طراحی و ساخت لایه‌های نازک ایتیکی با نمایه ضخامت متغیر برای تولید آینه‌های VRM

حمیدرضا فلاح۱، ابوالحسن مشتری۲ و حسین تقی‌فر۳

۱. گروه پزوهش ایتیک کوانتم، گروه فیزیک دانشگاه اصفهان
۲. دانشکده جنرال مکان انشر مرکز تحقیقات ایتیک و آبیز

(دریافت مقاله: ۹۸/۰۳/۱۶; دریافت نسخه نهایی: ۹۸/۰۹/۲۳)

چکیده
در این مقاله چکوتکی طراحی و ساخت آینه‌های با پارامتر دیگری تغییر ضخامت با استفاده از چکوتکی طراحی از یک ماسک ضخامت ثابت با سوابق دارای استفاده شده است.
برای تغییر فرایند لایه‌نشانی، رونده ماسک لایه‌نشانی به صورت یک چسبه دیگر می‌باشد فرآیند تغییر فری تغییر می‌کند. البته تغییر ذرات از این رونده به صورت تغییر تغییر ذرات می‌شود که این ماسک‌های باران‌های ماسک لایه‌نشانی را به پارامترهای نماهای لایه‌نشانه شده نمی‌بوشد و سپس می‌گذرد که این نماهای ناپایداری از آن به نماهای دیگر می‌گذرد. این مقاله آثار تغییرات اتاق‌گرمی ضخامت لایه‌های برای برای تولید و تراکم اندازه‌ها مورد بررسی قرار گرفت.

واژه‌های کلیدی: آینه با پارامتر دیگری، لایه‌نشان یا یکی، فاز تراکم، مقدار برخی

۱. مقدمه
این‌های‌دی در کلکیک که نماهای باران‌های آنها به صورت شعاعی تغییر می‌کند (VRM) به دلیل ملتیهای که بر این‌های‌معمولی دارد، به صورت گسترده‌ای در مشاهده‌های تایید گر کرده‌اند. مهم‌ترین ملتیه‌ای که این‌های‌ها عبایش دارد محدود در پرتو از لایه‌های آن، بهتر چدن ناشی از کانوان شدگی پرتو‌لایه، حجم میان‌گیره و ۱۰... [۱] مولتی‌تیپ نمایه بازتابی برای به دست آوردن اهداف ذکر شده در بالا آینه با نمایه بازتابی آیرگوسی است. و استیک‌شیرای نمایه بازتابی
چین‌های‌های‌های به صورت زیر است:

\[R(r) = R_0 \exp(-\frac{r}{w}^n) \]

۱. Variable Reflectivity Mirror
ب) طرازی لايه نتشاني با ماسک

تعیینات شعاعی ضخامت براي یک شب دارا را می‌توان با وارد کردن یک ماسک ثابت با سرعت دارا، بین جسم و نیروی تغییر و
بستره ایجاد کرد. هندسه لايه ننشانی را می‌توان توسط
پاراترمهای قطع سرعت ماسک (D) و فاصله بین ماسک و
بستره (H) توصیف کرد. وارد کردن ماسک بین جسم و بستره
باعث می‌شود به خاطر اثر سیبک افتک ماسک، لايه ایجاد
شود که حداکثر ضخامت AN در مرکز است و ضخامت AN به
صورت شعاعی که از مرکز دور می‌شود، کاهش می‌یابد. با
کنار گذاشت پاراترمهای هندسی لايه ننشانی (D, H, w) مقدار پاراترمهای
و نمایه پارامترهای را کنترل کرد. مقادیر
پارامترهای H و D در مقایسه با فاصله بین جسم و بین در
صبر و ماسک بسیار

از چنین

برای حاصل دارند رابطه بین پاراترمهای ضخامت لايه و
پاراترمهای ماسک لايه ننشانی، مدل‌های مختلف نظری بررسی
انشتر مدل‌هایی به باعث یا تعیین یک عدد گرین برای روتوه
ماسک در نظر گرفته شده است که بعضاً از آنها تحقیق خوبی با
تایب تجربی نداشته است [3, 4]. در این تحقیق به جای
مدل‌های بیشتر مدل‌های یک نیروی یکنواخت دارد. لايه دوم لايهی با ضریب کاهش بالای است که
ضخامت آن به صورت ثابتی تغییر می‌کند. برای به دست
آوردن ضخامت لايه، از تک نیروی داخل آموج در لايه نزار
استفاده می‌کنند [5]. در محاسبه ضخامت یک شرط‌های زیر
نیز توجه داریم:

- d = d_{max}
- d = d_{ref}
- R(r) = R_{ref} \exp(-x(r)^{\eta})

3. طرازی لايه نتشانی

اولین لايهی که را برتره ننشانی می‌شود لايه ضد پارامترها
یکنواخت دارد. لايه دوم لايهی با ضریب کاهش بالای است که
ضخامت آن به صورت ثابتی تغییر می‌کند. برای به دست
آوردن ضخامت لايه، از تک نیروی داخل آموج در لايه نزار
استفاده می‌کنند [5]. در محاسبه ضخامت یک شرط‌های زیر
نیز توجه داریم:

- d = d_{max}
- d = d_{ref}
- R(r) = R_{ref} \exp(-x(r)^{\eta})

1- نیز توجه داریم:

- d = d_{max}
- d = d_{ref}
- R(r) = R_{ref} \exp(-x(r)^{\eta})

3. طرازی لايه نتشانی

این لايهی که می‌تواند به صورت زیر به دست آمده باشد:

\[M = k \cos^2 \theta \, d \, d \omega, \]

که \(\theta \) زاویه بین جهت انتشار و خط عمومی بر سطح چشم

\[d(r) = \frac{\lambda}{r_{eq} \cos \theta} \left[\frac{(r_{eq}^2 + r_{eq}^2)(R(r) - r_{eq}^2)}{r_{eq}^2 (R(r) - r_{eq}^2)} \right], \]

که در آن

\[r_{eq} = \frac{r_f + r_e \exp \left(\frac{-\pi m_e d_c}{\lambda} \right)}{1 + r_f \exp \left(\frac{-\pi m_e d_c}{\lambda} \right)}, \]

\[d(r) = \frac{\lambda}{r_{eq} \cos \theta} \left[\frac{(r_{eq}^2 + r_{eq}^2)(R(r) - r_{eq}^2)}{r_{eq}^2 (R(r) - r_{eq}^2)} \right], \]

کهضخامت لايه ضد پارامترها و ضریب کاهش بالای

\[d(r) = \frac{\lambda}{r_{eq} \cos \theta} \left[\frac{(r_{eq}^2 + r_{eq}^2)(R(r) - r_{eq}^2)}{r_{eq}^2 (R(r) - r_{eq}^2)} \right], \]

که در آن

\[r_{eq} = \frac{r_f + r_e \exp \left(\frac{-\pi m_e d_c}{\lambda} \right)}{1 + r_f \exp \left(\frac{-\pi m_e d_c}{\lambda} \right)}, \]

\[d(r) = \frac{\lambda}{r_{eq} \cos \theta} \left[\frac{(r_{eq}^2 + r_{eq}^2)(R(r) - r_{eq}^2)}{r_{eq}^2 (R(r) - r_{eq}^2)} \right], \]

کهضخامت لايه ضد پارامترها و ضریب کاهش بالای

\[d(r) = \frac{\lambda}{r_{eq} \cos \theta} \left[\frac{(r_{eq}^2 + r_{eq}^2)(R(r) - r_{eq}^2)}{r_{eq}^2 (R(r) - r_{eq}^2)} \right], \]

که در آن

\[r_{eq} = \frac{r_f + r_e \exp \left(\frac{-\pi m_e d_c}{\lambda} \right)}{1 + r_f \exp \left(\frac{-\pi m_e d_c}{\lambda} \right)}, \]

\[d(r) = \frac{\lambda}{r_{eq} \cos \theta} \left[\frac{(r_{eq}^2 + r_{eq}^2)(R(r) - r_{eq}^2)}{r_{eq}^2 (R(r) - r_{eq}^2)} \right], \]

کهضخامت لايه ضد پارامترها و ضریب کاهش بالای

\[d(r) = \frac{\lambda}{r_{eq} \cos \theta} \left[\frac{(r_{eq}^2 + r_{eq}^2)(R(r) - r_{eq}^2)}{r_{eq}^2 (R(r) - r_{eq}^2)} \right], \]

که در آن

\[r_{eq} = \frac{r_f + r_e \exp \left(\frac{-\pi m_e d_c}{\lambda} \right)}{1 + r_f \exp \left(\frac{-\pi m_e d_c}{\lambda} \right)}, \]

\[d(r) = \frac{\lambda}{r_{eq} \cos \theta} \left[\frac{(r_{eq}^2 + r_{eq}^2)(R(r) - r_{eq}^2)}{r_{eq}^2 (R(r) - r_{eq}^2)} \right], \]

کهضخامت لايه ضد پارامترها و ضریب کاهش بالای

\[d(r) = \frac{\lambda}{r_{eq} \cos \theta} \left[\frac{(r_{eq}^2 + r_{eq}^2)(R(r) - r_{eq}^2)}{r_{eq}^2 (R(r) - r_{eq}^2)} \right], \]

که در آن

\[r_{eq} = \frac{r_f + r_e \exp \left(\frac{-\pi m_e d_c}{\lambda} \right)}{1 + r_f \exp \left(\frac{-\pi m_e d_c}{\lambda} \right)}, \]
صفحه سوئرخ

صفحه پس‌تره

شکل ۲: ساختار هندرسی برای محاسبه نمایه ضخامت.

به دلیل اینکه دستگاه‌های سیستم‌کنترل ضخامت حین لایه MgF۲ و ZnS و ZnSe، این سیستم را برای هر دو نوع نمایه ضخامت خاصی قابل قدرت و با صورت جذابیتی کالیبره کرده‌اند. برای به دست آوردن نمایه ضخامت حین لایه نشانده شده از روش جرمی بهره‌گیری کرده‌اند. نمایه ضخامت‌ها از رابطه زیر تعبیه می‌شود:

\[t = \frac{m}{\rho A} \]

که

\[m = \text{مساحت و تفاوت جرم بستر عقب و بعده از لایه} \]

\[\rho = \text{نارنجی مورد استفاده} \]

\[A = \text{شکل ۲-الکترانونه است. با مقابله نمودارهای ارائه شده} \]

و مقدار به دست آمده از محاسبات، فاصله ۷/۵ cm با بالای

\[\lambda = \frac{A}{4} \]

برای به دست آوردن لایه لایه توسط ZnS

انجام شده در فضاهای بعده استفاده شد.

که

\[\lambda = \text{برای لایه زیر} \]

\[\rho = \text{نارنجی مورد استفاده} \]

\[A = \text{شکل ۲-الکترانونه است. با مقابله نمودارهای ارائه شده} \]

\[\lambda = \frac{A}{4} \]

برای به دست آوردن لایه لایه توسط ZnS

\[d(r) = \frac{\rho^2 r^2 + \rho^2 r^2 - \rho^2 r^2}{\rho^2 r^2} \]

\[\lambda = \text{برای لایه زیر} \]

\[\rho = \text{نارنجی مورد استفاده} \]

\[A = \text{شکل ۲-الکترانونه است. با مقابله نمودارهای ارائه شده} \]

\[\lambda = \frac{A}{4} \]

برای به دست آوردن لایه لایه توسط ZnS

\[d(r) = \frac{\rho^2 r^2 + \rho^2 r^2 - \rho^2 r^2}{\rho^2 r^2} \]

\[\lambda = \text{برای لایه زیر} \]

\[\rho = \text{نارنجی مورد استفاده} \]

\[A = \text{شکل ۲-الکترانونه است. با مقابله نمودارهای ارائه شده} \]

\[\lambda = \frac{A}{4} \]

برای به دست آوردن لایه لایه توسط ZnS

\[d(r) = \frac{\rho^2 r^2 + \rho^2 r^2 - \rho^2 r^2}{\rho^2 r^2} \]

\[\lambda = \text{برای لایه زیر} \]

\[\rho = \text{نارنجی مورد استفاده} \]

\[A = \text{شکل ۲-الکترانونه است. با مقابله نمودارهای ارائه شده} \]

\[\lambda = \frac{A}{4} \]

برای به دست آوردن لایه لایه توسط ZnS

\[d(r) = \frac{\rho^2 r^2 + \rho^2 r^2 - \rho^2 r^2}{\rho^2 r^2} \]

\[\lambda = \text{برای لایه زیر} \]

\[\rho = \text{نارنجی مورد استفاده} \]

\[A = \text{شکل ۲-الکترانونه است. با مقابله نمودارهای ارائه شده} \]

\[\lambda = \frac{A}{4} \]

برای به دست آوردن لایه لایه توسط ZnS

\[d(r) = \frac{\rho^2 r^2 + \rho^2 r^2 - \rho^2 r^2}{\rho^2 r^2} \]

\[\lambda = \text{برای لایه زیر} \]

\[\rho = \text{نارنجی مورد استفاده} \]

\[A = \text{شکل ۲-الکترانونه است. با مقابله نمودارهای ارائه شده} \]

\[\lambda = \frac{A}{4} \]

برای به دست آوردن لایه لایه توسط ZnS

\[d(r) = \frac{\rho^2 r^2 + \rho^2 r^2 - \rho^2 r^2}{\rho^2 r^2} \]

\[\lambda = \text{برای لایه زیر} \]

\[\rho = \text{نارنجی مورد استفاده} \]

\[A = \text{شکل ۲-الکترانونه است. با مقابله نمودارهای ارائه شده} \]

\[\lambda = \frac{A}{4} \]

برای به دست آوردن لایه لایه توسط ZnS

\[d(r) = \frac{\rho^2 r^2 + \rho^2 r^2 - \rho^2 r^2}{\rho^2 r^2} \]

\[\lambda = \text{برای لایه زیر} \]

\[\rho = \text{نارنجی مورد استفاده} \]

\[A = \text{شکل ۲-الکترانونه است. با مقابله نمودارهای ارائه شده} \]

\[\lambda = \frac{A}{4} \]

برای به دست آوردن لایه لایه توسط ZnS

\[d(r) = \frac{\rho^2 r^2 + \rho^2 r^2 - \rho^2 r^2}{\rho^2 r^2} \]

\[\lambda = \text{برای لایه زیر} \]

\[\rho = \text{نارنجی مورد استفاده} \]

\[A = \text{شکل ۲-الکترانونه است. با مقابله نمودارهای ارائه شده} \]

\[\lambda = \frac{A}{4} \]

برای به دست آوردن لایه لایه توسط ZnS

\[d(r) = \frac{\rho^2 r^2 + \rho^2 r^2 - \rho^2 r^2}{\rho^2 r^2} \]

\[\lambda = \text{برای لایه زیر} \]

\[\rho = \text{نارنجی مورد استفاده} \]

\[A = \text{شکل ۲-الکترانونه است. با مقابله نمودارهای ارائه شده} \]

\[\lambda = \frac{A}{4} \]

برای به دست آوردن لایه لایه توسط ZnS

\[d(r) = \frac{\rho^2 r^2 + \rho^2 r^2 - \rho^2 r^2}{\rho^2 r^2} \]

\[\lambda = \text{برای لایه زیر} \]

\[\rho = \text{نارنجی مورد استفاده} \]

\[A = \text{شکل ۲-الکترانونه است. با مقابله نمودارهای ارائه شده} \]

\[\lambda = \frac{A}{4} \]

برای به دست آوردن لایه لایه توسط ZnS

\[d(r) = \frac{\rho^2 r^2 + \rho^2 r^2 - \rho^2 r^2}{\rho^2 r^2} \]

\[\lambda = \text{برای لایه زیر} \]

\[\rho = \text{نارنجی مورد استفاده} \]

\[A = \text{شکل ۲-الکترانونه است. با مقابله نمودارهای ارائه شده} \]

\[\lambda = \frac{A}{4} \]

برای به دست آوردن لایه لایه T
شکل ۳ نمودارهای کالیبراسیون دستگاه براي (a) ZnS و (b) MgF2 توسط بسترهاي با فاصله عرضي مختلف.

نقاط، مقادير تجريبي را نشان مي‌دهد.

جدول ۱. مشخصات ماسکهاي استفاده شده برای ساخت آنيمها.

<table>
<thead>
<tr>
<th>شماره مونوهام</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (mm)</td>
<td>5</td>
<td>5/5</td>
<td>5/5</td>
<td>5/5</td>
</tr>
<tr>
<td>H (mm)</td>
<td>2/9</td>
<td>1/7</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

لیزر Nd:YAG به صورت نقطه به نقطه در سطح آنیمها

اندازه‌گيري شد و سپس با در نظر گرفتن ضريب جذب، ميزان

انتزاي بزايتان شده از هر نقطه سطح آنیمها محاسبه شده است.

منحنی حاصل از اندازه‌گيري بزايتانش برپا نير از سطح نمودارها

رسم گردید. سپس برای به دست آوردن رابطه نمایه بزايتانش

هر کدام از نمونهها به روش عددی مربعات گوسی منحنی‌هاي

روي نقاط به دست آمده برایش شده است. پارامترهاي

w نمایه بزايتانش هر کدام از نمونهها در شكل ۴ در کنار

منحنی مربوطه نشان داده شده است.

پس از برای به دست آوردن نمایه ضخامت نمودارهاي ساختمان شده، پارامتر x روزه ماسک را مي‌توان تعیین کرد. برای اين

مورد شرایط اطلاعات نمودارهای شماره ۱، ۲ و ۳ با ماسک به

Wفناقله‌هاي مختلف H لايه نشاني

شدهاند، مي‌توان استفاده کرد. با استفاده از پارامترهای که بر اساس

رابطه (8) نوشته شده است، مقادير پارامتر x برای 25/0 به دست

بود. اين مدل برای سه به دست چسبان که در ارتفاع

MgF2 بالاي چشم، و فواصل عرضي مختلف فاصله گرفته

بودند، انجام نشان مي‌گيرد که تا پایان از آزمایشها در شكل ۳-ب

ارائه شده است. بر اساس ملاحظات انجام شده ضخامت چارک

موجه در 192 mm برای 30/11 mg مقدار 7/5 cm ارتفاع

بایاي بیشتر قرار گرفت است، برای لايه نشاني

نهایي در نظر گرفته شد. از اين به داشت که تمام آزمایشها

بلا دون حضور ماسک انجام شده است.

براي انجام لايه نشاني اصولي، آزمایش با ماسکهای که

مشخصات آنها در جدول ۱ ارائه شده است، انجام شد.

برای به دست آوردن نمایه بزايتانش از سطح آنيمها دستگاه

روي يک پايه قابل حرکت با دقت 1/000 میلی‌متر داشت.

MgF2 گامه‌های حرکت 100 و پهنای لازم بر اساس

MgF2 100 تام. با اين کار به طور مستقیم ترکیب پروتو
شکل 4. نمایه پازتاش نمونه‌های ساخته شده که دایره‌ها مقادیر تجربی و خطوط، منحنی‌های پازتاش شده را نشان می‌دهند.

اثر روزنه از بین می‌رود و روزنه ماسک مثل یک چشمه کشته به‌صورت عمل می‌کند. این موضوع برای $D = 5$, $w = 4.4$ می‌باشد. نمایش نشانه‌های H و D متفاوت است.

این نتایج را بازدارند و پازتاش نمونه‌هایی می‌توانند به‌صورت w نشان دهند و با استفاده از آنها می‌توان به‌طور همگون بازدارن و H و D مقادیر w مناسب را انتخاب کرد و لاشه‌هایی مورد نظر را انجام داد.

در شکل 5 نمایش‌ها به گونه‌ای رسم شده‌اند که از بیلا به پایین فاصله H کاهش می‌یابد و هر دسته از منحنی‌ها مربوط به D یک صفحه‌ای خاص می‌باشد. همان طور که در این منحنی‌ها مشاهده می‌شود، در یک صفحه‌ای خاص با افزایش مقدار H, منحنی به یک خط راست و افقی نیم‌دایره‌ای چرا که با افزایش مقدار H به‌صورت مانگ‌کننده قدرت و در نتیجه w منحنی H به‌صورت D در فواصل محدودی از هر H, منحنی w بر حسب R را می‌توان حساب کرد. همچنین که با افزایش قطر روزنه ماسک (D),
شکل ۵. منحنی برای مقادیر مختلف د و ه. برای شیب در غیره‌میکروگره‌های میکرو‌متر به علاوه مقدار از جنس MgF، برای ۱۷ nm نیم‌پهنای برابر با ۱۷nm می‌باشد. در این نمودار هر خط می‌تواند به شیب در غیره‌میکروگره‌های میکرو‌متر به علاوه مقدار از جنس MgF، برای ۱۷ nm نیم‌پهنای برابر با ۱۷nm می‌باشد. در این نمودار هر خط می‌تواند به شیب در غیره‌میکروگره‌های میکرو‌متر به علاوه مقدار از جنس MgF، برای ۱۷ nm نیم‌پهنای برابر با ۱۷nm می‌باشد. در این نمودار هر خط می‌تواند به شیب در غیره‌میکروگره‌های میکرو‌متر به علاوه مقدار از جنس MgF، برای ۱۷ nm نیم‌پهنای برابر با ۱۷nm می‌باشد. در این نمودار هر خط می‌تواند به شیب در غیره‌میکروگره‌های میکرو‌متر به علاوه مقدار از جنس MgF، برای ۱۷ nm نیم‌پهنای برابر با ۱۷nm می‌باشد. در این نمودار هر خط می‌تواند به شیب در غیره‌میکروگره‌های میکرو‌متر به علاوه مقدار از جنس MgF، برای ۱۷ nm نیم‌پهنای برابر با ۱۷nm می‌باشد. در این نمودار هر خط می‌تواند به شیب در غیره‌میکروگره‌های میکرو‌متر به علاوه مقدار از جنس MgF، برای ۱۷ nm نیم‌پهنای برابر با ۱۷nm می‌باشد. در این نمودار هر خط می‌تواند به شیب در غیره‌میکروگره‌های میکرو‌متر به علاوه مقدار از جنس MgF، برای ۱۷ nm نیم‌پهنای برابر با ۱۷nm می‌باشد. در این نمودار هر خط می‌تواند به شیب در غیره‌میکروگره‌های میکرو‌متر به علاوه مقدار از جنس MgF، برای ۱۷ nm نیم‌پهنای برابر با ۱۷nm می‌باشد. در این نمودار هر خط می‌تواند به شیب در غیره‌میکروگره‌های میکرو‌متر به علاوه مقدار از جنس MgF، برای ۱۷ nm نیم‌پهنای برابر با ۱۷nm M

\[\Delta \rho^R (r) = \phi^R (r) - \phi^R (r) + \phi^R (r) \]

\[\phi^R (r) \]

\[\text{جنبه‌جایی فاز در اثر نمودار از ۷ nm می‌باشد.} \]

با استفاده از رابطه بالا اختلاف فاز بین امواج فرودی و بزانتی برابر نمودارهای ساخته شده به دست آمده که در شکل ۵ نشان داده شده است.

سطح معمولی که در ساخت لایه‌های تاز و جو دارد،

ضخامت این تکنیک این لایه‌هاست. با توجه به اینکه از روش‌های ترازوی یا دقت ۰،۱ mg اندازه‌گیری ضخامت استفاده شده است. حتی اگر این اتاق‌های از استفاده از این روش برای استفاده است.

\[\Delta d = \frac{\Delta \rho}{\rho} (\text{nm}) \]

\[\text{چگالی ماده مورد استفاده است.} \]
شکل ۶: منحنی فاز بارتاپی برای نمونه‌های ساخته شده، متعلق به پوسته فاز بارتاپی برای نمونه‌های ساخته شده روی نشان می‌دهد، درحالی که

منحنی خط چین فاز بارتاپی در اثر افزایش ضخامت و منحنی نقطه چین فاز بارتاپی در اثر کاهش ضخامت را نشان می‌دهد.

شکست معادل لایه‌ها کوچکتر از ضریب شکست هوا است و به همین دلیل در فاز بارتاپی بیشتر است. در حالی که

ضریب شکست ناحیه هوا در بارتاپی بزرگتر از واحد است و

باعث ایجاد اختلاف فاز ۷۰ درجه بین پرتو فرودی و پرتو بارتاپی است.

پس از بررسی اثر نمایه‌های ضخامت بر فاز پرتوهای

بارتاپی، آثر آن بر فاز پرتوهای عبوری نیز بررسی شد. جایگاه فاز در اثر تراکسیل از رابطه زیر به دست می‌آید:

\[\Delta \phi_t(r) = \phi_t(r) - \phi_t(r) + \phi_{air}(r) \] \hspace{1cm} (9)

که \(\phi_t(r) \) و \(\phi_{air}(r) \) جایگاه فاز در اثر تراکسیل است. \(\Delta \phi_t(r) \) با استفاده از رابطه بالا از اختلاف فاز در اثر تراکسیل برای نمایه‌های ضخامت

نمونه‌ها محاسبه شده و منحنی‌های آن در شکل ۷ نشان داده شده.
در این تحقیق آیه‌هایی با پازتاب‌گذار مستقر ساخته شد. برای پیش‌دان کردن رابطه بین پاتراتوم‌های هندسی، لایه نشانی و پاتراتوم‌های نمایه آئزوگریسیان مدلی مورد استفاده قرار گرفت که بر اساس آن رزمندگی ماسک به عنوان یک چشم مجازی در نظر گرفته می‌شود و پاتراتوم x مربوط به این چشم به مکس آزمایش به دست آمده. با استفاده از نماهایی به دست آمده، متغیرهایی که پاتراتوم‌های لایه نشانی را به پاتراتوم‌های آئزوگریسی مربوط می‌کند، رسم شد. با استفاده از این متغیر، برای شرایط ذکر شده، اندازه‌گیری از نمایه‌های آئزوگریسی را می‌توان تولید کرد. در این بیان بررسی دقیق تر این اثرات نمایه‌ای بر پاتراتوم‌ها اثربخشی روزنامه‌ای به پاتراتوم‌های H و D را نیز باید در نظر گرفت.

شکل 7. منحنی تراکسیل برای نمایه‌های مختلف. منحنی پیوسته تراکسیل نمایه‌ای با ضخامت \(\frac{a}{x} \) منحنی خط خشی فاز تراکسیل برای

لاهیای با فراش ضخامت و منحنی نقطه شیش فاز پازتابش برای لاهیای با کاهش ضخامت را نشان می‌دهد.

تغییر گیری

این موضوع در کارهای بعدی باید بررسی قرار گیرد. با رسم منحنی پازتابش مشاهده شده که خطای ضخامت لاهیایی تا حدی تراکسیل و پازتابش سر پازتابش اثر پینشتری دارد. همچنین منحنی فاز تراکسیل، به‌بستگی شکل پرتو خروجی به نمایه آنیه را نشان می‌دهد. در این منحنی، فراش ضخامت نسبت به کاهش آن اثر پینشتری بر فراش تراکسیل دارد.

قدردانی

در پایان از تحقیقات تکمیلی دانشگاه اصفهان و از آقای دکتر بوسری در دانشگاه صنعتی مالک اصغر که امکانات آزمایشگاه تکنیک‌های خلا در اختیار ما قرار داده بودند، تشکر و قدردانی به عمل می‌آید.