The ground state energy of 3He droplet in the LOCV framework

M Modarres1 S Motahari2 and A Rajabi2
1. Department of Physics, University of Tehran, North-Kargar Ave., 143955961, Tehran, Iran.
2. Department of Physics, Shahid Rajaei Teacher Training University, 16788, Tehran, Iran.
E-mail: mmodares@ut.ac.ir

(Received 25 April 2011 ; in final form 17 January 2012)

Abstract
The (extended) lowest order constrained variational ((E) LOCV) method was used to calculate the ground state energy of liquid helium 3 (3He) droplets at zero temperature. Different types of density distribution profiles, such as the Gaussian, the Quasi-Gaussian and the Woods-Saxon were used. It was shown that at least, on average, near 20 3He atoms are needed to get the bound state for 3He liquid droplet. Depending on the choice of the density profiles and the atomic radius of 3He, the above estimate can increase to 300. Our calculated ground state energy and the number of atoms in liquid 3He droplet were compared with those of Variational Monte Carlo (VMC) method, Diffusion Monte Carlo (DMC) method and Density Functional Theory (DFT), for which a reasonable agreement was found.

Keywords: normal liquid helium 3, helium 3 droplets, LOCV, ELOCV, ground state energy, density distribution profile, Gaussian distribution profile, quasi-Gaussian distribution profile, Wood-Saxon distribution profile, Lennard-Jones potential

For full article, refer to the Persian section