بررسی توزیع زاویه‌ای پاره‌های شکاف در شکاف‌های القایی با پیون سنگین

سعید سهیلی و ایمان ضیاییان

بخش فیزیک، دانشکده علوم، دانشگاه بユーオی سینا، کد پستی 1437545511، ایران

چکیده

مقادیر توزیع ناهماهنگی دیواره‌ای شکاف‌های را برای شکاف‌های القایی سیستم‌های

\[\gamma = N + O + Th + B + \gamma + \beta \]

نهم‌سازی دیواره‌ای فیزیکی شکاف‌های را با استفاده از مدل دیواره‌ای فیزیکی سیستم‌های

\[\gamma = N + O + Th + B + \gamma + \beta \]

نهم‌سازی دیواره‌ای فیزیکی شکاف‌های را با استفاده از مدل دیواره‌ای فیزیکی سیستم‌های

وازده کلمات: شکاف‌های القایی با پیون سنگین، سطح فلزی سنگین‌سازی، ناهماهنگی دیواره‌ای، توزیع دیواره‌ای، شکاف‌های سنگین، شکاف‌های سنگین

1. مقدمه

پیکر محدودیت‌های فیزیکی شکاف‌های از عصر حاضر تولید

عناصر اولارگن جدید است. برای تولید این نوع عناصر به

dاشت اطلاعاتی در زمینه دینامیک شکاف‌ها- همچونی نیز

dارایم.

توزیع زاویه‌ای پاره‌های شکاف، منبع غنی از اطلاعات را

در مورد دینامیک شکاف‌ها- همچونی در انتخاب ما قرار می‌دهد. هر گاه هسته‌های توسط پاره‌ای ذراتی تطبیقی نیاز به پرینت و

بیماران شود، هسته‌های مکرک تشکیل می‌شود و در سیر می‌باشد

همه این‌ها شکاف‌ها به انتخاب کافی سنگین باشد. ممکن است از

طرح کانال شکاف‌ها به دو پاره تقسیم گردد. وقتی انرژی

برای‌گذاری هسته‌های مکرک نیاز به ارتفاع سود برای

ورزند شکاف‌ها فقط در یک داده محدودی کانال اتفاق

می‌افتد. با مطالعه توزیع زاویه‌ای پاره‌های شکاف‌ها

خواص

ترزه‌ها گزار قابل پیش‌بینی است. اگر پیمایش کنیم که باره‌های

شکاف‌های در امتداد محوور تقارن هسته از یکدیگر جدا می‌شوند

(تصویر گسترده‌ای هسته‌های مکرک) و به طوری که (تصویر گسترده‌ای هسته‌های مکرک) و به طوری که (تصویر گسترده‌ای هسته‌های مکرک) و به...

م، I)

محور ثابت فضایی که همان راستای باریک‌ترین در نظر گرفته

می‌شود) به طور منحصربه‌فرد تغییر خواهند شد (شکل 1 را

پیشنهاد می‌کنیم است از

با آنکه در مراحل مختلف و یک تا ۲ شکاف‌ها

ثابت می‌ماند. چنین حفظیاتی برای پارامتر

K

وجود دارد. در

گزار هسته‌های مکرک اولیه به نقطه

زیبای انتقال و تغییر

شکاف‌ها به سیستم در انتقال انتقال و در این فاصله، انتزاع و
شکل ۱. ترکب اندازه حزنجاری‌های زاویه‌ای یک هسته تغییر شکل یافته.

اندازه حزنجاری هسته مربوط به هونه متعددی توزیع می‌گردد. بنابراین مقدار K تأثیر آماری حزنجاری این کمیت در هسته یک هسته به اندازه اولیه تأثیر دارد. در حالی که اثری بر انواع مختلف زیاد باشد توزیع زاویه‌ای مشاهده شده نتیجه ترکب پیش‌بینی از حالت‌های گذار است و بنابراین توزیع K هسته در پیکری نداید.

شکل ۲. سیستم هسته شکافت‌پدید. منحنی پیوسته مدل آماری نقطه زنی استاندارد و منحنی خطی جنین مدل نقطه انقطاع را نشان می‌دهد.

$W(\theta) = \left(\frac{\alpha}{\beta} \right)^{\alpha} N \int_0^\infty \frac{I^\alpha - \exp \left(- \frac{I^\alpha \sin^\alpha \theta}{\beta^\alpha} \right)}{\Gamma(\alpha) \Gamma(\beta)^\alpha} \left(\frac{I^\alpha \sin^\alpha \theta}{\beta^\alpha} \right)^{\beta - 1} \, dI.$

در حالی که K مقداری تا حدودی از N به شدت باید باشد برای به‌طور کلی به این تجربه متصل آورده باشد. از نظریه کلی نیمه کلاسیکی می‌توان برای تغییر تکانه زاویه‌ای هسته مربوط به تغییر نمود. اگر T_f احتمال این باشد که تکانه زاویه‌ای هسته مربوط به I باشد، بر اساس این مدل نیمه کلاسیکی کمی احتمال با رابطه زیر داده می‌شود:

$T_f = \begin{cases} I & I \leq I_{\text{max}} \\ I_{\text{max}} & I > I_{\text{max}} \end{cases}$

که در آن I_{max}, بیشینه تکانه زاویه‌ای است که به هسته مربوط می‌شود. در این حالت می‌توان بیشینه تکانه به منظور قرار دادن در I_{max}. بنابراین هسته مربوط به استحکام مختلف به تاکنیک T_f توزیع زاویه‌ای پاره‌های شکافت‌های هدف می‌گردد.

زوج - زوج توزیع باریکه‌ای زدایی زوج - زوج توزیع باریکه‌ای در فاصله شکافت‌های هدف زوج توزیع باریکه‌ای ذاتی زوج - زوج، توزیع باریکه‌ای ستایشی زوج - زوج، استحکام باریکه‌ای و هدف هزینه و نسبت به توزیع هسته می‌گردد. بنابراین هسته مربوط به استحکام مختلف به تاکنیک T_f توزیع زاویه‌ای پاره‌های شکافت‌های هدف می‌گردد.
قانون نوشته‌بندی به هنگام انتزاع برای نزاده‌های شکاف‌دار در شکاف‌های پر و پس‌سکین

t = \left[\frac{E_{ax}}{a} \right]^{\frac{1}{3}} = \left[\frac{E_{cm} + Q - Bf - E_R}{a} \right]^{\frac{1}{3}}, \tag{6}

\text{در این تریلی مقدار } B_f, Q \text{ و } E_{ex}

\text{به ترتیب متقابل و کمیتهای } E_{cm}

\text{دوري هستند مکان است و } a

\text{با } A_{CN}, A_{CN}/8 \text{ در نظر گرفته می‌شود، که } A_{CN}

\text{در اینجا نشان می‌دهد که در شکاف‌های شیمی‌دانی با}

\text{یکنده سنگین }

\text{قرار داده‌می‌شود که درین آنها سنگه‌های}

\text{بین } 1^{st} \text{ و } 1^{st} \text{ در یک مقدار }

\text{توسط انتزاع به بی‌پایینه }

\text{زاویه‌ای م gegenüber به } I_{max}

\text{آورده:}

\begin{equation}
I_{max} = \sum_{T} \frac{(n+1)T_J I(n+1)}{\sum_{T} (n+1)T_J} \tag{7}
\end{equation}

\begin{equation}
\phi = \frac{I_{max}}{I_{opt}} \leq C_E - C_I, \tag{8}
\end{equation}

\text{که در آن } \phi \text{ و } C_I \text{ از شرایط تحلیل به دست می‌آید}

\text{در نظر گرفته شود، } \phi \text{ می‌توان را رابطه زیر بست:}

\begin{equation}
W(\theta) = \frac{3}{4} \sum_{n=0}^{\infty} (n+1)T_J I \exp \left[-\frac{I}{2} \sin^2 \theta \right] \left(\frac{i^2 \sin^2 \theta}{r^2 K_i^2} \right), \tag{9}
\end{equation}

\text{در اینجا } k_{eff} \text{ و } h

\text{می‌باشد.}

\text{از اینکه } k_{eff} \text{ و }

\text{یکنده سنگین در محدوده } k_{eff} \text{ و } h

\text{زاویه‌ای م gegenüber به } I^* > 0

\text{از منابع با انتزاع بی‌پایینه است، لذا بر}

\text{آن که } I^* > 0 \text{ و } \phi \text{ می‌باشند}

\text{کتاب را حسب } \text{مزیت در جزیره مرکر}

\text{بیاورد کردانم که در جدول 1 آمده‌اند.}

\text{می‌باشد:}

\begin{equation}
k_{eff} = \frac{3}{h} \tag{10}
\end{equation}

\text{در اینجا } k_{eff} \text{ و } h

\text{زاویه‌ای م gegenüber به } I^* > 0 \text{ و } \phi

\text{بیاورد کردانم که در جدول 1 آمده‌اند.}
جدول ۲. تقریب $\frac{3\epsilon}{h^2}$ بر حسب $I^1 > I^0$ برای سیستم‌های شکافت

<table>
<thead>
<tr>
<th>سیستم‌های شکافت با پوست سنگین</th>
<th>تقریب $\frac{3\epsilon}{h^2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{14}O + ^{\text{37}}Th$</td>
<td>0/08</td>
</tr>
<tr>
<td>$^{14}C + ^{\text{36}}U$</td>
<td>0/08</td>
</tr>
<tr>
<td>$^{11}B + ^{\text{36}}Np$</td>
<td>0/04</td>
</tr>
<tr>
<td>$^{11}N + ^{\text{37}}Th$</td>
<td>0/04</td>
</tr>
<tr>
<td>$^{11}B + ^{\text{37}}U$</td>
<td>0/02</td>
</tr>
<tr>
<td>$^{11}C + ^{\text{37}}Th$</td>
<td>0/02</td>
</tr>
</tbody>
</table>

جدول ۱. تقریب $I^0 > I^1$ بر حسب انرژی پرتابه در چارچوب مرکز

<table>
<thead>
<tr>
<th>سیستم‌های شکافت با پوست سنگین</th>
<th>تقریب $\frac{3\epsilon}{h^2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{14}O + ^{\text{37}}Th$</td>
<td>50/28 $E_{cm} = 394/88$</td>
</tr>
<tr>
<td>$^{11}C + ^{\text{37}}U$</td>
<td>37/05 $E_{cm} = 252/19$</td>
</tr>
<tr>
<td>$^{11}B + ^{\text{36}}Np$</td>
<td>21/60 $E_{cm} = 166/05$</td>
</tr>
<tr>
<td>$^{11}N + ^{\text{37}}Th$</td>
<td>20/55 $E_{cm} = 282/110$</td>
</tr>
<tr>
<td>$^{11}B + ^{\text{36}}U$</td>
<td>24/22 $E_{cm} = 252/6$</td>
</tr>
<tr>
<td>$^{11}C + ^{\text{37}}Th$</td>
<td>39/30 $E_{cm} = 236/2$</td>
</tr>
</tbody>
</table>

سیستم‌های شکافت با پوست سنگین ما را بر آن داشته نا به محاسبه این کمیت برد داریم. این گونه دورانی هسته مرکب در نقطه زین تقسیم در تزیین زاویه‌ای پاره‌های شکافت دارد که با مدل اولیه قطع ممکن محاسبه می‌شود. مدل سیرک بک، مدل ماکروزکنی و هسته دوران تکنیکی می‌باشد. پارامترهای این مدل در حال حاضر به هنر مرکب و ارتفاع سد هسته‌های دورکننده با مدل قطع ممکن بهبودی تقابل را دارند. بر اساس این مدل، مدل هسته محوری در نقطه گرفته می‌شود. مدل سیرک با محاسبات دقیق در بلافاصله سیرک شرح داده شده است [1]. بنابراین نسبت $\frac{3\epsilon}{h^2}$ برای هر کدام از سیستم‌ها به طور جداگانه حساب کرد و در جدول ۲ آورده‌ایم.

در مورد شکافت این گونه سیستم‌ها نیز، محاسبات محاسبات انجام شده در جدول ۳ نا آمده است. و نمودارهای ناهماهنگی زاویه‌ای برای اساس
جدول ۳ محاسبه کمیتهای لازم در محاسبه ناهمسانگردی پاره‌های شکافت و مقایسه آن با مقادیر تجربی برای سیستم $^{19}O + ^{137}Th$

<table>
<thead>
<tr>
<th>E_{cm} (MeV)</th>
<th>$< I^1 >$</th>
<th>$\frac{3_{eff}}{h^2} (\text{MeV})^3$</th>
<th>B_f (MeV)</th>
<th>E_R (MeV)</th>
<th>E_{ex} (MeV)</th>
<th>K_i</th>
<th>A_{Th}</th>
<th>A_{exp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>93/84</td>
<td>774/20</td>
<td>173/24</td>
<td>2/10</td>
<td>2/70</td>
<td>3/300</td>
<td>0/24</td>
<td>1/78</td>
<td>1/94 ± 0/9</td>
</tr>
<tr>
<td>103/68</td>
<td>144/15</td>
<td>193/70</td>
<td>1/44</td>
<td>1/24</td>
<td>4/100</td>
<td>0/28</td>
<td>2/18</td>
<td>2/16 ± 0/10</td>
</tr>
<tr>
<td>117/36</td>
<td>132/80</td>
<td>220/56</td>
<td>1/100</td>
<td>9/90</td>
<td>73/100</td>
<td>3/35</td>
<td>2/24</td>
<td>2/20 ± 0/12</td>
</tr>
<tr>
<td>136/100</td>
<td>286/20</td>
<td>258/8</td>
<td>0/13</td>
<td>10/23</td>
<td>89/10</td>
<td>4/42</td>
<td>2/54</td>
<td>2/46 ± 0/13</td>
</tr>
</tbody>
</table>

جدول ۴ محاسبه کمیتهای لازم در محاسبه ناهمسانگردی پاره‌های شکافت و مقایسه آن با مقادیر تجربی برای سیستم $^{12}C + ^{185}U$

<table>
<thead>
<tr>
<th>E_{cm} (MeV)</th>
<th>$< I^1 >$</th>
<th>$\frac{3_{eff}}{h^2} (\text{MeV})^3$</th>
<th>B_f (MeV)</th>
<th>E_R (MeV)</th>
<th>E_{ex} (MeV)</th>
<th>K_i</th>
<th>A_{Th}</th>
<th>A_{exp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>78/100</td>
<td>592/31</td>
<td>190/27</td>
<td>2/25</td>
<td>2/14</td>
<td>4/100</td>
<td>3/25</td>
<td>1/20</td>
<td>1/84 ± 0/18</td>
</tr>
<tr>
<td>85/75</td>
<td>752/42</td>
<td>193/28</td>
<td>2/10</td>
<td>2/71</td>
<td>52/50</td>
<td>2/6</td>
<td>1/70</td>
<td>1/84 ± 0/19</td>
</tr>
<tr>
<td>92/77</td>
<td>1132/77</td>
<td>210/12</td>
<td>1/74</td>
<td>3/10</td>
<td>61/74</td>
<td>3/10</td>
<td>1/95</td>
<td>2/84 ± 0/10</td>
</tr>
<tr>
<td>109/59</td>
<td>157/53</td>
<td>211/94</td>
<td>1/74</td>
<td>6/100</td>
<td>76/10</td>
<td>2/33</td>
<td>2/10</td>
<td>2/75 ± 0/11</td>
</tr>
<tr>
<td>125/24</td>
<td>238/318</td>
<td>244/10</td>
<td>0/58</td>
<td>8/50</td>
<td>91/50</td>
<td>2/12</td>
<td>2/74</td>
<td>2/40 ± 0/12</td>
</tr>
</tbody>
</table>

جدول ۵ محاسبه کمیتهای لازم در محاسبه ناهمسانگردی پاره‌های شکافت و مقایسه آن با مقادیر تجربی برای سیستم $^{11}B + ^{158}Np$

<table>
<thead>
<tr>
<th>E_{cm} (MeV)</th>
<th>$< I^1 >$</th>
<th>$\frac{3_{eff}}{h^2} (\text{MeV})^3$</th>
<th>B_f (MeV)</th>
<th>E_R (MeV)</th>
<th>E_{ex} (MeV)</th>
<th>K_i</th>
<th>A_{Th}</th>
<th>A_{exp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>57/55</td>
<td>214/06</td>
<td>168/100</td>
<td>2/60</td>
<td>0/81</td>
<td>40/25</td>
<td>2/03</td>
<td>1/27</td>
<td>1/22 ± 0/17</td>
</tr>
<tr>
<td>71/26</td>
<td>587/2</td>
<td>141/100</td>
<td>2/4</td>
<td>3/100</td>
<td>58/8</td>
<td>2/72</td>
<td>1/33</td>
<td>1/23 ± 0/19</td>
</tr>
<tr>
<td>113/32</td>
<td>1973/43</td>
<td>228/22</td>
<td>0/85</td>
<td>1/0/4</td>
<td>91/0</td>
<td>2/33</td>
<td>1/33</td>
<td>2/11 ± 0/10</td>
</tr>
</tbody>
</table>

جدول ۶ محاسبه کمیتهای لازم در محاسبه ناهمسانگردی پاره‌های شکافت و مقایسه آن با مقادیر تجربی برای سیستم $^{14}N + ^{137}Th$

<table>
<thead>
<tr>
<th>E_{cm} (MeV)</th>
<th>$< I^1 >$</th>
<th>$\frac{3_{eff}}{h^2} (\text{MeV})^3$</th>
<th>B_f (MeV)</th>
<th>E_R (MeV)</th>
<th>E_{ex} (MeV)</th>
<th>K_i</th>
<th>A_{Th}</th>
<th>A_{exp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>74/36</td>
<td>82/40</td>
<td>154/23</td>
<td>2/54</td>
<td>1/20</td>
<td>4/10</td>
<td>2/23</td>
<td>1/35</td>
<td>1/94 ± 0/18</td>
</tr>
<tr>
<td>80/10</td>
<td>37/10</td>
<td>154/28</td>
<td>1/38</td>
<td>1/57</td>
<td>50/44</td>
<td>2/32</td>
<td>1/50</td>
<td>1/94 ± 0/19</td>
</tr>
<tr>
<td>87/22</td>
<td>24/10</td>
<td>159/30</td>
<td>1/49</td>
<td>50/41</td>
<td>2/21</td>
<td>1/6</td>
<td>1/94 ± 0/11</td>
<td></td>
</tr>
<tr>
<td>45/42</td>
<td>62/120</td>
<td>22/10</td>
<td>2/40</td>
<td>50/40</td>
<td>2/21</td>
<td>1/6</td>
<td>1/94 ± 0/11</td>
<td></td>
</tr>
</tbody>
</table>
جدول ٧ محاسبه کمیتهای لازم در محاسبه ناهماهنگی پاره‌های شکافت و مقایسه آن با مقادیر تجربی برای سیستم $^{11}B + ^{195}U$.

<table>
<thead>
<tr>
<th>E_{cm} (MeV)</th>
<th>$<I'>$</th>
<th>$\frac{3_{eff}}{h^3}$ (MeV)3</th>
<th>B_f (MeV)</th>
<th>E_R (MeV)</th>
<th>E_{ex} (MeV)</th>
<th>K^+</th>
<th>Δ_{th}</th>
<th>Δ_{exp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>610.5</td>
<td>30.07</td>
<td>130/84</td>
<td>2.51</td>
<td>1/13</td>
<td>43/20</td>
<td>15/5</td>
<td>1/26</td>
<td>1/25 ± 0/0</td>
</tr>
<tr>
<td>64/80</td>
<td>29/21</td>
<td>146/60</td>
<td>2/35</td>
<td>1/15</td>
<td>45/30</td>
<td>19/01</td>
<td>1/63</td>
<td>1/65 ± 0/08</td>
</tr>
<tr>
<td>68/74</td>
<td>153/60</td>
<td>2/18</td>
<td>49/76</td>
<td>22/00</td>
<td>1/75</td>
<td>1/75</td>
<td>1/59 ± 0/08</td>
<td></td>
</tr>
</tbody>
</table>

جدول ٨ محاسبه کمیتهای لازم در محاسبه ناهماهنگی پاره‌های شکافت و مقایسه آن با مقادیر تجربی برای سیستم $^{11}C + ^{195}Th$.

<table>
<thead>
<tr>
<th>E_{cm} (MeV)</th>
<th>$<I'>$</th>
<th>$\frac{3_{eff}}{h^3}$ (MeV)3</th>
<th>B_f (MeV)</th>
<th>E_R (MeV)</th>
<th>E_{ex} (MeV)</th>
<th>K^+</th>
<th>Δ_{th}</th>
<th>Δ_{exp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>64/68</td>
<td>173/25</td>
<td>177/28</td>
<td>2/64</td>
<td>1/96</td>
<td>38/38</td>
<td>2/31</td>
<td>1/20 ± 0/0</td>
<td></td>
</tr>
<tr>
<td>67/14</td>
<td>270/30</td>
<td>175/32</td>
<td>3/55</td>
<td>1/100</td>
<td>42/52</td>
<td>21/47</td>
<td>1/15 ± 0/0</td>
<td></td>
</tr>
<tr>
<td>69/30</td>
<td>224/33</td>
<td>179/38</td>
<td>2/68</td>
<td>1/15</td>
<td>44/38</td>
<td>32/36</td>
<td>1/13 ± 0/0</td>
<td></td>
</tr>
<tr>
<td>70/22</td>
<td>291/37</td>
<td>179/43</td>
<td>2/63</td>
<td>1/43</td>
<td>43/33</td>
<td>40/40</td>
<td>1/15 ± 0/0</td>
<td></td>
</tr>
<tr>
<td>71/20</td>
<td>233/67</td>
<td>180/40</td>
<td>4/40</td>
<td>1/50</td>
<td>43/43</td>
<td>44/44</td>
<td>1/10 ± 0/0</td>
<td></td>
</tr>
<tr>
<td>77/54</td>
<td>561/15</td>
<td>181/24</td>
<td>4/28</td>
<td>2/10</td>
<td>58/32</td>
<td>77/33</td>
<td>1/10 ± 0/0</td>
<td></td>
</tr>
<tr>
<td>77/51</td>
<td>881/60</td>
<td>181/34</td>
<td>2/49</td>
<td>0/10</td>
<td>22/20</td>
<td>4/8</td>
<td>1/14 ± 0/9</td>
<td></td>
</tr>
</tbody>
</table>

شکل ٣ (a) ناهماهنگی زاویه‌ای پاره‌های شکافت برای سیستم $^{16}O + ^{197}Th$، (b) نقاط تجربی ارتفاع‌گیری شده در آزمایشگاه با مقادیر پیش‌بینی، (c) $^{11}C + ^{195}U$ شده در مدل آماری نقطه قرین استاندارد مقایسه شده است، (d) $^{11}B + ^{195}U$ به طور مشابه برای سیستم، (e) $^{16}N + ^{197}Th$ به طور مشابه برای سیستم، (f) $^{11}B + ^{195}Np$ به طور مشابه برای سیستم، (g) $^{11}C + ^{197}Th$ به طور مشابه برای سیستم.
جدول ۹ محاصره α و مقایسه آنها برای سیستم‌های شکافت انعطاف‌پذیر با یون سنگین.

<table>
<thead>
<tr>
<th>سیستم‌های شکافت با یون سنگین</th>
<th>α مقدار</th>
<th>a_{BG} مقدار</th>
<th>مقایسه a و a_{BG}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{18}O + ^{133}Th$</td>
<td>0.48</td>
<td>0.48</td>
<td>$a < a_{BG}$</td>
</tr>
<tr>
<td>$^{11}C + ^{133}U$</td>
<td>0.48</td>
<td>0.48</td>
<td>$a < a_{BG}$</td>
</tr>
<tr>
<td>$^{11}B + ^{133}Np$</td>
<td>0.48</td>
<td>0.48</td>
<td>$a < a_{BG}$</td>
</tr>
<tr>
<td>$^{11}N + ^{133}Th$</td>
<td>0.48</td>
<td>0.48</td>
<td>$a < a_{BG}$</td>
</tr>
<tr>
<td>$^{11}B + ^{133}U$</td>
<td>0.48</td>
<td>0.48</td>
<td>$a < a_{BG}$</td>
</tr>
<tr>
<td>$^{11}C + ^{133}Th$</td>
<td>0.48</td>
<td>0.48</td>
<td>$a < a_{BG}$</td>
</tr>
</tbody>
</table>

همان طور که انتظار داشتیم در مورد سیستم‌های $^{11}N + ^{133}Th$ و $^{18}O + ^{133}Th$ و ناهمسانگردگی زاویه‌ای و در سیستم‌های $^{11}C + ^{133}Th$ و رفتار عادی در $^{11}B + ^{133}U$ و $^{11}B + ^{133}Np$ ناهمسانگردگی زاویه‌ای مشاهده شد.

۴. بررسی شکافتهای انعطاف‌پذیر با یون سنگین با در نظر گرفتن گسیل نیتروون‌ها

با برخورد پرتانی به هسته هدف و تشکیل هسته مركب، در مولکول نیتروون از هسته مركب گسیل می‌شود. مولکول اول از لحظه تشکیل هسته مركب تا رسیدن آن به نقطه زین که نوترونهای گسیل در این مرحله را نوترنهای پیش نقطة زین نامیده و مرحله دوم از لحظه گذار هسته مركب از نقطه زین تا رسیدن آن به نقطه انتقال نوترنهای گسیل در این مرحله را نوترنهای پس نقطه زین نامیده [4]. گسیل نیتروون‌ها سبب کاهش انتزاع برانگیختگی و نهایتاً افزایش ناهمسانگردگی می‌شود. انتزاع برانگیختگی با در نظر گرفتن گسیل نیتروون طبق رابطه زیر داده می‌شود. برای سیستم Z'/A داده می‌شود. برای سیستم α قرار داشته باشد نوترونهای متفاوتی به چشم می‌خورد. در a_{BG} حالت کلی هنگامی که باشد، رفتار عادی و اگر $a > a_{BG}$ باشد رفتار غیر عادی در ناهمسانگردگی مشاهده $\alpha > a_{BG}$ می‌شود [12]. برای این اساس، α و a_{BG} برای به‌کار کردن از سیستم‌ها محاسبه می‌شود.

$E_{ex} = E_{c.m} + Q - B_f - E_R - \nu E_n$

که در آن $E_{c.m}$ تعادل نوترنهای گسیل شده و Q انرژی است E_n که توسط انرژی از نوترنهای حمل می‌شود. متوسط انرژی که توسط نوترنهای گسیل حمل می‌شود را ν و ΔE_n می‌شود.

1. Entrance-channel mass asymmetry
2. Businaro-Gallone critical mass asymmetry
شکل ۴ (a) ناهماهنگی در واریهای پاره‌های شکافت برای سیستم $^{18}O + ^{222}Th$ محاسبه‌شده با استفاده از مدل گیجی و بدون توجه به تغییرات در نمایش شکافت. (b) ناهماهنگی در واریهای پاره‌های شکافت برای سیستم $B + \gamma$Np محاسبه‌شده با استفاده از مدل گیجی و بدون توجه به تغییرات در نمایش شکافت. (c) ناهماهنگی در واریهای پاره‌های شکافت برای سیستم $C + ^{238}U$ محاسبه‌شده با استفاده از مدل گیجی و بدون توجه به تغییرات در نمایش شکافت. (d) ناهماهنگی در واریهای پاره‌های شکافت برای سیستم $^{14}N + ^{222}Th$ محاسبه‌شده با استفاده از مدل گیجی و بدون توجه به تغییرات در نمایش شکافت.

بحث و نتیجه‌گیری
بر اساس محاسبات انجام شده در مورد سیستم‌های شکافت القایی با الگوریتم تابع زیر به دست آمده است: $E_R = (1 - \varepsilon) E_N + \varepsilon E_K$ و $E_K = (1 - \varepsilon) E_N + \varepsilon E_R$ (که در اینجا به عنوان فاکتور مذکور از نمایش در ناحیه گیجی به وسیله سیستم داده می‌شود).

1. محاسبه مانگنونرنهای گسیلی
در مورد سیستم‌های که در آنها مدل مکانیسم زنده استفاده‌گر در نظر گرفته نبوده و در نمایش شکافت برای سیستم $B + \gamma$Np محاسبه‌شده با استفاده از مدل گیجی و بدون توجه به تغییرات در نمایش شکافت. (e) ناهماهنگی در واریهای پاره‌های شکافت برای سیستم $C + ^{238}U$ محاسبه‌شده با استفاده از مدل گیجی و بدون توجه به تغییرات در نمایش شکافت. (f) ناهماهنگی در واریهای پاره‌های شکافت برای سیستم $^{14}N + ^{222}Th$ محاسبه‌شده با استفاده از مدل گیجی و بدون توجه به تغییرات در نمایش شکافت.

برای سیستم‌های مورد مطالعه و ۴ انتخاب می‌کنیم: مقادیر پیشین ناهماهنگی در واریهای رای برای سیستم‌های مورد مطالعه بدون نظر گرفتن تصحیح گسیل نمک‌تازه و با در نظر گرفتن تصحیح گسیل نمک‌تازه محاسبه شده و در شکل ۴ آورده‌اند. همچنین، به عنوان استفاده از مدل آماری نقطه زنده پیشنهادی در محاسبات فرض می‌شود که نمایش‌گرها یا در رساندن هسته مربوط به نقطه زنده گسیلی شوند.

1. ۱. محاسبه مانگنونرنهای گسیلی
در مورد سیستم‌های که در آنها مدل مکانیسم زنده استفاده‌گر با توجه به نمایش شهرداری ناهماهنگی در واریهای گسیلی که با نظر گرفتن تصحیح گسیل نمک‌تازه، همچنین نمایش شهرداری گسیلی را بر اساس بهترین برای نمایش در شکافتهای کرده و در شکلهای ۵ تا ۸ آورده‌اند.
شکل 5. بهترین برآورد نمودار ناهماق‌گردنی پاره‌های شکاف با نقاط تجريی برای سیستم $^{111}\text{C} + ^{138}\text{U}$ در این حالات، میانگین نتورنهای گسیلی $\beta = \frac{7}{9}$ پیش‌بینی شده است.

شکل 7. بهترین برآرز نمودار ناهماق‌گردنی پاره‌های شکاف با نقاط تجريی برای سیستم $^{111}\text{C} + ^{138}\text{Th}$ در این حالات، میانگین نتورنهای گسیلی $\beta = \frac{7}{9}$ پیش‌بینی شده است.

برانگیختگی وابسته است. لذا در سیستم‌هایی که منجر به تشکیل یک هسته مرکب می‌شود، انتظار می‌رود که ناهماق‌گردنی پیکسان باشد.

معادله‌های sluggish که در جدول 3 تا 5 مشخص شده است در سیستم‌های به هسته مرکب ^{197}Cf تشکیل شده است تا برای افزایش پیکسرانتی پیکسان برانگیختگی تقریباً باشد.
(2) با توجه به شکل 2 در مورد هر کدام از سیستم‌های شکاف‌های نوری با پوست سنگین، مقادیر پیش‌بینی شده ناهماهنگی‌های فیزیکی از تغییرات ساده بر اساس مدل آماری نقطه زنی استفاده به تصحیح کسب نتایج حساس است. مشاهده شد که انعک تصاحب به پره خیز از سیستم‌های مرتبط به پرآرام کامل منحنی تدوری با داده‌های تجربی می‌شود. لذا در نظر گرفتن تصحیح کسب نتایج در محاسبه غلیظتری از کربن‌های وزنی بر اساس مدل آماری نقطه زنی استفاده شرط لازم و کافی در رساندن به تیپ هش مطلوب در محاسبه ناهماهنگی‌های به شکاف‌های نوری به شکاف‌های بواد.

(4) همانطور که اشاره شد بررسی تجربی نشان می‌دهد که در سیستم‌های شکاف‌های نوری با پوست سنگین اکثر رابطه بین α_1 و α_2 برقرار باشد انتظار رفتار عادي در ناهماهنگی وجود دارد، در غیر اینصورت رفتار غلیظتری در ناهماهنگی مشاهده می‌شود. این رفتار غلیظتری را می‌توان حاصل از اثر از ریودهای شکاف‌های سریع تشکیل دهنده شکاف که از شکاف‌های قبل از تعداد یافته شده، شکاف‌های مرتبط در سیستم‌های ناهماهنگی به پوست سنگین زمانی رویه می‌دهد که پرآرام شکاف‌های زیادی داده و در نتیجه بررسی سد شکاف‌های بیشتر کمک به نتایج 23، 27 در این حالت هسته‌ای کمک نمودار ریش را به تعادل بین انتخاب I بر روی محور شکاف) در نقطه زنی شکاف‌های مد. شبیه شکاف‌های بواد در مورد سیستم‌هایی روزی می‌دهد که پرآرام به پارامتر شکاف‌های باشد $A=20$ [1973]. شکاف قبل از تعادل به علت

پرورش هسته‌ای غلیظتری همراه با هسته مرکب در ریودهای شکاف است [27]. در مورد سیستم‌هایی که بررسی

1 Quasi-Fission
2 Pre equilibrium-Fission
3 Non Compound Nucleus
