نویسندگان

گروه فیزیک نظری و اخترفیزیک، دانشکده فیزیک، دانشگاه تبریز

چکیده

اندرکنش امواج آلفونی با ناهمگنی موجود در پلاسما پدیده اختلاط فازی را تولید می‌کند، که می‌تواند باعث اتلاف امواج آلفونی گردد. ما در این مقاله اتلاف امواج آلفونی ایستا به‌دلیل اختلاط فازی را در حضور جریان ایستا و میدان مغناطیسی متغیر در اسپیکول‌ها بررسی می‌کنیم. همچنین در حضور لایه انتفال تاثیر ضرایب چسبندگی و مقاومت متغیر با ارتفاع را در نظر می‌گیریم. نتایج شبیه‌سازی افزایش آهنگ اتلاف امواج آلفونی را نشان می‌دهند. از مقایسه نتایج حاصل از شبیه‌سازی با حضور ضرایب چسبندگی و مقاومت متغیر با ارتفاع و بدون حضور این ضرایب تأثیر آنها آشکار می‌گردد. به عبارت دیگر با این فرضیات امواج آلفونی می‌توانند انرژی فوتوسفری را در مدت مقیاس زمانی منطبق بر طول عمر مشاهده شده اسپیکول‌ها به تاج خورشیدی منتقل کنند. نتایج حاصل از این مقاله در توافق خوبی با قانون مقیاس رصدی معرفی شده توسط کوریدزه و همکارانش در 2012 است

کلیدواژه‌ها

عنوان مقاله [English]

Damping of visco-resistive Alfven waves in solar spicules

نویسندگان [English]

  • Z Fazel
  • H Ebadi

چکیده [English]

Interaction of Alfven waves with plasma inhomogeneity generates phase mixing which can cause the dissipation of Alfven waves. We investigated the dissipation of standing Alfven waves due to phase mixing at the presence of steady flow and sheared magnetic field in solar spicules. Moreover, the transition region between chromosphere and corona was considered. Our numerical simulation showed that the phase mixing and dissipation rate of Alfven waves are enhanced relative to viscosity and resistivity gradients. Comparison of the results of our models with and without these gradients illustrated a significant difference between them. In other words, with these assumptions, Alfven waves may transfer the photospheric energy to the corona during timescales corresponding to the observed lifetimes of spicules. It should be noted that the results of our numerical simulation were in good agreement with observational scaling law obtained by Kuridze et al. [1]

کلیدواژه‌ها [English]

  • solar spicules
  • Alfven waves
  • damping
  • transition region

References 1. D Kuridze, R J Morton, R Erdelyi, G D Dorrian, M Mathioudakis, D B Jess, and F P Keenan, Astrophys. J. 750 (2012) 5. 2. B Edlen, Z. Astrophysik 22 (1943) 30. 3. H Alfven, Science 107 (1942) 211. 4. J Heyvaerts and E R Priest, Astron. Astrophys. 117 (1983) 220. 5. G J J Botha, T D Arber, V M Nakariakov, and F P Keenan, Astron. Astrophys. 363 (2000) 1189. 6. H Alfven, Monthly Notices of the Royal Astronomical Society 107 (1947) 211. 7. J V Hollweg, Astrophys. J. 181 (1973) 547. 8. J V Hollweg, J. Geophys. Res. 91 (1986) 4111. 9. J F McKenzie, M Banaszkiewicz and W I Axford, Astron. Astrophys. 303 (1995) 45. 10. H Safari, S Taran and N Farhangh, Iranian Journal of Physics Research 14, 1 (2014) 65. 11. S. Nasiri and L. Yousefi, Iranian Journal of Physics Research 5, 3 (2005) 145. 12. T Kudoh and K Shibata, Astrophys. J. 514 (1999) 493. 13. B De Pontieu et al., Science 318 (2007) 1574. 14. H Ebadi and M Hosseinpour, Astrophys. Space Sci. 343 (2013) 11. 15. P D Smith, D Tsiklauri, and M S Ruderman, Astron. Astrophys. 475 (2007) 1111. 16. Z Fazel and H Ebadi, Astrophys. Space Sci. 346 (2013) 319. 17. T V Zaqarashvili and R Erdelyi, Space Sci. Rev. 149 (2009) 335. 18. V Kukhianidze, T V Zaqarashvili, and E Khutsishvili, Astron. Astrophys. 449, (2006) 35. 19. T V Zaqarashvili, E Khutsishvili, V Kukhianidze, and G Ramishvili, Astron. Astrophys. 474 (2007) 627 20. H Ebadi, T V Zaqarashvili, and I Zhelyazkov, Astrophys. Space Sci. 337 (2012) 33. 21. T J Okamoto and B De Pontieau, Astrophys. Letters 736 (2011) L24, 6. 22. E R Priest, “Solar magnetohydrodynamic”, Reidel, Dordrecht (1982). 23. L Del Zanna, E Schaekens, and M Velli, Astron. Astrophys. 431 (2005) 1095. 24. I De Moortel, A W Hood, and T D Arber, Astron. Astrophys. 346 (1999) 641. 25. K Karami and Z Ebrahimi, Publ. Astron. Soc. Aust. 26 (2009) 448. 26. G Verth, M Goossens, and J S He, Astrophys. J. Lett. 733 (2011) 15.

تحت نظارت وف بومی