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Abstract 
Lyapunov exponent method is one of the best tools for investigating the range of stability and the transient behavior of the dynamical 
systems. In beryllium-moderated and heavy water-moderated reactors, photo-neutron plays an important role in dynamic behavior of 
the reactor. Therefore, stability analysis for changes in the control parameters of the reactor in order to guarantee safety and control 
nuclear reactor is important. In this work, the range of stability has been investigated using Lyapunov exponent method in response 
to step, ramp and sinusoidal external reactivities regarding six groups of delayed neutrons plus nine groups of photo-neutrons. The 
qualitative results are in good agreement with quantitative results of other works. 
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1. Introduction  
In beryllium-moderated and heavy-water-moderated 
reactors, photo-neutrons play a direct role in reactor 
kinetics [1, 2]. Photo-neutrons are produced outside the 
fuel by both prompt and delayed gamma rays in two 
ways [1, 2]. The first way is by gamma reactions  ,n

 
which usually have high threshold energies (for Be  
1.66MeV, for 2D O , 2.2MeV). The second way is by 

photo-fission reactions  , f , taking place in heavy 

isotopes [1, 3, 4]. Distributions of these delayed photo-
neutrons will change, only slightly, the total of fraction 
delayed neutrons [5]. Some of these photo-neutrons are 
due to very long-lived fission fragment decays, 
compared with delayed neutrons. Therefore, the photo-
neutron periods are generally much longer than the 
delayed neutron periods [1, 2]. Regarding decay 
constants of photo-neutron precursors and delayed 
neutron precursors, they can be classified into 15 groups 
[6]. In such systems, density of neutrons, delayed 
neutron precursor and photo-neutron precursor 
concentration are the most important parameters which 
are to be studied in connection with safety and the 
transient behavior of the reactor power [7]. These 
parameters are affected by reactivity. Therefore, reactor 

stability directly is affected by reactivity [8, 9]. There are 
several methods for stability analysis of nuclear reactor 
having been studied before [3, 10, 11], such as Bode, 
Nyquist, Routh Hurwitz and Lyapunov second method 
[3, 12, 13]. Fu [9], Chen [14], Ergen [15] and etc studied 
stability analysis using Lyapunov second method. 
Recently, Della et al. [13] has developed a theoretical 
model to study the stability of Ghana Research Reactor 
(GHARR-1) for a single group of delayed neutrons 
taking into consideration thermal hydraulics. Another 
important method for analyzing and diagnosing 
instability of nuclear reactors is the spectrum of 
Lyapunov exponents method, that is based on 
eigenvalues and eigenvectors of the Jacobian matrix 
[16–18]. The purpose of the research reported here is to 
introduce the Mean Lyapunov Exponent (MLE1) 
approach on stability analysis of Neutron Point Kinetic 
(NPK2) equations in nuclear reactors with six delayed 
neutron groups and nine photo-neutron groups in the 
presence of step, ramp and sinusoidal reactivities. 
 

2. Mathematical formulations 
NPK equations taking multi-group delayed neutron and 
____________________________________________ 
11  . Mean Lyapunov Exponents 

22. Neutron Point Kinetics 
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photo-neutron into account are presented here for 
beryllium-moderated and heavy-water-moderated 
reactors [1, 6, 19, 20]: 
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where,  n t  is the density of neutron,  d
ic t  and  p

jc t  

are the i th  and j th  concentration of precursor 

delayed neutrons and photo-neutrons respectively, d  

and d  are the effective coefficients of delayed neutrons 

and photo-neutrons with estimated theoretical values of 
1.23 and 0.246 for Miniature Neutron Source Reactor 

(MNSR) respectively [20, 21], d
i  and p

j  are the 

relative fractions of delayed neutron and photo-neutron 
precursors respectively,   is the net reactivity which is 

the sum of external reactivity ( )ext  and feedback 

reactivity ( )ext  [22],   is the total effective fraction of 

delayed neutrons and photo-neutrons and l  is the 
prompt neutron generation time. In the presence of 
temperature feedback effects, reactivity is a function of 
the neutron density and time; therefore, eqs. (1), (2) and 
(3) are, a system of stiff coupled nonlinear ordinary 
differential equations [1]. Here the reactivity feedback 
from arising temperature is being ignored. The effective 
external reactivities that have been studied are: step 

0( )  , ramp ( )r t   and sinusoidal reactivity 

 1( sin )a t     [1]. Where, r , a  and   are 

ramp rate reactivity, amplitude and half-period time of 

the sinusoidal reactivity respectively. In eq. (5), effk  is 

effective reproduction factor, and is defined as follows 
[3, 23]: 

     
.

     
eff

Number of neutrons in one generation
k

Number of neutrons in preceding generation
   (4) 

If 1effk  , the number of neutrons decreases from 

generation to generation. So, the system is also 
subcritical. The system is supercritical if 1effk  , and 

critical state takes place for 1effk   [23,24]. 

 

3. Analysis Tools 
Lyapunov exponents and entropy measures, on the other 
hand, can be considered "dynamic" measures of 
attractors complexity which are called "time average" 
[25]. Lyapunov exponent is useful for distinguishing 

various orbits. Three Lyapunov exponents quantify 
sensitivity of the system to initial conditions and give a 
measure of predictability. Lyapunov exponent is a 
measure of the rate at which the trajectories are 
separated one from another ([26], [27]). A negative 
exponent implies that the orbits approach to a common 
fixed point. A zero exponent means that the orbits 
maintain their relative positions; they are on a stable 
attractor. Finally, a positive exponent implies that the 
orbits are on a chaotic attractor, so the presence of a 
positive Lyapunov exponent indicates chaos. Even 
though an m-dimensional system has m-Lyapunov 
exponents, in most applications it is sufficient to 
compute only the Lyapunov exponents. 
 
3.1 Computation of Lyapunov Exponents 
Lyapunov exponents are defined as follows: 
Consider two nearest neighboring points (usually the 
nearest) in phase space at time 0 and t, with distances of 

the points in the i - th direction  0ix  and  ix t , 

respectively. Lyapunov exponent is then defined through 

the average growth rate i  of the initial distance,  
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In the chaotic region, this demonstrates neighboring 
points with infinitesimal differences at the initial state 
suddenly separated from each other in the i-th direction 
[25]. On the other hand, even if the initial states are 
nearby, the final states are very different. Hence this 
phenomenon is sometimes named sensitive dependence 
on initial conditions [25]. Commonly, Lyapunov 
exponents ( )i  can be extracted by observed signals in 

the following different methods [28]: 
 Based on the opinion of following the time-evolution 
of nearby points in the state space. 
 Based on the estimation of local Jacobi matrices. 
The first method is usually called Wolf algorithm [29] 
and it provides an estimation of the largest Lyapunov 
exponent only. The second method is capable of 
estimating all the Lyapunov exponents. Using one of 
these methods, the Lyapunov exponent is calculated 
rather than a given control parameter. So, there is a little 
increase in the value of control parameter and the 
Lyapunov exponent is calculated for the new control 
parameter. By continuing this method the Lyapunov 
exponent spectrum of the point reactor kinetics is plotted 
versus the control parameter. 
 

4. Results and Discussion 
MLE method is applied to the stability analysis of NPK 
equations with delayed neutrons and photo-neutrons in the 
presence of step, ramp and sinusoidal reactivities. In this 
work  1,2,...,16i i   is i-th MLE with respect to time. 

All results started from the equilibrium conditions with: 



IJPR Vol. 16, No. 3 Analyzing stability of neutron point kinetics equations … 35 

 

Table 1. Data of Be , 2D O  moderated and 235U  fuelled reactors.  

Photo-neutron of 2D O  Photo-neutron of Be  Delayed neutron 

p
i  610p

i   p
i  610p

i   d
i  310d

i   

0.27726 65.1 2.265×10-2 20.7 0.0127 0.246 

1.691×10-2 20.4 8.886×10-3 36.6 0.0317 1.363 

4.813×10-3 7.00 3.610×10-3 36.8 0.115 1.203 

1.500×10-3 3.36 7.453×10-4 7:453 0.311 2.605 

4.279×10-4 2.07 2.674×10-4 3.60 1.40 0.819 

1.167×10-4 2.34 6.191×10-5 32.0 3.87 0.167 

4.376×10-5 0.323 1.591×10-5 2.60 - - 

3.633×10-6 0.103 2.478×10-6 0.38 - - 

6.267×10-7 0.05 6.098×10-7 0.57 - - 

 

Table 2. MLE with respect to time for different values of l  in the presence of positive step reactivity ( 0 0.5   ). 

Photo-neutron of 2D O  Photo-neutrons of Be  

610 s  510 s  410 s  310 s  610 s  510 s  410 s  310 s    

896.70 42.424 0.1694 0.1530 0.1729 0.1727 0.1705 0.1729 1  

671.48 0.1000 -0.0006 -0.0006 -0.0005 -0.0005 -0.0005 -0.0005 2  

881.31 -0.0012 -0.0013 -0.0013 -0.0013 -0.0013 -0.0013 -0.0013 3  

885.41 -0.0018 -0.0019 -0.0019 -0.0019 -0.0019 -0.0019 -0.0019 4  

887.81 -0.002۵ -0.0027 -0.0027 -0.0026 -0.0026 -0.0026 -0.0026 5  

889.51 -0.0033 -0.0037 -0.0038 -0.0036 -0.0036 -0.0036 -0.0036 6  

890.83 -0.0044 -0.0043 -0.0045 -0.0040 -0.0043 -0.0042 -0.0040 7  

891.91 -0.0050 -0.0070 -0.0069 -0.0052 -0.0052 -0.0052 -0.0052 8  

892.82 -0.0083 -0.0134 -0.0134 -0.0089 -0.0089 -0.0089 -0.0089 9  

893.61 -0.0141 -0.0165 -0.0165 -0.0121 -0.0121 -0.0121 -0.0121 10  

894.30 -0.0270 -0.0444 -0.0442 -0.0207 -0.0207 -0.0207 -0.0207 11  

894.88 -0.0876 -0.1510 -0.1500 -0.0451 -0.0451 -0.0451 -0.0451 12  

895.39 -0.2041 -0.2808 -0.2809 -0.1597 -0.1596 -0.1595 -0.1597 13  

895.55 -0.6402 -1.1529 -1.0960 -1.1246 -1.1241 -1.1180 -1.1246 14  

894.97 -2.2102 -3.7128 -3.3687 -3.7083 -3.7071 -3.6928 -3.7083 15  

829.72 -67.299 -37.855 -4.9069 -754.186 -70.580 -33.629 -4.6650 16  
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Effective coefficients of delayed neutrons and photo-

neutrons have taken values of 1d   and 1p   

respectively. According to eq. (2) and table 1,   is 

0.006552 and 0.007407 for Be and 2D O , respectively. 

The data used in the study are reported in table 1 [1, 4]. 
In the following, each reactivity will be discussed further 
in one subsection. 
 
4.1. Step reactivity 
Dynamical behavior of NPK equations are studied for 
different values of the prompt neutron generation time 

( )l . As shown in table 2, when t   , for 0 0.5   , 

MLEs have positive values. In this situation, the system 

is unstable for various values of the prompt neutron 
generation time; in other words, the nearby trajectories 
in phase space go away from fixed points. Therefore, 
predictions are in good agreement with the results of 
Nahla works [1]. So, density of neutron increases 
exponentially, and reactor cannot remain in critical state 
( 1.0037)effk   with this reactivity without taking into 

account temperature feedback reactivity. 

According to table 3, when t   , for 0 0.5   , 

all MLEs are negative values, therefore, system is 
asymptotically stable in three dimensional spaces for 
various values of l, neutron of density decreases 
exponentially, and reactor goes into subcritical state 

( 0.996)effk . MLEs with respect to control parameter 

( l ) are shown in figures 1 and 2. As shown in figures 1a 

and 2a, in a short time interval (0 20)t  , MLE will be 
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Table 3. MLE with respect to time for different values of l in the presence of positive step reactivity ( 0 0.5   ). 

Photo-neutron of 2D O  Photo-neutron of Be  

610 s  510 s  410 s  310 s  610 s  510 s  410 s  310 s    

-0.0006 -0.0006 -0.0006 -0.0006 -0.0005 -0.0005 -0.0005 -0.0005 1  

-0.0012 -0.0012 -0.0012 -0.0012 -0.0013 -0.0013 -0.0013 -0.0013 2  

-0.0018 -0.0018 -0.0018 -0.0018 -0.0019 -0.0019 -0.0019 -0.0019 3  

-0.0026 -0.0026 -0.0026 -0.0026 -0.0025 -0.0025 -0.0025 -0.0025 4  

-0.0035 -0.0035 -0.0035 -0.0035 -0.0030 -0.0034 -0.0034 -0.0034 5  

-0.0041 -0.0041 -0.0047 -0.0044 -0.0044 -0.0042 -0.0041 -0.0044 6  

-0.0067 -0.0070 -0.0064 -0.0068 -0.0068 -0.0068 -0.0068 -0.0059 7  

-0.0129 -0.0130 -0.0131 -0.0129 -0.0100 -0.0030 -0.0030 -0.0099 8  

-0.0160 -0.0160 -0.0160 -0.0160 -0.0111 -0.0111 -0.0111 -0.0111 9  

-0.0232 -0.0230 -0.0231 -0.0230 -0.0202 -0.0110 -0.0202 -0.0199 10  

-0.0904 -0.0903 -0.0903 -0.0900 -0.0218 -0.0217 -0.0218 -0.0217 11  

-0.2142 -0.2142 -0.2138 -0.2128 -0.0889 -0.0888 -0.0888 -0.0885 12  

-0.2827 -0.2826 -0.2826 -0.2826 -0.2281 -0.2281 -0.2279 -0.2268 13  

-1.3016 -1.3015 -1.3005 -1.2902 -1.2882 -1.2885 -1.2869 -1.2735 14  

-3.8133 -3.8133 -3.8116 -3.7882 -3.8063 -3.8062 -3.8042 -3.7727 15  

-138.21 -152.92 -111.31 -11.416 -170.29 -157.48 -98.519 -10.161 16  

 

 

 

 

Figure 1. Variation of MLE with respect to l 

(  6 310 10l s   ) for reactors with Be -moderator in the 

presence of external step reactivity. 

 Figure 2. Variation of MLE with respect to l 

(  6 310 10l s   ) for reactors with 2D O -moderator in the 

presence of external step reactivity. 

 

decreased with increasing l  6 3(10 10 )l s    for 

0 0.5   . Therefore, exponential growth of the 

neutron density will be decreased. This result can be 
seen in table 2 [1]. According to figure 1b and 2b 

for 0 20t  ,  6 310 10l s  
 

and 0 0.5   , all 

MLEs are in the range of negative. So, the system of 
behavior is stable in response to a negative step 
reactivity in duration of 20 seconds, and density of 
neutron has decreased exponentially. Here, with 

increasing l , MLE increases, and exponential decay of 
the neutron density decreases. These conclusions are 
corroborated by the results in table 3 [1]. 
 

4.2. Ramp reactivity 
MLEs with respect to time for ramp reactivity are shown 
in table 4 when time goes into infinity ( t   ). The 
results imply that, the reactor for all negative ( 0r  ) and 
positive ( 0r  ) values of the ramp rate reactivity are 
asymptotically stable and unstable respectively. Thus, 
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Table 4. MLE with respect to time for different values of ramp rate reactivities. 
Photo-neutron of 2D O  Photo-neutron of Be  

0.5r    0.25r    0.25r   0.5r   0.25r   0.5r   0.25r   0.5r     

-0.0027 -0.0026 1825.0 2194.2 -0.0025 -0.0025 1757.1 2270.5 1  

-0.0070 -0.0066 1456.9 1814.7 -0.0067 -0.0067 1388.5 1890.9 2  

-0.0091 -0.0088 1795.1 2162.8 -0.0100 -0.0100 1726.0 2239.5 3  

-0.0117 -0.0114 1801.7 2169.6 -0.0117 -0.0117 1732.5 2246.2 4  

-0.0143 -0.0141 1805.6 2173.5 -0.0146 -0.0146 1736.3 2250.2 5  

-0.0165 -0.0166 1808.3 2176.3 -0.0172 -0.0172 1739.1 2253.0 6  

-0.0215 -0.0207 1810.4 2178.5 -0.0203 -0.0203 1741.1 2255.1 7  

-0.0205 -0.0207 1812.1 2180.3 -0.0168 -0.0168 1742.9 2256.9 8  

-0.0169 -0.0169 1813.6 2181.8 -0.0100 -0.0010 1744.4 2258.4 9  

-0.0226 -0.0237 1814.9 2183.1 -0.0130 -0.0130 1745.7 2259.7 10  

-0.1014 -0.1021 1816.0 2184.2 -0.0203 -0.0203 1746.8 2260.9 11  

-0.2658 -0.2619 1817.0 2185.2 -0.1003 -0.1003 1747.8 2261.9 12  

-0.2915 -0.2943 1817.9 2186.1 -0.2951 -0.2951 1748.7 2262.8 13  

-1.3842 -1.3835 1818.7 2186.9 -1.3829 -1.3829 1749.5 2263.6 14  

-3.8578 -3.8574 1819.4 2187.7 -3.8570 -3.8570 1750.3 2264.3 15  

-159.04 -159.01 1814.4 2185.7 -159.03 -159.03 1745.2 2262.3 16  

 

 

 

 
Figure 3. Variation of MLE with respect to the ramp rate 

reactivities  1( 0.006 0.001)r s    for reactors with Be -

moderator. 

 Figure 4. Variation of MLE with respect to the ramp rate 

reactivities 1( 0.006 ( ) 0.001)  r s  for reactors with 2D O -

moderator. 

 
For 0r  , neutron density is reduced gradually over 
time, and in long term, the reactor is shutdown 

( 0)effk  . For 0r  , neutron density rises rapidly and 

reactor period decreases rapidly ( 1)effk  . Thus, reactor 

control will be problematic. Increasing neutron density 
in table 4 [1] refers to this subject. 

Neutron density behavior in response to a ramp 
reactivity is considered in the duration of 10s. According 
to figure 3, MLE with respect to ramp rate reactivity will 
be increased for reactors with Be -moderator with 
increasing r . For short time intervals, boundary stability 
in 10s is equal to: 0.00075365r  , that is, for 

0.00075365r  , neutron density will be increased 
exponentially, so the system is unstable. 

In long term, boundary stability tends towards zero 

value  0, 1effr k  . According to figure 4, in reactors 

with 2D O -moderator, boundary stability in 10s is equal 

to: 0.00075477r  . For each type of reactivity, the 
range of stability and MLE with respect to control 
parameters in short time intervals are variable, but in 
long time, they tend towards a constant value. 

 
4.3. Sinusoidal reactivity 
In this case the reactivity of the system will be applied as 
follows [1]: 

  sin ,
t

t a





 
  

 
                                                         (8) 
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Table 5. MLE with respect to time for different values of the half-period time of sinusoidal reactivity.  

Photo-neutron of 2D O  Photo-neutron of Be  

100s   10 s   1s   0.1 s   100s   10 s   1s   0.1 s     

0.0323 0.0177 0.0133 0.0127 0.0324 0.0186 0.0137 0.0130 1  

-0.0006 -0.0006 -0.0006 -0.0006 -0.0005 -0.0005 -0.0005 -0.0005 2  

-0.0013 -0.0013 -0.0013 -0.0013 -0.0013 -0.0013 -0.0013 -0.0013 3  

-0.0019 -0.0019 -0.0019 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 4  

-0.0028 -0.0028 -0.0028 -0.0028 -0.0027 -0.002 -0.0027 -0.0027 5  

-0.0039 -0.0039 -0.0039 -0.0039 -0.0037 -0.0037 -0.0037 -0.0038 6  

-0.0045 -0.0043 -0.0043 -0.0043 -0.0042 -0.0041 -0.0043 -0.0042 7  

-0.0073 -0.0073 -0.0072 -0.0079 -0.0053 -0.0052 -0.0052 -0.0052 8  

-0.0141 -0.0139 -0.0139 -0.0139 -0.0090 -0.0090 -0.0090 -0.0090 9  

-0.0177 -0.0174 -0.0174 -0.0175 -0.0134 -0.0129 -0.0130 -0.0131 10  

-0.0677 -0.0615 -0.0620 -0.0623 -0.0208 -0.0208 -0.0208 -0.0208 11  

-0.1827 -0.1755 -0.1745 -0.1746 -0.0673 -0.0614 -0.0621 -0.0623 12  

-0.2817 -0.2815 -0.2815 -0.2815 -0.1951 -0.1883 -0.1868 -0.1872 13  

-1.2453 -1.2450 -1.2419 -1.2417 -1.2239 -1.2236 -1.2120 -1.2198 14  

-3.7793 -3.7793 -3.7786 -3.7779 -3.7683 -3.7683 -3.7675 -3.7667 15  

-157.33 -157.21 -164.18 -359.41 -157.14 -157.31 -163.67 -358.32 16  

   

 

 

 
Figure 5. Variation of MLE with respect to the half-period 
time of sinusoidal reactivity ( 0.1 10  ) for reactors with 

Be  and 2D O  moderators. 

 Figure 6. Variation of MLE with respect to the amplitude of 
sinusoidal reactivity ( 0 0.0075a  ) for reactors with Be  

and 2D O  moderators. 

 

where a  and  s  are amplitude of reactivity and half-

period time of reactivity respectively. 
Considering tables 5 and 6 in long term ( t   ), 

reactor is unstable for all values of a  and  s , that is 

the neutron density will be increased exponentially 

( 1)effk  . In a short time interval, the reactor can be 

stable or unstable. 
    MLEs with respect to control parameters in short time 
intervals (0 100)t   are shown in figures 5 and 6. 

Figure 5 shows that in the range of 0.1 10  , 
behavior of the system is stable during 100s from the 

startup, because in this range of time MLE is negative 
with respect to control parameter. Figure 6 expresses 
neutron density behavior in response to changes in the 
amplitude of sinusoidal reactivity in the range of 
0 0.0075a  . For reactors with Be - and 2D O -

moderators in the range of 0.0045147a   and 
0.0053212a   respectively, behavior of the system is 

stable for 100s from the startup. Also, the system is 
unstable for 0.0045147a   and 0.0053212a   
respectively in the same range of time mentioned above. 
 

5. Summary and Conclusion 
MLE method is applied to the analysis of stability NPK 
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Table 6. MLE with respect to time for different values of sinusoidal reactivity amplitude.  
Photo-neutron of 2D O  Photo-neutron of Be  

0a   
8

a


  
4

a


  
2

a


  0a   
8

a


  
4

a


  
2

a


    

-0.00007 0.0002 0.0017 0.0133 -0.00003 0.0002 0.0018 0.0137 1  

-0.0007 -0.0006 -0.0006 -0.0006 -0.0007 -0.0006 -0.0005 -0.0005 2  

-0.0014 -0.0013 -0.0013 -0.0013 -0.0014 -0.0014 -0.0013 -0.0013 3  

-0.0020 -0.0020 -0.0019 -0.0019 -0.0021 -0.0021 -0.0020 -0.0020 4  

-0.0028 -0.0028 -0.0028 -0.0028 -0.0030 -0.0029 -0.0027 -0.0027 5  

-0.0041 -0.0041 -0.0040 -0.0039 -0.0038 -0.0038 -0.0038 -0.0037 6  

-0.0045 -0.0043 -0.0044 -0.0043 -0.0043 -0.0041 -0.0043 -0.0043 7  

-0.0074 -0.0076 -0.0074 -0.0073 -0.0053 -0.0053 -0.0053 -0.0052 8  

-0.0143 -0.0143 -0.0142 -0.0139 -0.0091 -0.0091 -0.0091 -0.0090 9  

-0.0182 -0.0181 -0.0178 -0.0174 -0.0140 -0.0139 -0.0137 -0.0130 10  

-0.0706 -0.0701 -0.0686 -0.0620 -0.0209 -0.0209 -0.0208 -0.0208 11  

-0.1843 -0.1841 -0.1820 -0.1744 -0.0700 -0.0696 -0.0682 -0.0621 12  

-0.2817 -0.2815 -0.2817 -0.2815 -0.1975 -0.1970 -0.1950 -0.1868 13  

-1.2597 -1.2587 -1.2558 -1.2419 -1.2403 -1.2393 -1.2359 -1.2200 14  

-3.7887 -3.7882 -3.7865 -3.7786 -3.7788 -3.7782 -3.7763 -3.7675 15  

-137.76 -160.12 -157.01 -164.18 -167.97 -156.53 -156.73 -163.67 16  

 
equations with six delayed neutron groups and nine 
photo-neutron groups. The influence of step, ramp and 
sinusoidal reactivities on stability and the neutron 
density are studied in short time scale and in long-term 
scale ( t   ) with MLE method with respect to control 
parameters. Qualitative results of stability confirm the 
quantitative results presented in tables 2, 3 and 4 [1]. 
MLE method is better than traditional stability analysis 

methods such as, Routh, Nyquist and second methods of 
Lyapunov, because in Routh and Nyquist methods, 
finding Laplace transform and poles of characteristic 
equation are problematic by increasing degrees of 
freedom systems. Also, in Lyapunov second methods, 
finding proper Lyapunov function is too hard when 
dimensions of phase space is being decreased. 

 
References 
1. A N Abdallah, Nuc. Eng. Des. 238 (2008) 2648. 
2. E A Ahmed, Nucl. Eng. Des. 224 (2003) 279. 
3. D L Hetrick, “Dynamics of Nuclear Reactors”, 

American Nuclear Society, La Grange Park (1993). 
4. G R Keepin, “Physics of Nuclear Kinetics”, Addison-

Wesley Publishing Company, Inc., Massachusetts 
(1965). 

5. E W Lynn, “Reactor Dynamics and Control”, 
American Elsevier Publishing Company, INC., New 
York (1968). 

6. F Jatuff, A L Thi, M Murphy, T Williams, and R 
Chawla, Ann. Nucl. Energy 30 (2003) 1731. 

7. A N Abdallah, Nucl. Eng. Des. 240 (2010) 1622.  
8. F Y Li, Z Chen, and Y Liu, Prog. Nucl. Energy 67 

(2013) 15. 
9. L Z Fu, “Nuclear Reactor Kinetics”, Atomic Energy 

Press, Beijing (1988). 
10. J D Lewins and E N Ngcobo, Ann. Nucl. Energy 23 

(1996) 29. 
11. J L Munoz-Cobo, C Garca, A Escriva, and J Melara, 

Ann. Nucl. Energy 35 (2008) 1185. 
12. A Hainoun, I Khamis, and G Saba, Nucl. Eng. Des. 

232 (2004) 19. 
13. R Della, E Alhassan, N A Adoo, C Y Bansah, B J B 

Nyarko, and E H K Akaho, Energy Convers Manage 
74 (2013) 587.  

14. W Z Chen, B Kuang, and L F Guo, Nucl. Eng. Des. 
236 (2006) 1326. 

15. W K Ergen, H J Lipkin, and J A Nohel, Journal of 
Mathematics and Physics 36 (1957) 36.  

16. T Suzudo, Prog. Nucl. Energy 43 (2003) 217.  
17. R Khodabakhsh, S Behnia, and O Jahanbakhsh, Ann. 

Nucl. Energy 35 (2008) 1370. 
18. M Shayesteh, S Behnia, and A Abdi Saray, Ann. of 

Nucl. Energy 43 (2012) 131.  
19. S Glasstone and A Sesonske, “Nuclear Reactor 

Engineering”, Chapman & Hall Inc. (1981). 
20. A Hainoun and I Khamis, Nucl. Eng. Des. 195 (2000) 

299.  
21. K Almenas and R Lee, “Nuclear Engineering an 

Introduction”, Springer, Berlin (1992). 
22. T Sathiyasheela, Ann. of Nucl. Energy 36 (2009) 246. 
23. J J Duderstadt and L J Hamilton, “Nuclear Reactor 

Analysis”, John Wiley and Sons, USA (1976). 
24. W M Stacey, “Nuclear Reactor Physics”, John Wiley 

and Sons, Inc., USA, (2001). 
25. E Ott, “Chaos in dynamical system”, Cambridge 

University Press, Canada (1993). 



40 M Seidi, R Khodabakhsh and S Behnia IJPR Vol. 16, No. 3 

 

26. B J West, A L Goldberger, G Rouner, and V Bhar-
gava, Physica D 17 (1985) 198. 

27. A Wolf, J B Swift, H L Swinney, and J A Vastano, 
Physica D 16 (1985) 285. 

28. R Hilborn, “Chaos and nonlinear dynamics”, Oxford 

University Press (2000). 
29. J R Dorfman, “An Introduction to Chaos in Non-

Equilibrium Statistical Mechanics”, Cambridge 
University Press, Cambridge (1999). 

 

 

 
 

 
 

 

 
 

 
 

 

 
 
 
 

 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 
 

 
 
 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 
 
 

 

 
 
 
 

 
 
 

 
 

 
 

 

 
 

 
 

 
 

 
 
 

 
 
 

 
 

 


