بررسی دینامیک گذارهای آبشاری اتمهای میونداز با استفاده از روش چند گروهی

سید ظفرالله گلانترزی و محمد هادی پیرواحمدیان

1. دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان

چکیده
در این مقاله یکی از اتمهای اگزوتیک، به‌نام اتمهای میونداز بررسی شده است. از نتایج این تحقیق دست‌بافنی به روشی است که هنون با گسترش آن در جمله در نظر گرفته شده است. همچنین می‌توان به کار دنیزهای انشعابی اجزای اتمهای میونداز در محاسبات دیفرنیتیک کاهش گرفت که در این مقاله بر خلاف کار دیگران افزایش انجیش اتمهای میونداز در طی فرآیندهای چند گروهی ناشی از موفقیت در نظر گرفتن نسخه است و برای این منظور از روش کردهای انرژی استفاده کردهاند. شایان ذکر است که روش کردهای انرژی ما را قادر ساخته است تا علاوه بر اینکه ناگفته نشده است و برای این منظور از روش کردهای انرژی استفاده کردهاند. شایان ذکر است که روش کردهای انرژی ما را قادر ساخته است تا علاوه بر اینکه ناگفته نشده است و برای این منظور از روش کردهای انرژی استفاده کردهاند. شایان ذکر است که روش کردهای انرژی ما را قادر ساخته است تا علاوه بر اینکه ناگفته نشده است و برای این منظور از روش کردهای انرژی استفاده کردهاند. شایان ذکر است که روش کردهای انرژی ما را قادر ساخته است تا علاوه بر اینکه ناگفته نشده است و برای این منظور از روش کردهای انرژی استفاده کردهاند. شایان ذکر است که روش کردهای انرژی ما را قادر ساخته است تا علاوه بر اینکه ناگفته نشده است و برای این منظور از روش کردهای انرژی استفاده کردهاند. شایان ذکر است که روش کردهای انرژی ما را قادر ساخته است تا علاوه بر اینکه ناگفته نشده است و برای این منظور از روش کردهای انرژی استفاده کردهاند. شایان ذکر است که روش کردهای انرژی ما را قادر ساخته است تا علاوه بر اینکه ناگفته نشده است و برای این منظور از روش کردهای انرژی استفاده کردهاند. شایان ذکر است که روش کردهای انرژی ما را قادر ساخته است تا علاوه بر اینکه ناگفته نشده است و برای این منظور از روش کردهای انرژی استفاده کردهاند. شایان ذکر است که روش کردهای انرژی ما را قادر ساخته است تا علاوه بر اینکه ناگفته نشده است و برای این منظور از روش کردهای انرژی استفاده کردهاند. شایان ذکر است که روش کردهای انرژی ما را قادر ساخته است تا علاوه بر اینکه ناگفته نشده است و برای این منظور از روش کردهای انرژی استفاده کردهاند. شایان ذکر است که روش کردهای انرژی ما را قادر ساخته است تا علاوه بر اینکه ناگفته نشده است و برای این منظور از روش کردهای انرژی استفاده کردهاند. شایان ذکر است که روش کردهای انرژی ما را قادر ساخته است تا علاوه بر اینکه ناگفته نشده است و برای این منظور از روش کردهای انرژی استفاده کردهاند. شایان ذکر است که روش کردهای انرژی ما را قادر ساخته است تا علاوه بر اینکه ناگفته نشده است و برای این منظور از روش کردهای انرژی استفاده کردهاند. شایان ذکر است که روش کردهای انرژی ما را قادر ساخته است تا علاوه بر اینکه ناگفته نشده است و برای این منظور از روش کردهای انرژی استفاده کردهاند. شایان ذکر است که روش کردهای انرژی ما را قادر ساخته است تا علاوه بر اینکه ناگفته نشده است و برای این منظور از روش کردهای انرژی استفاده کردهاند. شایان ذکر است که روش کردهای انرژی ما را قادر ساخته است تا علاوه بر اینکه ناگفته نشده است و برای این منظور از روش کردهای انرژی استفاده کردهاند. شایان ذکر است که روش کردهای انرژی ما را قادر ساخته است تا علاوه بر اینکه ناگفته نشده است و برای این منظور از روش کردهای انرژی استفاده کردهاند. شایان ذکر است که روش کردهای انرژی ما را قادر ساخته است تا علاوه بر اینکه ناگفته نشده است و برای این منظور از روش کردهای انرژی استفاده کردهاند. شایان ذکر است که روش کردهای انرژی ما را قادر ساخته است تا علاوه بر اینکه ناگفته نشده است و برای این منظور از روش کردهای انرژی استفاده کردهاند. شایان ذکر است که روش کردهای انرژی ما را قادر ساخته است تا علاوه بر اینکه ناگفته نشده است و برای این منظور از روش کردهای انرژی استفاده کردهاند. شایان ذکر است که روش کردهای انرژی ما را قادر ساخته است تا علاو...
انقلالِ، پرانتلگی کاشفی، مخلوط شدیده است. و
گزاره‌های ناباید لیزر باعث وانگیشته شدن اتم مونیوران از
حالتهای پرانتلگی به حالتهای اپیبلتری می‌شود که در قسمت
بعد، این گذاره‌ها را به طور مفصل‌تر توضیح خواهیم داد.
امن مونیوران در زمان کمتر از ۱۰⁻¹۰ به حالتهای خواهید رشد.
می‌تواند پرانتلگی صفر تخمین‌زنی شود و چای‌گریکی اکترون اتم
گردیده و مقادیری از افزایش خود را به اکترون اتم بدهد.
حال اگر میون توسط هیدروژن با ایزوتوپ‌های آن تخمین
شوهد، از مقایسه میون میقد شده در حالتهای با
انرژی اکترون مقیم که چای‌گریکی آن شده است، به دست
می‌آوریم:

\[n_{\mu} = \sqrt{m_{\mu} \over m_e} \]

بنابراین با انتخاب \(n_{\mu} \) برای حالت زمینه هیدروژن اکترون:

\[n_{\mu} = \sqrt{m_{\mu} \over m_e} \]

در تبی شده میون در مدار اتمی \(n_{\mu} = 1 \) تخمین‌زنی می‌شود.

سیستم انرژی‌های همبستی چه اثرات مولکولی را هم در نظر
گرفته است. این می‌تواند به این انرژی آنرژی کلیدی باعث
و کاهش می‌شود.

به دلیل اینکه جرم میون ۲۰۰ مربی روزگرچی جرم میون
که در فاصله‌های اتمی مدارهای الکترونی در
مدت زمان ۱۰⁻¹۵ تا ۱۰⁻۱۲ تابیت تخمین‌زنی می‌شد، شعاع می‌باشد.
این اتم نیز می‌تواند با اکسیم که کاهش باعث اتم است.
بنابراین در اثر چابگری میون با یک الکترون، این شعاع
کاهش می‌یابد.

به دلیل اینکه میون تشکیل شده در حالتهای
پرانتلگی است، میون به صورت اتشفاری به حالتهای پایین تر
انرژی کاذب می‌کند یا به حالتهای زمینه (۱۵ برده، در اولین قدم،
انرژی میون‌ها با پرانتلگی اکترون‌های اولیه و چای‌گریکی
میشود. الکترون‌های اولیه، تحریک اکترون‌های اتم مستند
که در اثر هیدروژن با انرژی میقد و گذاره‌ای که کاذب
آزاد شده را حمل می‌کنند. برخوردارهای کولمبیان،

\[\text{Muon transfer} \\
\text{Elastic scattering} \\
\text{Stark mixing} \\
\text{Radiative deexcitation} \]

\[\text{Coulomb deexcitation} \]
جدول 1. فراآیندهای آبشاری مهم و مستقیماً آنها به انرژی (ε) عناصر اپتروتهای هیدروژن و x^nی عناصر مولکول هیدروژن است.

<table>
<thead>
<tr>
<th>نوع فراآیند</th>
<th>فراآیند</th>
<th>وابسته به انرژی</th>
</tr>
</thead>
<tbody>
<tr>
<td>کاوش تاشیز</td>
<td>$(x\mu)_n \rightarrow (x\mu)'_n + \gamma$</td>
<td>ضعیف</td>
</tr>
<tr>
<td>اوزه</td>
<td>$(x\mu){n_1} + x \rightarrow (x\mu)'{n_1} + x$</td>
<td>ضعیف</td>
</tr>
<tr>
<td>استارک</td>
<td>$(x\mu){n_2} + x \rightarrow (x\mu)'{n_2} + x$</td>
<td>ضعیف</td>
</tr>
<tr>
<td>پراکندگی کشان</td>
<td>$(x\mu){n_3} + x \rightarrow (x\mu)'{n_3} + x$</td>
<td>ضعیف</td>
</tr>
<tr>
<td>والگیکشگی کولمه</td>
<td>$(x\mu){n_4} + x \rightarrow (x\mu)'{n_4} + x$</td>
<td>ضعیف</td>
</tr>
<tr>
<td>انتقال</td>
<td>$(x\mu){n_5} + x \rightarrow (x\mu)'{n_5} + x$</td>
<td>ضعیف</td>
</tr>
</tbody>
</table>

$\lambda^{\mu}_{\text{mon}} = \frac{\lambda^\mu}{n_{\text{mon}}} \left(\frac{1}{n_{\text{mon}}} - \frac{1}{n} \right).$

بر اساس روابط (2) و (3) برای جریان λ^μ، با استفاده از n_{mon} مقادیر عددی اینجا کاوش تاشیز را از h تا n مقدار می‌گیرد. این مقادیر در مطالعات سینماتیکی فراآیندهای آبشاری استفاده شد، مشاهده شد که اینگونه کاوش تاشیز با افزایش n بیشتر می‌کند.

2.1. فراآیند اوزه خارجی

بایستی اکثریت فناوری‌های میوندار با امکان‌های بی‌مولکول‌های محیط، اختلاف انرژی بین در تاریخ آبشاری می‌باشد که این فناوری را اوزه خارجی گویند. در این حالت به دلیل شبکه بودن الکترون، اتلاف آزاد شده حاصل از والگیکشگی، توسط الکترون حمل می‌شود. اگر ارگ انرژی جنبشی آن می‌باشد، تغییر جنبشی نمی‌کند [9].

2.2. فراآیند پراکندگی کشانی

بعد از اینکه میون در تاریخ والگیکشگی آبشاری فرآیند گرفته، با انجام رابطه پراکندگی به جمله انتهای میوندار صوتی گرفته است [4] و فراآیندهای گ زده آبشاری شامل جمله‌ای برخوردار مختلف وکسیل تاشی می‌باشد. مهم‌ترین این فراآیندها و خصوصیات اصلی آنها در جدول 1 آمده است [7].

2.3. فراآیند انتقال

بر اساس روابط (2) و (3) برای جریان λ^μ، با استفاده از n_{mon} مقادیر عددی اینجا کاوش تاشیز را از h تا n مقدار می‌گیرد. این مقادیر در مطالعات سینماتیکی فراآیندهای آبشاری استفاده شد، مشاهده شد که اینگونه کاوش تاشیز با افزایش n بیشتر می‌کند.

$\lambda^{\mu}_{\text{mon}} = \frac{\lambda^\mu}{n_{\text{mon}}} \left(\frac{1}{n_{\text{mon}}} - \frac{1}{n} \right).$

بر اساس روابط (2) و (3) برای جریان λ^μ، با استفاده از n_{mon} مقادیر عددی اینجا کاوش تاشیز را از h تا n مقدار می‌گیرد. این مقادیر در مطالعات سینماتیکی فراآیندهای آبشاری استفاده شد، مشاهده شد که اینگونه کاوش تاشیز با افزایش n بیشتر می‌کند.

$\lambda^{\mu}_{\text{mon}} = \frac{\lambda^\mu}{n_{\text{mon}}} \left(\frac{1}{n_{\text{mon}}} - \frac{1}{n} \right).$

بر اساس روابط (2) و (3) برای جریان λ^μ، با استفاده از n_{mon} مقادیر عددی اینجا کاوش تاشیز را از h تا n مقدار می‌گیرد. این مقادیر در مطالعات سینماتیکی فراآیندهای آبشاری استفاده شد، مشاهده شد که اینگونه کاوش تاشیز با افزایش n بیشتر می‌کند.
شکل 1 آهنگ والگیختگی اوزه برای اتم‌های μ و ρ و μ و ω

ویکتیا در عمق ابرهای کم‌دیسک و گالکسی‌های نفوذی کند.

ویکتیا کولمبی بک مکانیزم شتاب دهنده قدرت است که

اتم‌های میویتی داغ $E \gg 17eV$ تولید می‌کند. این فرآیند طبق

برهم‌کنش زیر صورت می‌گیرد [11]

$$a \mu_n + b \rightarrow (a \mu_n)_n + (b \mu_n)_n$$

(8)

نتیجه دیگری که در فرآیند کولمبی در حضور انتقالات قدرت است,

لذا با در نظر گرفتن کولمبی روبرو هستیم. ویکتیا

متقارن برخورد اتم میودار با ایزوتروپ هم‌جنس خود و

واکنش‌های غیر متقارن برخورد اتم میودار با ایزوتروپ غیر

هم‌جنس خود. این برهم‌کنش‌ها در می‌تواند از

$$dH_n + t \rightarrow (dH_n)_n + dH_n + t$$

(5)

با استفاده از تقییات مرتبه اول بیرونی، احتمال گذار به صورت

$$\lambda_H = N_v \sigma_H =$$

$$\frac{3}{2} \times 10^{15} (\text{sec}^{-1}) R_{ml}^2 (\text{sec}^{-1}) M^2 (\text{sec}^{-1}) (\Delta E + 1/3)^{1/2},$$

(6)

که در آن

$$R_{ml} = \frac{1}{2} a \mu_n + b \mu_n + \frac{1}{2} a \mu_n + C,$$

(7)

که می‌تواند از R_{ml} بر روی R_{ml}^2 قسمت نظری مقادیر با یک برنامه کامپیوتری به صورت

عده‌ی محاسبه و در نهایت مقادیر عده‌ی آهنگ گذار اوزه از هر

تراز اولیه به هم تراز به هم تراز محاسبه شد تا در معادلات

سیستماتیک قرار گیرند.

نتایج محاسبات در شکل 1 نشان داده شده است. مشاهده

قیمت که گذار اوزه برای ایزوتروپ تاریک و مختلف هیدروژن

تاریک کمی که در این ماهیت هم‌جنس برای $n = 7$, μ, والگیختگی

برای μ_n و μ و ω, با به

صورت λ_H مشابه با μ_n و ω رفتار می‌باشد. مسئله μ_n در $n = 10$

امشیتگی اوله که در فرآیند ویکتیا کولمبی به

اسمبلی اصلی اتم میودنار، نمی‌تواند انتقال بیفتد و در نتیجه در

تراز‌های بالا آهنگ والگیختگی اوزه کاهش می‌یابد.

3.2 برخورد کولمبی

امت میودنار به عنوان یک کمک بودند تا نشان دهنده بار الکترونیکی.
(\(\mu_n\) + d \rightarrow (\mu_n + t)\), بايد برگر در \(30 \text{ eV}\) باشد. نتایج مرجع [5] نشان می دهد که اندیشگ را برحسب زمان را با به‌کارگیری معادلات نتایج برای استفاده از رابطه زیر به دست آورده:

\[
\Delta t = \frac{n - \frac{1}{\tau}}{\beta(n - 1)}
\]

آنهم انجام واکنش‌های بالا نیز بر اساس محاسبات مرجع [5] در این مقاله استفاده شده است.

5.2 به‌روزرسانی کنسانتر

در مورد فرایندهای موجود آبیاری که باعث گذار می‌شود بر اساس برآبندهای مختلف ترکیبیت می‌باشد، به‌روزرسانی کنسانتر باعث کند شدن آبیاری و عدم کلت‌داری جنبشی آن می‌شود. اما برای تامین می‌تواند عوض نمی‌شود.

\[(x_\mu)_n + H \rightarrow (x_\mu)_n + H (x = p,d,t)\]

با این وجود این‌ها در پایان فرآیند آبیاری باید هنگام رسیدن به حالت پایه هنوز به انرژی حرارتی محیط می‌رسند.

آنهم فرآیند کنسانتر به صورت زیر در مرجع [V] محاسبه شده است:

\[
\lambda_{n,dec}^{tr}(E) = \lambda_n \nu \frac{M_{xy}M_H}{(M_{xy} + M_H)} \sigma_{n,ir}^{tr}(E)
\]

که در آن

\[
\sigma_{n,ir}^{tr}(E) = \frac{\pi}{2} \frac{(n' - 1)}{\nu m_{xy}} E
\]

در رابطه (12). \(N\) چگالی هیدروژن مایع و \(v\) سرعت نسبی اتم می‌تواند و \(E\) انرژی نسبی اتم می‌تواند که می‌توان با

\[t. \text{ Inverse nonresonant trasfer}\]

کلمه‌ی و ارژه‌‌ها هم قابل مقایسه می‌باشد. ولی این روند تا ممکن‌ترین‌ها فرآیندهای آبیاری \(0\) که در آن فاصله‌اندازه‌ای اهمیت دارد ادامه نمی‌باشد. در این مقاله در محاسبات از آنهم‌های‌گذاری‌های کلی که ازانه در ترازهای مختلف و در ترازهای مختلف استفاده شده است.

4.2 انرژی‌های

از آنجا که هسته اتم تریتوم از دو نوادگان سگینتر است، ترازهای انرژی می‌تواند تریتوم دارای انرژی منفی به معنی‌های آن در دو نوادگان می‌باشد. این امر باعث می‌شود که در برخورد دهایی که بین اتهما دوتیوم می‌باشد و انرژی تریتوم معمولی رخ می‌دهد. می‌تواند تریتوم به همراه تریتوم منفی به اتم سگینتر متعلق می‌شود و با بکر که می‌باشد اتم سگینتر متعلق می‌شود را انتقال می‌شود.

مانند واکنش‌های زیر:

\[(\mu_n + t) \rightarrow (\mu_n + d + \Delta t)\]

\[(\mu_n + d + (\mu_n + p + \Delta t)\]

\[(\mu_n + l + (\mu_n + p + \Delta t)\]

در طی انرژی این ویژه‌ای آزاد می‌شود. انرژی آزادی آزاد شده

\[\Delta t = E_n - E_n\]

می‌دقیق در انتهای‌هایی که که در آن \(E = -\nu m c^2 \frac{\gamma}{n^2}\)

جمه کاهش اتم هیدروژن گونه می‌باشد. به عبارتی دیگر:

\[\Delta t = (\mu_n - \mu_n)/\nu m\]

که در آن \(\nu m = \mu_n e^2 \chi\alpha^2\) باشد.

اگر در فرآیند انرژی‌های موجود از اتم سگینتر توانایی اختصاص داشت، اتم سگینتر می‌تواند خواصی داشته باشد. شرط اینکه واکنش می‌تواند اتفاق پیفتند، ذرات داشتن انرژی جنبشی بیشتر از \(\Delta t\) باشد. به طور مشابه انرژی مجاز برای تراز \(1/2\) در فرآیند زیر

\[V. \text{ Quasi resonant}\]

\[V. \text{ Inverse quasi resonant transfer}.

\[\text{t. Inverse nonresonant trasfer}\]
آمارک این [17] با یادداشت نسبت به فرآیندهای برخوردی همیشه بیشتری دارد. به این ترتیب همه آهنگ‌های برخوردی با داده‌های مربوط به شوند. فرآیند توضیح از این نظر به غلظت نسبی محبوبیت است. داده‌هایی این خود را به صورت متفاوت و نامتفاوت بررسی می‌کنم، با این آهنگ هر فرآیند در غلظت از آن محبوبیت ضرب شوند.

۴) گروه‌بندی انرژی

همان طور که قبلاً گفته شد، فرآیندهای ایشانی از تکه‌های مونوکروم و دسته فرآیندهای برخوردی (ازه، مخلوط شدگی افتاری و گیاه‌خیاتی کومپلکس، انتقال میون و پراکنده کشان) و غیر برخوردی (ناپاس) می‌شوند. فرآیند تایباد به شرایط سیبیکی محیط برگشتی ندارد، بنابراین نشانگی فرآیند ایشانی غیر واپسین به چگالی و انرژی است. در رابطه که برای سطح مقطع گای تاشی از هماهنگ (رابطه ۳) مشخص است که آهنگ کشیده بر اثر انتقال مونوکروم برگشتی ندارد. بستگی فرآیندهای ایشانی از تکه‌های انرژی بر اثر انتقال از عبور و در جدول ۱ از هر انتقال انتزاعه استفاده گردید.

۵) انتزاعه

آهنگ و گیاه‌خیاتی از فرآیند فرآیندهای ایشانی در تقسیم کلی برون [16] محاسبه شده است. انتزاعه بیشتر بر این انتزاعه دارد. زیرا همان طور که دیده شد، سطح مقطع محاسبه شده این مقدار به طور معمول مناسب با سرعت انتقال مونوکروم است و محاسبه آهنگ واکنش این بستگی وجود داشته است. این امر از روابط و واکنش به خویی محیط مناسب هستند. این امر از روابط و واکنش به خویی
جدول ۲. تقسیم بندی گروه‌های انرژی.

<table>
<thead>
<tr>
<th>باره انرژی</th>
<th>گروه انرژی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱.۰ ≤ E ≤ ۲.۰ (eV)</td>
<td>۱</td>
</tr>
<tr>
<td>۱.۰ ≤ E ≤ ۲.۰ (eV)</td>
<td>۲</td>
</tr>
<tr>
<td>۲.۰ ≤ E ≤ ۳.۰ (eV)</td>
<td>۳</td>
</tr>
<tr>
<td>۲.۰ ≤ E ≤ ۳.۰ (eV)</td>
<td>۴</td>
</tr>
<tr>
<td>۲.۰ ≤ E ≤ ۴.۰ (eV)</td>
<td>۵</td>
</tr>
<tr>
<td>۱.۰ ≤ E ≤ ۲.۰ (eV)</td>
<td>۶</td>
</tr>
<tr>
<td>۴.۰ ≤ E ≤ ۵.۰ (eV)</td>
<td>۷</td>
</tr>
<tr>
<td>۲.۰ ≤ E ≤ ۴.۰ (eV)</td>
<td>۸</td>
</tr>
<tr>
<td>۳.۰ ≤ E ≤ ۵.۰ (eV)</td>
<td>۹</td>
</tr>
<tr>
<td>E ≥ ۵.۰ (eV)</td>
<td>۱۰</td>
</tr>
</tbody>
</table>

می‌توان گروه انرژی را پس از برخورد تعیین کرد.

برای این کار برای هر یک از برخورد‌های کولمبی، انتقال و پراکنده برناام کامپوزیت جدالهایی به لحاظ کردن این نکته که انرژی و انتقالگی بین دو ذره برخوردی تقسیم می‌شود، نوشته شده است. در هر یک از این برنامه‌ها، در ابتدا جنس برخورد (مقدار-نامتوان) و ابتکار توان اتم مولکول برخوردی انتقال و مولکول‌های می‌تواند. دمای انتقال و گرگینه‌ها را می‌تواند تهیه و گروه انرژی پس از برخورد تعیین شده است.

۵. مدل‌سازی سیستم‌های مربوط به فرآیندهای آبشاری

اهمیت میوندار در گروه‌های مختلف انرژی

برای نوشتن مدل‌سازی‌های سیستم‌های آبشاری اهمیت میوندار به‌هی‌ه نام گروه انرژی تقسیم کرده‌اند. به‌طور جدید ۲ مراحل در این مدل‌سازی با نظر درنگ‌های مختلف از الهام‌بر این بار به گروه‌های انرژی تراز ابعاد دیگری، مدل‌سازی چرخه و شیب می‌تواند آنها را می‌توان به‌وکلاستیکی با برخوردی به گروه‌ها دیگری انتزاع شده.

۱.۴. تعیین انرژی جنبه‌ای مشخصه‌های میوندار بعد از برخورد

وقتی اتم میوندار با حالت‌های ایران باین تر توسط فرآیندهای برخوردی و انتقالگی شد، یا پراکنده گروه‌های انرژی داده، انرژی می‌تواند.
چگگالی و گلط هزیات می‌باشد. در نظر گرفته می‌گردد. نوشتن معادلات
برای هر تراز و هر گره انرژی به این صورت است که
فرآیندهایی که باعث افزایش جمعیت آن تراز و گروه انرژی
می‌شوند یا با علامت مست و یا کاهش
جمعیت آن تراز و گروه انرژی می‌شوند با علامت منفی
وارد معادلات می‌کنیم. در معادلات (16 و 17) شکل کلی آنها
برای جمعیت اتفاقاتی ممکن است که در آن P فرمول
شماره گره انرژی جنبشی انم است و
\[
\lambda_{\text{coul}}, \lambda_{\text{dec}}, \lambda_{\text{m}}, \lambda_{\text{dec}}, \lambda_{\text{m}}, \lambda_{\text{dec}}, \lambda_{\text{m}}
\]
به ترتیب عبارتند از: آهنگ کاراکتر افزوده، گذار
تاانش، و انتخابیان کولمبی، آهنگ تغییر از ایزوتیپ و
آهنگ پراکندگی کشسان. همچنین \(\phi \) چگگالی محبب نسبت
به چگگالی هیدروژن سایی است \(\phi = \frac{N_c}{N} \)
که در آن
\[
\text{تغییر جمعیت از}
\]
\[
\text{یک تراز با هر گره دیگر} (n) \text{نرود}
\]
\[
\text{تغییر در گره انرژی} (m) \text{نرود}
\]
\[
\text{تغییر در گره انرژی} (m) \text{نرود}
\]
\[
\text{بنا بر اینکه در طی یک چگگالی اتفاق}
\]
\[
\text{نورتند، می‌توان تغییر پراکندگی کشسان نزدیک رخ داد}
\]
\[
\text{می‌شود}
\]

نكته‌های مهم این است که هر جمله منشأ با فرآیند
که از تراز n گره انرژی m که می‌شود، با یک بار برای تراز و گروه
انرژی دیگری، با علامت مست احداث شود، مثال در تغییر
ایزوتیپ، جمله‌هایی که با ضریب \(c_\text{t} \) برای تغییرات جمعیت
مربوط به آن \(\text{db} \) با علامت منفی ظاهر می‌شود، در معادلات
تغییرات جمعیت مربوط به آن \(\text{db} \) با علامت مست احداث
می‌شود (توجه شود که فقط در فرآیند تغییر ایزوتیپ است
که نوع اتم می‌تواند عوض می‌شود).

\[
\frac{dP_{(n,m),\mu}}{dt} = \sum_{i(i>n)} \phi_{\text{ra}}^{\text{dec}} p_{(i,m),\mu} - \sum_{i(i<n)} \phi_{\text{ra}}^{\text{coul}} p_{(i,m),\mu}
\]
این معادلات دیفرانسیل از نوع خطی است؛ زیرا در هر جمله این معادلات، فقط تغییر مربوط به جمعیت هر گروه انتزی به خوردن ذخیره دارد. در نظر گرفته شده است و از این بردار گروه انتزی چنین داریم:

پس جمعاً ۱۲۰ معادله برای جمعیت انتزایی می‌باشد. نتایج برای انتزایی در ترزا و گروه‌های انتزی مختلف خواهیم داشت. جمع‌گردی معادلات به صورت فکری گورش کردن یک معادله دیفرانسیل جفت شده خطی قبل از حل آنها، روش خویش‌برای انجام درست نوشت می‌باشد.

برای حل این دستگاه معادلات دیفرانسیل جفت شده خطی از روش رونق-کوتا مربوطه چهارم استفاده می‌کنیم که به عنوان روش فرض حل دستگاه معادلات دیفرانسیل جفت نامیده شده در نرم‌افزار Maple استفاده می‌شود. با استفاده از نرم‌افزار، این دستگاه معادلات دیفرانسیل را به صورت سنتی و فقط جمعیت انتزایی بردارdu در ترزا n=۱۲ و n=۱۰ به نسبت غلظت ایزوتوپی فرار

در این قسمت نتایج به دست آمده از حل دستگاه معادلات
نمودارهای مربوط به تغییر جمعیت تراز 1 در گروه اولیه m = 2 (الف) برای n = 1 در گروه دومی (ب) اتم μ و dμ.

شکل 3: تغییرات مجموع جمعیت تراز 1 در تمام گروه‌های انرژی نسبت به زمان برای اتم μ (الف) با استفاده از روش حل معادلات سیمپانکیکی (ب) شبیه سازی مونت کارلو.
شکل ۵ تغییرات مجموع جمعیت تراز $n=1$ در تمام گروه‌های انرژی نسبت به زمان برای اتم μ_1 (الف) با استفاده از روش حل معادلات سینماتیکی. (ب) شبیه‌سازی مونت کارلو.

شکل ۶ تغییرات مجموع جمعیت تراز $n=12$ در تمام گروه‌های انرژی نسبت به زمان. (الف) برای اتم μ_1 (ب) برای اتم μ_2.

شکل 6 زمان متوسط گذار با استفاده از حل سیستمیک (الف) برای اتم d و (ب) برای اتم t.

جدول 3 مقایسه زمان والکینگیئنی گذارهای آبشار میونی برای محیط‌های خالص و T و D به در روش سیستمیک و مونت کارلو.

<table>
<thead>
<tr>
<th>روش</th>
<th>زمان والکینگیئنی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d اتم</td>
</tr>
<tr>
<td>مونت کارلو</td>
<td>$2.7 	imes 10^{-11}$ s</td>
</tr>
</tbody>
</table>

زمان والکینگیئنی به دست آمده از روش مونت کارلو (20) که در جدول 3 آورده شده است، با تفاوت خوبی برخورد نکرد.

نمودارهای زمان متوسط گذار اتم مونیدار به حالت یا به

شکل 7 می توان زمان والکینگیئنی اتم مونیدار را نیز به دست آورد. این زمان برای اتم d مجرد به نسبت μ و چون متحسين فقط شامل مولکول‌های دوم تن می‌شود، انتقال مونیدار به این‌طور دگرگیری در گذارهای آبشار میونی وجود ندارد و زمان محاسبه شده فقط

پیانکی زمان متوسط گذار آبشاری به 18 در اتم d است. برای اتم t نیز این زمان مربوط به ناظریه روز شکل 7 می‌شود که

$\beta = 1$ است و در نتیجه با انتقال میون در محفظه وجود تندرد. مشاهده شد که این زمانها با تابید کلی که در آنها زمان والکینگیئنی اتم مونیدار به دست آمده است (18) و با

دویاره جمعیت تراز خالی می‌شود و اتم مونیدار به حالت‌های پایین‌تر از می‌روید و فقط تراز $n=1$ است که جمعیت در آن پر می‌شود. تا لحظه‌ای که دیگر جمعیت در این تراز افزایش ییدا بیشتر و همگن اتم‌های مونیدار به حالت یا به رشد دانه، در نمودارهای زمان متوسط گذار اتم مونیدار به حالت یا به

شکل 8 می‌توان زمان والکینگیئنی اتم مونیدار را نیز به دست آورد. این زمان برای اتم d مجرد به نسبت μ و چون متحسين فقط شامل مولکول‌های دوم تن می‌شود، انتقال مونیدار به این‌طور دگرگیری در گذارهای آبشار میونی وجود ندارد و زمان محاسبه شده فقط

پیانکی زمان متوسط گذار آبشاری به 18 در اتم d است. برای اتم t نیز این زمان مربوط به ناظریه روز شکل 7 می‌شود که

$\beta = 1$ است و در نتیجه با انتقال میون در محفظه وجود تندرد. مشاهده شد که این زمانها با تابید کلی که در آنها زمان والکینگیئنی اتم مونیدار به دست آمده است (18) و با

دویاره جمعیت تراز خالی می‌شود و اتم مونیدار به حالت‌های پایین‌تر از می‌روید و فقط تراز $n=1$ است که جمعیت در آن پر می‌شود. تا لحظه‌ای که دیگر جمعیت در این تراز افزایش ییدا بیشتر و همگن اتم‌های مونیدار به حالت یا به رشد دانه، در نمودارهای زمان متوسط گذار اتم مونیدار به حالت یا به

ب
شکل 8 مقایسه نمودار کیفیت q_8 از روش سیمانتیک و شبیه سازی مونت کارلو.

حالات 18، محاسبه می‌کنیم.

$$\sum p^{\text{mod}(l)} = \frac{m}{c_d}$$

این کیفیت را نسبت به فلسطینی مختلف ϕ_h و در چگالیهای مختلف محاسبه کردیم و نشان داد که به سه‌گانه مونت کارلو مقایسه کردیم. شکل 8 نشان می‌دهد که مقدار محاسبه q_8 از روی حل معادلات سیمانتیکی با مقدار حاصل از روش مونت کارلو [20] تفاوت خوبی دارد.

روش گرادوئیتری از می‌تواند می‌آید تا طرف انرژی اتمهای موندار را در هر تراز n از جمله حالت پایه استخراج کنیم. برای رسم طرف انرژی اتمهای q_d و q_d در حالات پایه، q_d در هر گونه انرژی مرتب به تراز $n = 1$ را نسبت به انرژی گروهی، انرژی قوی در زمانی که کیفیت اتمهای q_d و q_d نسبت به زمان تقریباً ثابت می‌شود و اگر اتمهای به حالت پایه رسیده‌اند، رسم می‌کنیم. با استفاده از شکل 5 این لحظه تقریباً برای بار $5\times 10^{-7}s$ به دست می‌آید. دقت شود که طرف انرژی در لحظه‌های مختلف، با هم فرد دارند. با استفاده از گریدوئی ریزتری، می‌توان به نتایج دقیق‌تر دست یافتن و یا اضافه کردن یک گروه جدید 44 معادله به دست می‌آید معادلات اضافه خواهد شد و باعث بالا رفتن حجم محاسبات می‌شود.
برخوردنی گذار به انرژی جنبشی، تقریب مناسبی نیست.

همچنین از نتایج استخراج شده برای طیف انرژی اتم‌های MCF در حالت پایه می‌توان در حالت جرخه KCF که در آن تشکیل مولکول می‌بایست به انرژی برخوردار اتم می‌بیند. برخوردار در حالت پایه است، استفاده کرد. علاوه بر این روش ارائه شده در این مقاله می‌تواند بر فرضیات اولگاهان اولگاه‌های سایر انمایات اگزوتیک به کار رود.

\[\mu = 0.5 \]

\[\phi_0 = 0.1 \]

\[\phi_1 = 0.6 \]

\[\phi_2 = 1 \]

\[\phi_3 = 1.2 \]

\[\cd = 0.5 \]

\[\cd = 0.9 \]

شکل 10. طیف انرژی برابر غلظت ۵/۰۰۵ (الف) برای اتم \(\mu \) و (ب) برای اتم \(\mu' \).

\[\cd = 0.9 \]

\[\phi_0 = 0.1 \]

\[\phi_1 = 0.6 \]

\[\phi_2 = 1 \]

\[\phi_3 = 1.2 \]

شکل 11. طیف انرژی برابر غلظت ۹/۰۰۵ (الف) برای اتم \(\mu \) و (ب) برای اتم \(\mu' \).

مورد و باعث افزایش دیپلاستی طیف در انرژی‌های زیاد، \(m = 10 \) شده است.

شابهان ذکر است که روش گروه‌بندی انرژی که در این مقاله استفاده شده است، می‌تواند ساختمان استفاده سر چالاس و بر اینکه تأثیر انرژی جنبشی اتم‌های MCF در فرآیندهای برخورداری گذار به حساب باید در نظر گرفته شود. می‌توان طیف انرژی جنبشی اتم‌های MCF در حالت پایه را نیز استخراج کنیم. بر کارهای مشابه [19] معادلات این سیستم‌ها در انرژی ثابت (در پی گروه انرژی) حلت است که به دلیل وابستگی فرآیندهای