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Abstract 
Density functional approach was used to study the isotropic- nematic (I-N) transition and calculate the values of freezing parameters 

of the Gay- Berne liquid crystal model. New direct and pair correlation functions of a molecular fluid with Gay- Berne pair potential 

were used. These new functions were used in density functional theory as input to calculate the isotropic- nematic transition densities 

for elongation 
0

3.0x =
 
at various reduced temperatures. It was observed that the isotropic- nematic transition densities increase as 

the temperature increases. It was found that the new direct correlation function is suitable to study the isotropic- nematic transition of 

Gay- Berne liquids. Comparison to other works showed qualitative agreement. 
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1. Introduction  
Liquid crystal state is a distinct phase of matter observed 

between crystalline (solid) and isotropic (liquid) states. 

There are many types of liquid crystal states, which 

depend on the degree of material order. The liquid 

crystals are anisotropic materials, the physical properties 

of which vary with the average alignment of molecules 

with director [1]. High alignment results in a very 

anisotropic material while the low alignment gives an 

almost isotropic material. The nematic phase of liquid 

crystal is distinguished by molecules that have no 

positional order while tending to be directed along the 

director. The smectic state is another distinct mesophase 

of liquid crystal substances. In this phase, the molecules 

show a degree of translational order, which is not present 

in the nematic phase. In the smectic state, the molecules 

not only keep the general orientational order of nematics, 

but also tend to be aligned in layers or planes [1- 3]. The 

liquid crystal with cholesteric (or chiral nematic) phase 

is typically composed of nematic mesogenic molecules 

containing a chiral center which produces intermolecular 

forces aligning molecules with a small angle between 

them. Columnar liquid crystals are different from the 

above-mentioned types in terms of their shape. They are 

disc-shaped while others are long rods in shape. This 

mesophase is distinguished by the stacked columns of 

molecules. 

Intermolecular interactions are responsible for the 

existence of liquids and solids in nature. They determine 

the physical and chemical properties of gases, liquids 

and crystals in addition to the stability of chemical 

complexes and biological compounds [4]. There are 

limited accurate theoretical potentials available for 

polyatomic molecules. Therefore, statistical-mechanical 

calculations are usually done with model potentials [5]. 

Despite their simplicity, hard or soft repulsive ellipsoids 

are not best suited for the study of generic liquid crystal 

properties. For example, such models do not exhibit 

smectic phases. Furthermore, one cannot study the effect 

of attractive interactions, the interplay between liquid–

crystalline order and liquid–vapor phase separation, etc. 

A model, closer to real mesogenic systems, explicitly 

considers anisotropic short-range repulsive as well as 

long-range attractive interactions. Along with this, Berne 

and Pechukas proposed a Gaussian overlap potential 

model [6]. This potential was used to model the liquid 

crystal. However, it suffers from some unrealistic 

features, as noticed by Gay and Berne (GB) [7]. They 

introduced a class of ellipsoidal pair potentials with 

attractive interactions, which has become one of the 

standard liquid crystal potentials [8]. 

 A realistic pair-potential between nonspherical 

molecules is fairly complex. To our knowledge about the 

Lennard- Jones fluids, much can be learned about system 
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of nonspherical molecules from the GB potential [9]. 

The intermolecular pair- potential proposed by Gay and 

Berne is written as 
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where ˆiu is the axial vector of molecule i and r̂ is a unit 

vector along 
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and k  is the ratio of molecular length to breadth which 

is equal to 3 for the system considered here and k ′  is the 
ratio of the potential well depths for the side-by-side and 

end–to-end configurations of the molecules. Also, the 

two adjustable parameters µ  and ν control anisotropy 
in the interaction potential. Note that the GB potential, 

eq. (1), reduces to the spherical Lennard- Jones potential 

when both k  and k ′  are equal to unity. The exact form 
of the GB potential is determined by using four 

parameters k , k ′ , µ  and ν . Four basic configurations 
can be defined for the potential between two GB 

particles [10]. In the side-by-side configuration, the 

symmetry axes of the pairs of molecules are parallel. The 

vector joining the center of masses is perpendicular to 

these symmetry axes, while they are parallel in the end- 

to- end configuration. In T configuration, one symmetry 

axis is parallel to the vector joining the center of masses 

while the other is perpendicular to both. The last 

configuration is cross-configuration (× ) in which the 
symmetry axes and the vector between centers of masses 

are perpendicular. 

 The results obtained from computer simulation  

[11-13] show that the GB potential is capable of forming 

nematic, smectic A, smectic B, and an ordered solid in 

addition to the isotropic liquid. A variety of mesophases, 

formed by the anisotropic molecules interacting via the 

GB potential, are of high interest. Taking the attractive 

forces into account in the molecular model makes the 

phase diagram a little more realistic. Thus the GB 

potential has become a standard model for studying 

liquid crystal phases [9, 14, 15]. 

 Some theoretical attempts have also been made to 

calculate the GB phase diagram using density functional 

theory (DFT), perturbation methods and virial 

approximations [16 - 19]. The DFT has been used to 

study freezing of liquid crystals [20] and confined hard 

and soft ellipsoids [21, 22]. In addition to phase behavior 

of the GB mesogen, many other aspects such as the 

behavior of solute molecules in a GB solvent [23], 

elastic constants [24, 25], viscosity coefficients [26, 27], 

thermal conductivity [28] and the behavior in confining 

geometries [29] have been studied. The exponents µ  
and ν  define different variants of the potential. The most 
studied and widely used parameterizations are given in 

ref. [30]. 

 In this paper, we test the accuracy of a new direct 

correlation function (DCF) for GB molecules by using 

DFT for freezing of molecular liquids [9]. We also study 

the isotropic - nematic transition (the orientational 

freezing) of GB molecules. Following the work of Singh 

et al. [9, 31, 32], here, we investigate, the effect of 

varying *
0BT k T ε= on the properties of molecular 

liquids. This paper is organized as follows. In section 2, 

the theory is outlined. In section 3, the new DCF is 

introduced. In section 4, the new pair distribution 

function ( 1 2
ˆ ˆ( , , )g r Ω Ω ) is introduced and finally, in 

section 5, the numerical calculations and results are 

discussed. 

 
2. Grand thermodynamic potential 
The grand thermodynamic potential difference between 

ordered and isotropic phases is written as [32] 

1 2 ,fW W W W W∆ = − = ∆ +∆                                          (7) 

where
 W  and

 fW  are the grand thermodynamic 

potential of ordered and isotropic phases, respectively. 

The entropy term 1W

N

∆
 and the interaction term 2W

N

∆
, 

as a functional of the ordered phase singlet distribution,

( ),rρ Ω
�

, are written as 
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where fρ , V  and ( )1 2, ,C r Ω Ω
�

 are number density, 

system volume and direct correlation function of 

isotropic liquid, respectively. Here, 

( ) ( ), , fr rρ ρ ρ∆ Ω = Ω −
� �

. The density of ordered phase 

can be obtained by minimizing eq. (7) with respect to 

arbitrary variation in the ordered phase density subject to 

the constraint that there is one molecule per lattice site 

(for perfect crystal) and orientational distribution is 

normalized to unit. Thus
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where Lλ  is a Lagrange multiplier which appears in the 

equation due to constraint imposed on the minimization 

[9, 31] . For locating transition, one attempts to find the 

solution ( ),rρ Ω
�

from eq. (10) which has the symmetry 

of ordered phase. For liquid densities less than a certain 

value ρ ′ , the only solution is ( ), frρ ρΩ =
�

. Above ρ ′ , 

a new solution is obtained which corresponds to the 

ordered phase. The phase with lowest grand potential is 

taken as stable phase. The transition point is determined 

by applying 0W∆ =  [9, 32]. For the molecules with 

axial symmetry, the singlet density of the nematic phase 

can be expressed as 

( ) ( ), ,nr fρ ρΩ = Ω
�

                                                  (11)
 

with
 

( )*1 ,n fρ ρ ρ= + ∆                                                      (12) 

where ( )*
n f fρ ρ ρ ρ∆ = −  is the relative change in 

the density at the transition point and nρ  is the number 

density of the nematic phase.
 

 
For uniaxial nematic phase, orientation distribution 

function is given as
 

( ) ( )0 exp cos ,l l

l

f A Pλ θ
 
 Ω =
  
∑                               (13) 

which depends only on  the angle θ , between the 
director and the molecular symmetry axis.

 

 ( )coslP θ
 
denotes a Legendre polynomial and 

l
λ is 

expansion coefficient. The orientational singlet 

distribution is normalized to unity and 
0A  is determined 

from the normalization condition [32]. 

 In space– fixed frame, we can expand ( )1 2, ,C r Ω Ω
�

 

in terms of spherical harmonics as 

( )

( ) ( ) ( ) ( ) ( )
1 2 1 1 2 2

1 2 1 2

1 2

*
1 2 1 2 1 2

, ,

ˆ; ,l l l g l m l m lm

l l l m m m

C r

C r C l l l m m m Y Y Y r

Ω Ω =

Ω Ω∑ ∑

�

 

(14) 

where ( )1 2 1 2;gC l l l m m m and ( )
i il m iY Ω  are Clebsch - 

Gordan coefficients and the spherical harmonics, 

respectively. From eqs. (10), (13) and (14), one can 

express the order parameters as [31] 
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where lP is the order parameter. The structural 

parameters for the nematic phase are defined as [32] 
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Using eq. (14) and after simplification, eq. (17) can be 

written as 
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The term of entropy in eq. (7) can be reduced to
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The interaction term
2W

N

∆
 is evaluated using eqs. (11) 

and (13),
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The ordered phase (translationally and/or orientationally) 

coexists with the isotropic liquid when 

( ) 0,
i

W N
ξ

 ∂
∆ = 

∂ 
                                                    (21) 

and 

0,
W

N

∆
=                                                                      (22) 

where 
i
ξ ,
s are variational parameters appropriate for the 

phase under investigation [9, 31, 32]. eqs. (21) and (22) 



60 A Avazpour and S M Hekmatzadeh IJPR Vol. 14, No. 3 

 

 

show a stability condition and a phase coexistence 

condition. The DFT calculations are done by minimizing 

eq. (7) with respect to the variation parameters,
n
ρ , 2λ  

and 4λ . The coexistence point is then located by varying 

f
ρ with 0.

W

N

∆
=  

 

3. Pair correlation function 
The single– particle density of uniform fluid is equal to 

the overall number density [33]: 
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Hence, the pair density of ideal gas is [33]: 
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The appearance of the term 
1

N
in eq. (24) reflects the 

fact that in a system containing a fixed number of 

particles, the probability of finding a particle in the 

volume element 
1

dr
�

 given that another particle is in 

element 
2

dr
�

 is proportional to 
( )1N

V

−
 rather than ρ . 

The n– particle distribution function ( )( )n n
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is defined 

in terms of the corresponding particle densities by [33] 
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The particle distribution functions measure the extent to 

which the structure of a fluid deviates from complete 

randomness. If the system is also isotropic, the pair 

distribution function ( )(2)
1 2,Ng r r
� �

is only a function of the 

separation, 12 2 1r r r= −
� �

; it is then usually called the 

radial distribution function and written simply as ( )g r . 

Radial distribution function,
 

( )g r , and pair correlation 

function (PCF), ( )1 2
ˆ ˆ, ,g r Ω Ω , are of high importance 

for the study of simple and molecular liquids, 

respectively. Wertheim obtained an analytical expression 

for the distribution function, ( )g r  for hard spheres [34]. 

Boublik calculated a new simple analytical expression 

for ( )g r , to overcome the difficulties and complexity of 

the Wertheim function [35]. It is written as 
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f
r  is the distance 
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By developing Pynn and Wulf method [36, 37] and using 

closest approach of Rickayzen [38], and the variational 

method of Marko [39], along with using Boublik pair 

distribution, one can obtain a new pair distribution for 

hard ellipsoidal molecular fluids [40]. 
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where ( )1 2( ) 3 -12 2
P t t=  and ( )ˆ, ,1 2rσ σ= Ω Ω  is the 

closest approach of Rickayzen [38]. The optimum value 

of the parameter α  is obtained by the same procedure 
introduced by Marko. In this method, the error function 

[39], 

( ){ }2( ) 1 ( ,0) ( ,0) , 1 ,I dx C x d x C x g x xα ρ ′ ′ ′= + + −  ∫ ∫
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(34) 

should be minimized with respect to α . 
 

4. Direct correlation function  
The direct correlation functions play an important role in 

the density functional theory [33]. In the DFT, the free 

energy and the grand potential of a classical system as a 

functional expansion of one particle density [41, 42] are 

convenient to study the structural and thermodynamic 

properties of homogeneous [42] and inhomogeneous 

fluids [43-45]. The expansion coefficients of the 

functional are the n-particle DCF which are the 

functional derivatives of free energy, as introduced in the 
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equilibrium state of liquid theory. Here, we intend to 

consider the pair DCF or simply DCF. In the theory of 

molecular fluids, the DCF can be used to calculate the 

equation of state [46], free energy [47], phase transition 

[39, 48, 49], elastic constants [50], etc. It is generally 

believed that the repulsive interactions, in particular hard 

core, are responsible for the main structural features 

observed in molecular fluids, such as liquid crystals [5]. 

The DCF, ( )1 2, ,C r r ρ
� �

, of a classical system comprising 

non- spherical molecules is defined as a second 

derivative of the grand potential, [ ]W ρ , 

( ) [ ]
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2
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In eq. (35), we have ( ),i i ix r= Ω
� �

, where ir
�

and iΩ  

represent the position and orientation of the molecules, 

respectively. Another definition of the DCF is given via 

the OZ equation [33]: 
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where ( ),1 2h x x
� �

 is the total correlation function. For 

short range potential, ( ),12 1 2u x x
� �

, and with the Percus- 

Yevick (PY) closure, we have 
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The OZ equation can be solved to obtain the correlation 

functions. The PY analytical solution of OZ equation for 

the DCF of hard sphere, ( )PYC r , was called PY DCF 

[51]. Roth et al. [52] derived a new expression for the 

DCF of hard sphere, ( )RothC r , which is closer to 

simulation inside the core r d< than PY approximation. 

Avazpour and Moradi combined PY and Roth DCF to 

obtain a new expression for the DCF of hard sphere [40]. 

This new DCF was in good agreement with the MC 

simulation [40]. 

 Using the improved Pynn – Wulf [36, 37] 

expressions proposed by Marko [39] and using the new 

DCF of ref. [40], the DCF of hard ellipsoids is obtained 

as: 
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In this work, the direct correlation function of ref. [39] 

and Boublik PCF [30] are used to calculate a new direct 

correlation functions for GB molecular fluids. This new 

DCF is 
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where ( ) ( )1 2 1 2, , exp , , 1f r U rβΩ Ω = − Ω Ω −    is the 

Mayer function, ( ) 1Bk Tβ −=  and ( )1 2, ,U r Ω Ω  is inter 

molecular potential. 

 
5. Calculation and results  
Two methods have been used to study the effect of 

temperature variation on the isotropic – nematic 

transition. Firstly, structural parameters have been 

evaluated numerically. The structural parameters play an 

important role in the density functional theory and for 

the study of the temperature dependence of isotropic– 

nematic transition. The transition density has been 

obtained from the plot of the structural parameters 

against reduced density at different reduced temperatures 

( *
0BT k T ε= ).The parameter 

0
00Ĉ  is related to the 

isothermal compressibility while 
0
22Ĉ
 
and higher order 

coefficients are related to the freezing parameters. 

 The most commonly used values of GB parameters 

in the literature are 3.0k = ; 5.0k ′ = ; 2.0µ = ; 1.0ν =  

[53]. The k value was set to be 3, which is the minimum 

ratio of the length to breadth required, in order to 

observe liquid crystalline behavior in real systems. The 

value of reduced temperature T∗  has been varied from 

0.8 to 1.2 in steps of 0.05, keeping other parameters 

fixed at 3.0k = ; 5.0k ′ = ; 2.0µ = ; 1.0ν = . 

 The structural parameters of the GB fluid are 

calculated by using eqs. (1), (17) and (39) with MC 

integration method. In figures 1 and 2, the structural 

parameters 
0ˆ
llC ′  against 

* * 3
0( )f f fρ ρ ρ σ=

 
at 0.80T

∗ =

are compared with the results of ref. [9]. The results of 

present work are in qualitative agreement with ref. [9]. 

In figures 3 to 5, we plot the structural parameters 
0ˆ
llC ′ at 

0.80, 0.95, 1.25T
∗ = . It is seen that the values of 0ˆ

llC ′  

increase with density and deviate from low– density 

linear behavior as well as increase steeply near the phase 

transition. These steep increases can in fact be related to 

the growth of long– range orientational correlations. 

Also, as *T  increases, the phase stability increases 

toward higher densities and the isotropic– nematic 

transition takes place at higher densities. In figures. 6 

and 7, 0
22Ĉ  and 0

4 4Ĉ  
have been compared at 0.80T

∗ =

and 1.25 . As seen, at all temperatures the structural 

parameter 
0

22Ĉ is higher than 0

44
Ĉ . 

Secondly, the grand thermodynamic potential of system 

has  been used  to  determine  the  transition  parameters. 
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Figure 1. The structural parameter 
0
22Ĉ for GB fluid at

3.0k = ; 5.0k ′ = ; 2.0µ = ; 1.0ν =  and 0.80T
∗ = . 

The solid curve is our DCF result and the dashed curve is the 

results of ref. [9]. 

 
Figure 2. The structural parameter 

0

44Ĉ for GB fluid at

3.0k = ; 5.0k ′ = ; 
2.0µ =

; 1.0ν =  and 0.80T
∗ = . 

The solid curve is our DCF result and the dashed curve is the 

results of ref. [9]. 
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Figure 3. The structural parameter 
0

00Ĉ  for GB fluid with 

our DCF at 3.0k = ; 5.0k ′ = ; 2.0µ = ; 1.0ν = .The 

curves with solid line, dashed, and dots are for T*  = 1.25, 

0.95, and 0.80, respectively. 

 
Figure 4. Same as figure. 3 but for 

0

22
Ĉ . 

 

 

 

 

Figure 5. Same as figure. 3 but for 
0

44
Ĉ . 

 

 

 

 

 
Figure 6. The structural parameters

0

22Ĉ and 
0

44
Ĉ for GB 

fluid at 3.0k = ; 5.0k ′ = ; 2.0µ = ; 1.0ν =  and 

0.80T
∗ = . The solid and the dashed curves are for 

0

22Ĉ and 

0

44
Ĉ , respectively. 
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Figure 7. Same as figure. 6 but for 1.25T
∗ = . 

 

 

 

 

Figure 8. The I- N coexistence densities for GB fluid with 

our DCF at 3.0k = ; 5.0k ′ = ; 2.0µ = ; 1.0ν = .The 

curves with solid line and dashed are for 
*
fρ  and 

*
nρ , 

respectively. 

 

Table 1. Isotropic – nematic transition parameters for GB fluid at 3.0k = ; 5.0k ′ = ; 2.0µ = ; 1.0ν = and 0.80 1.25T∗≤ ≤ .The 

structure and other transition parameters are calculated using eq. (39) and DFT method. 

 

When the expansion coefficients of the new DCF of the 

GB fluid are known, we can solve eqs. (20-22). The 

calculated transition parameters are shown in table 1. 

The results obtained for transition densities of the GB 

fluid calculated using the structural parameters and the 

DFT method are compared in table 2. 

 As seen in table 1, increasing temperature increases 

transition densities. Also, second and fourth order 

parameters decrease with increasing temperature. These 

increasing and decreasing are consistent with the physics 

of phase transition. Also comparison of transition densities 

of table 2, shows correspondence of DFT and structural 

parameter methods. As figures and tables show, by 

increasing the temperature, the transition occurs when the 

structural parameters  
0

22Ĉ  and 0

44
Ĉ

 
attain values 

0
22
ˆ3.750 4.913C≤ ≤

 
and 

0
44
ˆ1.277 1.750C≤ ≤ , 

respectively. It can be seen that these parameters vary 

weakly with T. 

 In figure. 8, we plot the variation of temperature with 

isotropic–nematic coexistence densities ( *ρ ), found 

from the density-functional theory. The theoretical 

results show that the coexistence densities *
fρ  
and 

*
nρ  

increase with increasing temperature. The fractional 

density changes, *ρ∆ , are also found to be rather small, 

which is consistent with the fact that the molecules are 

hard and not very compressible at the transition 

densities. As seen in figures 1 and 2, our DCF gives 

reasonable results for the structural parameters. 

However, it quantitatively underestimates the structural 

parameters of ref. [9]. Hence, as Singh et al. [9] 

emphasized, the phase transitions in complex fluids can 

be predicted reasonably well with the density-functional 

method if the values of the DCFs in the isotropic phase 

are accurately known. In addition, our new DCF is 

convenient for the study of other physical properties of  
 

0

44Ĉ  0

22Ĉ  0

00Ĉ  
4P  2P  

*ρ∆  
*

nρ  *

fρ  T* 

1.580 3.750 -1.385 0.418 0.743 0.0104 0.2774 0.2670 0.80 

1.321 3.873 -1.821 0.383 0.717 0.0085 0.2815 0.2730 0.85 

1.277 3.910 -2.741 0.350 0.690 0.0063 0.2849 0.2786 0.95 

1.392 4.222 -2.918 0.343 0.684 0.0056 0.2966 0.2910 1.00 

1.486 3.896 -9.676 0.338 0.680 0.0054 0.3039 0.2985 1.05 

1.483 4.206 -10.339 0.337 0.679 0.0063 0.3103 0.3040 1.10 

1.599 4.544 -18.317 0.337 0.679 0.0063 0.3208 0.3145 1.15 

1.645 4.6968 -31.458 0.338 0.680 0.0089 0.3279 0.3190 1.20 

1.75 4.913 -56.790 0.333 0.670 0.0049 0.3329 0.3280 1.25 
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Table 2. Comparison of the calculated transition densities, *

fρ , for GB fluid at 3.0k = ; 5.0k ′ = ; 2.0µ = ; 1.0ν = and

0.80 1.25T
∗≤ ≤ , using DFT and structural parameters. 

Transition density *

fρ  from 

structure parameters  

Transition density *

fρ  

from DFT  

T*  

0.2700 0.2670 0.80 

0.2780 0.2730 0.85  

0.2870 0.2786 0.95  

0.2965 0.2910 1.00  

0.3050 0.2985 1.05  

0.3180 0.3040 1.10  

0.3205 0.3145 1.15  

0.32650 0.3190 1.20  

0.3310 0.3280 1.25 

 

GB liquid crystals. From the results tabulated and 

graphed, it is obvious that the DFT with our DCF 

provides a good description of the I-N phase transition of 

GB fluids. Also, the DFT calculations of GB fluids have 

shown that the temperature and DCF can have a 

profound influence on the phase behavior. 
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