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Quantum vacuum effects for a massive Bosonic string in background B-field
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Abstract

We study the Casimir effect for a Bosonic string extended between D-branes, and living in a flat space with an antisymmetric
background B-field. We find the Casimir energy as a function of the B-field, and the mass-parameter of the string, and accordingly
we obtain a B-dependence correction term to the ground-state mass of the string. We show that for sufficiently large B-field, the

ground state of the string contains real (i.e. non-Tachyonic) particles.
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1. Introduction

Imposing definite boundary conditions on a quantum
field changes the spectrum of quantum states and leads
in particular to changing the vacuum energy of the
system. This change to the quantum vacuum, results in
some observable quantum effects such as the well-
known Casimir force [1]. As it is known, this force
depends specifically on the geometrical features of the
system, such as the specific boundary conditions
imposed on the field.

A variety of theoretical and experimental models
with different boundary conditions have been considered
in the framework of Casimir effect (see e.g. [2, 3] and
[22] as a review). The general procedure is to find
Hamiltonian of the system as a combination of physical
(mostly harmonic oscillation) modes, which have
quantum ground states with nonzero energies. Then the
vacuum state energy would be found as a summation
over the zero-point energies of these physical oscillatory
modes. The Casimir energy is obtained by subtracting
the contribution of free (i.e. unbounded space) from the
vacuum energy.

In connection with the string theory, the Casimir
effect has been investigated from different perspectives
[4-12]. In this paper the model of an open Bosonic string
(with a nonzero mass-parameter) ending on D-branes,
and having a background B-field, has been considered,
with a background B-field, introduced initially in [13].

This model is a generalization of the zero mass-
parameter case, which is a famous model in the context
of the string theory, especially because of exhibiting
noncommutative coordinates on the branes attached to
the endpoints of the string [13-16]. Note that the open
Bosonic string theory (with a 25-dimensional space) still
has important applications, such as the famous problem
of the Tachyonic modes [17-20]. In a previous paper
[21], considering the boundary conditions as Dirac
constraints and imposing them on Fourier expansions of
the fields, we found the physical modes of the system as
an infinite set of harmonic oscillators. This enabled us to
write down canonical Hamiltonian as a summation over
Hamiltonian of simple harmonic oscillators with definite
frequencies. Hence, we can read out the vacuum energy
as the summation over the zero-point energy of
individual oscillators and regularize it to find out the
Casimir energy of the string. We apply the well-known
Abel-Plana formula for regularization of the vacuum
energy to find the Casimir energy of the string. Then
utilizing this Casimir energy, we find correction terms to
the ground-state mass of the Bosonic string.

2. Casimir effect for the massive Bosonic string
First, we briefly review the approach given in [21], to
find the Hamiltonian of the string. Suppose an even

number of fields, X’ among Bosonic fields X#living in
a flat target space, are coupled to an antisymmetric
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external B-field. In the simplest case, the subspace of

X''s is a two dimensional Euclidian space, and the
constant B-field is exhibited by

B_O]é W
=B o)

Thus, neglecting those components of X* which do not
couple to B-field, the simplified Lagrangian is given as
(21]

1 ¢! . . .
L:EIO do [X'X; - X" X]-m*X'X; + 2B, X' X1, (2)

where "dot" and "prime" represent differentiation with
respect to o and 7 respectively, mis the mass-

parameter of the Bosonic fields, and ¢ is the length-
parameter of the string; this is the simplified version of
the model given in [13]. In canonical formulation the
Hamiltonian reads

+ X% +m’ X do, 3)

- J' (7 - BUX}

where P = Xi"'Bij X are conjugate momentum

operators. The equation of motion would be obtained as
(02 -02 -m*)X; =0 with the boundary condition (BC)
as X/+B;X;=0and, as shown in details in [21], the
solutions are found as

X(o,7) :%[ao(r)coshko(a—ﬂﬂ)

_é M Bey(z)sinhky(o—£/2)]

+J§Z{ ;z(T)COSTU—LM_IB (T)SmTG]

n=l1

L[cO (r)coshky(c—10/2)

7e

_é M Bag(z)sinh ky(o—/2)]

\/72 (T)cos—0'+—m Ba (T)SIH—O']

n=l1

P(o,7)=

“)

=m’B* /(1+B%), and M =35, - B;.
Note that, the B-dependence of the above solutions is
resulted just from the above BC; the B-field has no role
in the equations of motion. Note also that, for B0 ,
the above mixed BC, turns into a simple Neumann BC,

in which kg

while for B — o , it reduces to a simple Dirichlet BC, so
for both limits, the dependence on the B-field, would
disappear from the solutions.

Inserting the above solutions into eq. (4) gives
Hamiltonian in terms of physical modes as [21]

H=Y[C+m,4;] (%)

n=0

in which
op =m*(1+ B%), ©)

w3=m2+n27r2/€2 ;n>1

and
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1+B
Hamiltonian (5) is obviously a superposition of infinite
number of independent harmonic oscillators with A's as
positions and C's as momenta, and with mode
frequencies given in eq. (6).

Now, we can use these results to study the Casimir
effect for the current problem. As we know the vacuum
energy of a quantum field is just the summation over the
zero-point energies of quantum harmonic oscillatory
modes of the field. So from eq. (6), the vacuum energy
of the string would be

C3= nzl

®)

where the Planck units have been used. Note that this
vacuum energy corresponds actually to two transverse

directions where the coordinates X' are coupled to the
B-field. Supposing that all coordinates of the 24
transverse directions of a Bosonic string are coupled to
the B-field, then the vacuum energy of the string is
obtained as

24 «©

F =13 3o

i=1 n=0
=2 . 2, T2
=12| my1+ B~ + m-+(— .
QDR

The series in eq. (9) is obviously infinite, as usual in
quantum field theory in assigning the ground state
energy of a system. In order to regularize this series, a
generalized form of the known Abel-Plana formula [3]
can be used as follow

> G| "G40
n=0

)

1 © dt L (10)
= _ a2 42\
FGaO2f T

where “k» is a continuous variable corresponding to
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e
“n»_ To find the convergent part of the divergent series

in eq. (9) we just need to take G, (n) =\/m2 +(mt/€)2 .

After some simplifications we find

3 m +(%)2 =£j:dk\/m2 P —%
T

n=l1 (11)

S R

2nldp ¥ —1

in which x#=2ml . So considering eq. (9), the vacuum
energy of the string is obtained as

o0 ~
Eyye =%J'O dkNm® + K +12m\1+ B2
T

Cem_2 fw dy
wdu e’ 1
The first term in the right-hand side of the above
equation, that is, the divergent integral, is from the
vacuum energy of free space. In fact, the contribution of
the free space would be obtained by turning the discrete
index “7” into a continuous variable, and we find

(12)
2 2
yoous .

Efree =%dek m? i (13)
T

vac
0

Then, the Casimir energy would be obtained by
subtracting the contribution of the free space eq. (13),
from the vacuum energy eq. (14);

E.. (m,B)=E,,. — EX = 1241+ B* —6)m

6 r* d 2 2 (14)
AN

wiu e’ 1
Since actually the parameter g =2m/l is very small, so

the integral in the above equation, could be approximated
as

o 0
J’ S N zJ‘ dy—2
“e¥ -1 aer -1 (15)

2

T
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So the Casimir energy (14) takes the form
Ecas(m,é) ~ —%+Am

(16)
with A, =21+ B +12/ 7—6)m.

Note thatA,, >0, so the B-dependent correction term
always increases the ground state energy of the string, as
physically expected. For small B-field (Z}] 1) we
have A, = (6B% + 12/7 +6)m , while for large B-field,

(BO1) we find A, =12Bm>0. Thus for

B>7/12m¢0 1 we find a positive value for Casimir
energy. This is an important result for the ground-state
mass of the string. Corresponding results for the zero
mass-parameter string can be obtained simply, by taking
the limit m —0 in eq. (16). Note that the Casimir force
(which can be defined as the derivative of the above

Casimir energy, with respect to the length-parameterf ),

has no physical interpretation, because /is a
fundamental constant. As is seen from eq. (16), for the

string with zero mass-parameter, the Casimir energy has
no dependence on the B-field, however, for the nonzero
mass-parameter case, the background B-field has a role
in Casimir energy, so, the ground-state mass of the string
has a dependence on B-field.

3. Casimir correction to the ground-state mass
of the string

It is well known that the ground state mass of the string

is given by the total zero-point energy of the string

(transverse) oscillations. For our chosen

parameterization for the string Lagrangian, the ground-

state mass of the open Bosonic string, can be written as

24
waM§ =E§t =Y 32 (17)

I=l n

In which, o = /? is the Regge slope parameter. But, as
we previously mentioned, the finite value of the total
zero-point energy is just the Casimir energy, so eq. (17)
can be written as

7IME = E,, (m, B) (18)
Obviously, for m =0 the above equation reduces to the
well-known Tachyonic (imaginary) mass of the open

Bosonic string aMg =-1. Hence using eq. (16) we can

write the ground-state mass of the open Bosonic string,
as

TUIME = Ego(m, B) = —%mm (19)
With A, given by eq. (16). But, as we found before, for

B>7/12ml, the Casimir energy would turn positive,
thus we realize an important result: for sufficiently large

B-field such that B>7/12ml, the ground state of the
string contains real (i.e. non-Tachyonic) particle, with
mass given by

TIM ;—%+12mf>’>0 :

for (20)
B>rx/12mf0 1.

So, the background B-field has physical importance for
the ground-state mass of the string.

4. Concluding remarks
We have found the Casimir energy of an open Bosonic
string with back-ground field, by using standard methods
given in the literatures on Casimir effect, however, some
results of this work are new:

We have interpreted the Casimir energy as the total
ground-state mass of the string. Consequently we have
obtained new B-dependent correction terms for the mass
of Bosonic string, which are important specifically for
large B-field. In fact, we have shown that, for

B>7/12ml , the Casimir energy would attain positive
value, i.e. for sufficiently large B-field, the ground state
of the string contains real (i.e. non-Tachyonic) particles.
Therefore the background B-field has physical
importance for the ground-state mass of the string. It is
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interesting to note that, the background B-field has been
introduced just through the boundary conditions, so the
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