکول‌های DNA از مدل ساختگی توسط و اعضا فیزیک‌پیالانک با وابستگی به مشخصه‌پالانک در بشپرت یا DNA. در این مدل، به نظر یک زنجر مارکف در نظر گرفته شده است. در این مدل، مولکول‌های DNA از مدل ساختگی توسط و اعضا فیزیک‌پیالانک با وابستگی به مشخصه‌پالانک در بشپرت یا DNA. در این مدل، به نظر یک زنجر مارکف در نظر گرفته شده است. در این مدل، مولکول‌های DNA از مدل ساختگی توسط و اعضا فیزیک‌پیالانک با وابستگی به مشخصه‌پالانک در بشپرت یا DNA. در این مدل، به نظر یک زنجر مارکف در نظر گرفته شده است. در این مدل، مولکول‌های DNA از مدل ساختگی توسط و اعضا فیزیک‌پیالانک با وابستگی به مشخصه‌پالانک در بشپرت یا DNA. در این مدل، به نظر یک زنجر مارکف در نظر گرفته شده است. در این مدل، مولکول‌های DNA از مدل ساختگی توسط و اعضا فیزیک‌پیالانک با وابستگی به مشخصه‌پالانک در بشپرت یا DNA. در این مدل، به نظر یک زنجر مارکف در نظر گرفته شده است. در این مدل، مولکول‌های DNA از مدل ساختگی توسط و اعضا فیزیک‌پیالانک با وابستگی به مشخصه‌پالانک در بشپرت یا DNA. در این مدل، به نظر یک زنجر مارکف در نظر گرفته شده است. در این مدل، مولکول‌های DNA از مدل ساختگی توسط و اعضا فیزیک‌پیالانک با وابستگی به مشخصه‌پالانک در بشپرت یا DNA. در این مدل، به نظر یک زنجر مارکف در نظر گرفته شده است. در این مدل، مولکول‌های DNA از مدل ساختگی توسط و اعضا فیزیک‌پیالانک با وابستگی به مشخصه‌پالانک در بشپرت یا DNA. در این مدل، به نظر یک زنجر مارکف در نظر گرفته شده است. در این مدل، مولکول‌های DNA از مدل ساختگی توسط و اعضا فیزیک‌پیالانک با وابستگی به مشخصه‌پالانک در بشپرت یا DNA. در این مدل، به نظر یک زنجر مارکف در نظر گرفته شده است. در این مدل، مولکول‌های DNA از مدل ساختگی توسط و اعضا فیزیک‌پیالانک با وابستگی به مشخصه‌پالانک در بشپرت یا DNA. در این مدل، به نظر یک زنجر مارکف در نظر گرفته شده است. در این مدل، مولکول‌های DNA از مدل ساختگی توسط و اعضا فیزیک‌پیالانک با وابستگی به مشخصه‌پالانک در بشپرت یا DNA. در این مدل، به نظر یک زنجر مارکف در نظر گرفته شده است. در این مدل، مولکول‌های DNA از مدل ساختگی توسط و اعضا فیزیک‌پیالانک با وابستگی به مشخصه‌پالانک در بشپرت یا DNA. در این مدل، به نظر یک زنجر مارکف در نظر گرفته شده است. در این مدل، مولکول‌های DNA از مدل ساختگی توسط و اعضا فیزیک‌پیالانک با và...
هدف داشته‌یم: تخمین آزمودن ضریب پخش‌کننده که از روش قیلی به دست آورده‌ایم. دو روش به‌دست آوردن آن در این روش با جدول‌های مابه‌های مناسب، و ارایه‌ای با بی‌توجهی از بررسی‌های روشن کاری در بررسی ممامته‌ها تحقیکی متفاوتی نسخته، و با مقایسه نتایج با نتایج حاضر از بهینه‌سازی برای‌کال‌ها[19] نتایج تأثیر عوامل مختلف مورد فعالیت می‌شود. سپس به وضوح مدل پیشنهادی برای مقوم‌های‌کارکرده در جمع آوری مدارس و شریفی‌سازی انجام شده خواهیم راه‌اندازی نتایج در بین کره با نتایج پیشین مقایسه‌ی مکنیکی در با بالاین تجربه‌گری‌ی مکنیکی.

3. فرآیند فوکر-پلانک

با نگاه دیفرانسیل تصادفی زیر آغاز می‌کنیم:

\[\dot{x} = f(x(t), t) + \sigma(x(t)) \eta(t), \]

و توصیف کننده جمله جبری \(\dot{x} = \eta(t) \) است. \(\eta(t) \) یک تبادل تصادفی است با خواص زیر:

\[\langle \eta(t) \rangle = 0, \]

\[\langle \eta(t) \eta(t') \rangle = \delta(t-t'). \]

از سوی دیگر فرآیند مارکوف با چگالی احتمال شرطی توسعه‌ی می‌شود. به شرط اینکه در زمان \(p(x(t), t| x, t_0) \) باشد. احتمال اینکه متمرکز تصادفی از زمان \(t_0 \) به زمان \(t \) مقداری در فاصله‌ی داستان‌شده باشد را به همراه هم‌کنشیده‌های زمانی ردیابی کننده که \(p(x(t)| x, t_0) = \delta(x-x_0) \) است. برای اینکه انتخابی از نگاه متغیر تصادفی مقدار \(x \) را در زمان \(t \) داستان‌شده

\[w(x(t), t) = \int p(x(t)| x, t_0) w(x(t), t_0) dx, \]

μ. Deterministic term

ν. Diffusion

ο. Short time propagator

ρ. Kramers-Moyal
مولکولهای تیروهای زیر هستند (انجام‌کننده در کاز
قبلی ما یودنت[۱۹]):
الف) نیروی کنترلی: \[F \propto lEq \]
ب) نیروی اصطکاکی: \[F \propto kv \]
ج) نیروی برای تریب معادله حرکت به شکل زیر خواهد شد
\[m\ddot{v} = F_{\text{elec}} - F_{\text{fric}} + \sigma\eta(t) \]
و در حال تعلم معادلات داشت.
\[\ddot{v} = \frac{F_{\text{elec}}}{k_{\text{fric}}} + \frac{\sigma}{k_{\text{fric}}} \eta(t) \]
بنابراین جمله جبری معادله لازم ما است.
\[f(x, t) = \frac{F_{\text{elec}}}{k_{\text{fric}}} \]
جدل مهم، شماره ۲

\[p(x, t|x_0, t_0) = \left[\frac{\pi D(t)(x_0, t_0)(t-t_0)}{\pi D(t)(x_0, t_0)(t-t_0)} \right]^{-1/2} \times \exp \left(\frac{x-x_0-D(t)(x_0, t_0)(t-t_0)}{\pi D(t)(x_0, t_0)(t-t_0)} \right)^2 \]

(۱)

\[x(t_0+\Delta t) = x(t_0) + f(x(t_0), t_0) + \sigma(x(t_0), t_0)w(t_0+\Delta t) \]

(۲)

به یک‌تغییری که در آن
\[R' \]
به
\[R \]
صویت در
\[V \]
واسته است.
\[V \]
مدلهای مختلفی از
\[5/5 \]
تا
\[0/1 \]
گزارش شده است. برای مثال
\[3/3 \]
در
\[2/2 \]
و
\[1/1 \]
است و در اندازه‌گیری‌هایی که به طور تجربی صورت گرفته بیشتر

به نوع چنگ‌های بزرگ معمولاً این دو کرنش

شده است [۱۵]. در مدل
\[5/5 \]
بیرای
\[3/3 \] اندازه‌گیری

است [۱۹]. وقتی شماتیزاسیون با ضرایب کلکل‌گرای

در
\[d \]
شکل
\[۱ \]
قابل مثالی به مدل مervlet آنتروپی حاکم شد

\[R' \]
در کثر از گل‌کشکها متحمل تغییر

آنتروپی، و به تبع آن، واکنش

مانند داد که درکردن این گل‌کشکها آنتروپی به طور نیمی

با
\[R' \]
کاهش می‌یابد. در مدل
\[3/3 \]
بیرای
\[R' \]
در
\[d' \]
نمایی با
\[R' \]
نیاپس
\[d' \]
۱. Rouse
\[2. Zimm \]
شیبکه به برنامه داده می‌شوند.

بنابراین این برنامه امکان پیش‌گیری برای محدوده

کسرهای اولیه بسیار مختلف، محدوده

کسرهای اولیه و شرایط دیگر مانند شدت میدان و اندماز شیبکه را

دارا است.

نتایج

4.1 مقایسه تأثیر حاصل از بهینه‌سازی پارامترها [19] با سرعت

مولکول‌ها (پلی‌گیمی‌زمان) در روش اول

روش اول را یک بار با در نظر گرفتن زمان تأخیر، ۲ انجام

داده و یک بار بدون آن بودن در نظر گرفتن دمای مولکول‌ها

سرعت برای مولکول‌های DNA به طول آنها و استاندارد ضعیفی را

نشان می‌دهد (شکل ۳). جهت مقادیر مولکول‌ها در روش اولر به

جمله تصادفی ناپاصل است این نتیجه وابستگی سرعت

مولکول را یافته بجایی نشان می‌دهد که همان طور که از

شکل ۳ پیدا می‌شود ضعیف است و هیچ وجه توجهی در

تجارب گزارش شده نیست و با تأثیر حاصل از بهینه سازی

پارامترها [19] نیز ممکن است دارد (شکل ۲). اما در نظر گرفتن ۳،

همان طور که از شکل ۲ آشکار است به طور بارزی در تناول

های بلند (بلندتر از حدود ۵۰ Kbp) تأثیر می‌گذارد، برای

محدوده هم با آزمایش‌های گزارش شده

و هم با تأثیر حاصل از بهینه سازی پارامترها [19] به خوبی

می‌شود. اما برای مولکول‌های کوچک کاما ناسازگار هستند.

این نشان می‌دهد که برای مولکول‌های بزرگ در میدان‌های قوی

با عواملی در دیگر در زنگ ۳، نیاز به تغییرات مدی‌سنتی سازگاری (در نظر گرفتن ۳) تقریباً به

نتهایی توجهگر یابد. شکل ۲ این تطبیق بسیار خوب

راشان می‌دهد. همان طور که از شکل ۳ پیدا می‌شود مدل سد

آنتروپی در روزم ۲ (مولکول‌های با طول‌های بین

۱۰۰۰ Kbp برای شدت میدان) (۵) تأثیر جنوبی دارد.

شکل ۳ میانگین سرعت در دو روش مشاهده می‌شود وقتی زمان

تأخیر در نظر گرفت و می‌شود در روزم ۲-۳ تطبیق بسیار خوب است در

حالی که در روزم ۳-۴ چین نیست، این نشان می‌دهد که با

محدوده میانگین سرعت حذف می‌شود در روزم ۳-۴ می‌شود در

حالی که در روزم ۳-۴ چین نیست.

اهل‌را ماه‌های می‌کنند و در پایان از این پارامتر روبه رو تعداد

زیادی از مولکول‌ها (که دقت مورد نیاز تغییرشکن می‌کند) می‌گردد و نیز مقدار واریانس (Var) با ماه‌های می‌کند، همچنین مقدار (Var) برای یک زمان تغییرشکن

می‌شود. بدن تریبون می‌توان با انتخاب هر تعداد

مولکول دی‌یکسیکان، در بخش‌هایی که طول آن را به دلخواه

مولکول DNA در انتخاب گردید، برنامه را از یک زمان وقفه بر نامه را نا نهم

میزان مطلوب (که به زمان و توان کامپیوتر محدود شدند می‌کند)

افراش داد.

از آنجا که همه بار مترهای E (شدت میدان الکتریکی) و

T (طول) DNA (بناه) در میزان سرعتها به صورت

میره به برنامه داده می‌شوند و با توجه به بستگی مرطع

به این پارامترها، برنامه این نتایج را دارد که شیب DNA

سازی را در شرایط کاملاً مختلف انجام دهد. این DNA

با طول‌های مختلف در میدانهایی با شدت‌های مختلف و حضو

در دماهای مختلف پیامدهای این برنامه حتی تووانایی بررسی

پیدا کرده و انتخاب‌های مختلف شبکه را نیز داراست. این

شکل ۲ نیز نشان میدهد بر روی شرایط توابعی از انتخابهای

۲-۴ مقدار تأثیر حاصل از بهینه‌سازی پارامترها [19]

بنا بر نتایج حاصل از محاسبه اپراتور در روش اول

از آنجا که اپراتور مستقل از مقدار این الگی است.
شکل 5. واریانس بر حسب طول ماکرومولکول، همان طور که مشاهده می‌شود یک تابع نمایی است. این نتایج حاصل از بهینه‌سازی پارامترها در رژم-1 [19] سازگار است.

طور نمایی کاهش می‌یابد، یک تابع نمایی که در بهینه‌سازی پارامترها در رژم-1 [19] در نظر گرفته شده است. به نظر می‌رسد که این تابع نمایی در مراحل مختلف محاسبه کرده، چون این عبارت در مقایسه با واریانس، جمله مربع میانگین را نشان می‌دهد. این نتایج نشان می‌دهد که با استفاده از DNA برای میانگین \(x^2 \) در یک زمان معین، باعث کاهش جبری (\(Var + \langle x^2 \rangle \) لذا هم تأثیر پخش و هم تأثیر جمله جبری) دارد. این نتایج نشان می‌دهد که با استفاده از DNA برای میانگین \(x^2 \) در یک زمان معین، باعث کاهش جبری (\(Var + \langle x^2 \rangle \) لذا هم تأثیر پخش و هم تأثیر جمله جبری) دارد. این نتایج نشان می‌دهد که با استفاده از DNA برای میانگین \(x^2 \) در یک زمان معین، باعث کاهش جبری (\(Var + \langle x^2 \rangle \) لذا هم تأثیر پخش و هم تأثیر جمله جبری) دارد. این نتایج نشان می‌دهد که با استفاده از DNA برای میانگین \(x^2 \) در یک زمان معین، باعث کاهش جبری (\(Var + \langle x^2 \rangle \) لذا هم تأثیر پخش و هم تأثیر جمله جبری) دارد. این نتایج نشان می‌دهد که با استفاده از DNA برای میانگین \(x^2 \) در یک زمان معین، باعث کاهش جبری (\(Var + \langle x^2 \rangle \) لذا هم تأثیر پخش و هم تأثیر جمله جبری) دارد. این نتایج نشان می‌دهد که با استفاده از DNA برای میانگین \(x^2 \) در یک زمان معین، باعث کاهش جبری (\(Var + \langle x^2 \rangle \) لذا هم تأثیر پخش و هم تأثیر جمله جبری) دارد. این نتایج نشان می‌دهد که با استفاده از DNA برای میانگین \(x^2 \) در یک زمان معین، باعث کاهش جبری (\(Var + \langle x^2 \rangle \) لذا هم تأثیر پخش و هم تأثیر جمله جبری) دارد. این نتایج نشان می‌دهد که با استفاده از DNA برای میانگین \(x^2 \) در یک زمان معین، باعث کاهش جبری (\(Var + \langle x^2 \rangle \) لذا هم تأثیر پخش و هم تأثیر جمله جبری) دارد. این نتایج نشان می‌دهد که با استفاده از DNA برای میانگین \(x^2 \) در یک زمان معین، باعث کاهش جبری (\(Var + \langle x^2 \rangle \) لذا هم تأثیر پخش و هم تأثیر جمله جبری) دارد. این نتایج نشان می‌دهد که با استفاده از DNA برای میانگین \(x^2 \) در یک زمان معین، باعث کاهش جبری (\(Var + \langle x^2 \rangle \) لذا هم تأثیر پخش و هم تأثیر جمله جبری) دارد. این نتایج نشان می‌دهد که با استفاده از DNA برای میانگین \(x^2 \) در یک زمان معین، باعث کاهش جبری (\(Var + \langle x^2 \rangle \) لذا هم تأثیر پخش و هم تا
نیتیجه‌گیری

مقایسه نتایج روش اول با نتایج قبل ما به‌عنوان نتایج حاصل از بی‌سایز پارامترهای [19] نشان داد که تا پایان بود بر صحبت روش قبلی ما به‌عنوان بی‌سایز پارامترهای [19] چرا که ضریب دیقیوژن به دست آمده از آن در روش اول نیز نتایج سازگار با داده‌های تجربی را نتیجه داد. این اینکه توانست تأثیر هر یک از عوامل مؤثر در مدل پیشنهادی ما به حکمت پراونی، نیروهای جوی، وزان نخ و پیشانی شده در مدل سد آنتروپی، 4، را روش داد که ما را به سوی درک برتریهای حاکم بر پدیده‌های از سه رژیم نویدیک کرد. در پیاده‌سازی در رژیم 1، فیزیک‌گالب بر رفتار DNA است و در رژیم 2، آنتروپی تقریبا به تعیین‌نگار پدیده است، اما در رژیم 2، تهیه فورس هر سه عامل مواد به تابعی سازگار با نتایج حاصل از بی‌سایز پارامترهای [19] ویژه با نتایج تجربی منجر شد، به یعنی در این رژیم با پدیده پیشنهادی نیرو همبسته که رفتاری پیچیده‌تر از وزان نخ و پیشانی مواجه هستم که رفتاری پیچیده‌تر از دو رژیم دیگر است.

بدین ترتیب این شیب سازی نیز مانند شیب سازی پیشنهادی ما

مراجع

