Volume 9, Issue 2 (Iranian Journal of Physics Research, Summer 2009)                   IJPR 2009, 9(2): 195-202 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Attaran Kakhki E, Adelifard M. Magneto-optic properties and optical parameter of thin MnCo films. IJPR. 2009; 9 (2) :195-202
URL: http://ijpr.iut.ac.ir/article-1-427-en.html
, attaran@fersowsi.um.ac.ir
Abstract:   (30411 Views)
Having precise hysterics loop of thin ferroelectric and ferromagnetic layers for optical switching and optical storages are important. A hysterieses loop can be achieved from a phenomenon call the magneto-optic effect. The magneto-optic effect is the rotation of a linear polarized electromagnetic wave propagated through a ferromagnetic medium. When light is transmitted through a layer of magnetic material the result is called the Faraday effects and in the reflection mode Kerr effect. In the present work we prepared a thin layer of MnxCo3-xO4 (0≤ x ≤ 1) and a binary form of MnO/Co3O4 by the spray pyrolysis method. The films have been characterized by a special set up of magneto-optic hysterics loop plotter containing a polarized He- Ne laser beam and a special electronic circuit. Faraday rotation were measured for these films by hysterics loop plotter and their optical properties were also obtained by spatial software designed for this purpose according to Swane Poel theoretical method. The measurements show that the samples at diluted Mn study has are ferromagnetic and the magneto-optic rotation show a good enhance respect to the single Co layers. Also, the study has shown that the MnCo oxide layer have two different energy gaps and by increasing of Mn this energy decreases and fall to 0.13 eV.
Full-Text [PDF 77 kb]   (3330 Downloads)    
Type of Study: Research | Subject: General

Add your comments about this article : Your username or Email:

Send email to the article author

© 2019 All Rights Reserved | Iranian Journal of Physics Research

Designed & Developed by : Yektaweb