Study of cascade dynamics of kaonic nitrogen atom by Monte-Carlo method

M Raeisi Gahroei
Department of Physics, Faculty of Science, Shahrekord University, Shahrekord, P.O.115
E-mail: raeisi.morteza@sci.sku.ac.ir

(Received 6 April 2011 ; in final form 29 October 2011)

Abstract
Cascade dynamics of kaonic nitrogen atom (KN) in a gaseous target was simulated using a simple model. In this model the radiative transitions, internal Auger, K-electron refilling, nuclear absorption, and kaon decay processes were included. The effect of the K-electron refilling process on some of quantities of cascade dynamics such as X-ray yields, the averaged K-electron shell number, fraction of the nuclear absorption and the averaged de-excitation time was studied by Monte-Carlo method. Using a fitting method, the range of K-electron refilling rate was predicted between 0.1 to 0.6 ps$^{-1}$. This result is in agreement with the theoretical value.

Keywords: kaonic atom, nuclear absorption, cascade dynamics, Monte-Carlo method

For full article, refer to the Persian section