نویسندگان
1 دانشگاه دامغان
2 دانشگاه گیلان
چکیده
افروزش سوخت از پیش فشرده توسط موج ضربهای همگرا، به عنوان طرح جدیدی در همجوشی محصورسازی لختی، تحت عنوان افروزش ضربهای با هدف دستیابی به مقدار بهره بالا و فراهم کردن افروزش در آستانه انرژی پایینتر مورد توجه است. در این پژوهش بهینهسازی انرژی با توجه به بازده هیدرودینامیکی و بهره انرژی در یک ساچمه سوخت پنج لایهای با مقیاسهای راکتورهای گداخت هستهای با راه انداز یونی سنگین توسط کد یک بعدی DEIRA4
انجام شده است. سپس با جایگزینی تپ جعبهای توسط تپ سه مرحلهای افروزش موج ضربهای، توان و زمان هر مرحله از پالس بهینهسازی شده و تأثیر آن بر مقدار انرژی مصرفی، بهره سوخت و کاهش ناپایداریهای رایلی- تیلور بررسی شده است. محاسبات نشان میدهد که در هدف بهینه شده مورد نظر با سوخت DTبا اعمال تپ سه مرحلهای باریکه یون سنگین سرب- 207، مقدار بهره انرژی 542 متناظر با 21% افزایش در بهره انرژی و 19% کاهش در انرژی راه انداز، حاصل شد. همچنین کاهش سرعت انفجار درونی و پارامتر
رشد نمایی1 نشان دهنده پایداری بیشتر سوخت در افروزش موج ضربهای در برابر ناپایداریهای هیدرودینامیکی نسبت به افروزش مرکزی میباشد.
کلیدواژهها
عنوان مقاله [English]
Study of Shock Ignition Approach in Heavy Ion Fusion of Reactor-size DT Target
نویسندگان [English]
- s hasani 1
- B kaleji 1
- soheil khoshbinfar 2
1
2
چکیده [English]
The ignition of pre-compressed fuel by convergent shock wave, as a new approach in inertial confinement fusion that is known as shock ignition is considered with the aim of achieving high gain and providing threshold of ignition in lower energy. In this research, optimization of the energy of individual ions in the beam according to the hydrodynamic efficiency and target energy gain in a five-layer fuel pellet of nuclear fusion reactor size with heavy ion beam by one-dimensional code, DEIRA4. Then with substitution of the box pulse by three-stage pulse in shock ignition, the power and time of each phase are optimized and the energy consumption, fuel hydrodynamic efficiency and Rayleigh–Taylor instability is investigated. Calculations show that in optimal target with DT fuel, by applying three-stage pulse by heavy ion beam 207Pb, target energy gain is 542 corresponding to 21% increasing in energy efficiency and 19% decreasing in deriver energy. Also the decreasing of implosion velocity and e-fold parameter shows, the hydrodynamic instabilities in shock ignition is less than central ignition.
کلیدواژهها [English]
- shock ignition
- heavy ion driver
- e-fold parameter
- Rayleigh-Taylor instability
[2] T. R. Dittrich, S. W. Haan, M. M. Marinak, S. M. Pollaine, D. E. Hinkel, D. H. Munro, C. P. Verdon, G. L. Strobel, R. McEachern, R. C. Cook, and C. C. Roberts, D. C. Wilson, P. A. Bradley, L. R. Foreman, and W. S. Varnum, Physics of Plasmas 6, 2164 (1999).
[3] H. Nakashima, M. Shinohara, Y. Wakuta, T. Honda, Y. Nakao and H. Takabe, Laser and Particle Beams, 11, 137 (1993).
[4] T Ohmura, M Katsube, Y Nakao, T Johzaki, K Mima and M Ohta, Journal of Physics: Conference Series, 112, 022068 (2008).
[5] S. Khoshbinfar and S. A. Taghavi, Iranian Journal of Physics Research, 16, 179 (2016).
[6] M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, and M. D. Perry, Physics of Plasmas 1, 1626 (1994).
[7] M. Roth, Plasma Physics and Controlled Fusion, 51, 014004 (2009).
[8] A. Ghasemizad, M. J. Tabatabai. Iranian Journal of Physics Research, 7, 31 (2007).
[9] J.C. Fernandez, B.J. Albright, F.N. Beg, M.E. Foord, B.M. Hegelich, J.J. Honrubia, M. Roth, R.B. Stephens, and L. Yin, Nuclear fusion, 54, 054006 (2014).
[10] R. Betti,1,2 C. D. Zhou,1 K. S. Anderson,1 L. J. Perkins,3 W. Theobald,1 and A. A. Solodov, Physical Review Letters, 98, 155001 (2007).
[11] L. J., Perkins, R.Betti, K. N. LaFortune, W. H. Williams, Physical Review Letters,103, 2 (2009).
[12] X Ribeyre, M Lafon, G Schurtz, M Olazabal-Loume, J Breil, S Galera and S Weber, Plasma Physics and Controlled Fusion, 51, 124030 (2009).
[13] A. Farahbod A, S. Ghasemi, Iranian Journal of Physics Research, 12, 347 (2013).
[14] B. Canaud and M. Temporal, New Journal of Physics, 12, 043037 (2010).
[15] S. A. Ghasemi, A. H. Farahbod, S. Sobhanian, Iranian Journal of Physics Research, 16, 345 (2016).
[16] M. Tabak, P. Norreys, V. T. Tikhonchuk and K. A. Tanaka, Nuclear Fusion, 54, 1 (2014).
[17] M. M. Basko, Nuclear Fusion, 32, 1515 (1992).
[18] Badger, B.; Corradini, M.; El-Guebaly, L.; Engelstad, R.; Henderson, D.; Klein, A.; Kulcinski, G.; Larsen, E.; Lovell, E.; Moses, G.; Peterson, R.; Pong, L.; Sawan, M.; Sviatoslavsky, I.; Symon, K.; Vogelsang, W.; White, A.; Wittenberg, L.; Beckert, K.; Bock, R.; Boehne, D.; Hofmann, I.; Keller, R.; Mueller, R.; Bozsik, I.; Jahnke, A.; Brezina, J.; Nestle, H.; Wendel, W.; Wollnik, H.; Lessmann, E.; Froehlich, R.; Goel, B.; Hoebel, W.; Kessler, G.; Moellendorff, U. von; Moritz, N.; Plute, K.; Schretzmann, K.; Sze, D., Rep. UWFDM-625, University of Wisconsin, (1985); Rep. KfK-3840, Kernforschungszentrum Karlsruhe (1985).
[19] R. C. Arnold, J. Meyer-ter-Vehn, Atoms, Molecules and Clusters, 9, 65 (1988).
[20] M. Basko, DEIRA. A 1-D, 3-T Hydrodynamic Code for Simulating ICF Targets Driven by Fast Ion Beams, Version 4/Institute for Theoretical and Experimental Physics, Moscow, 2001.
[21] M. M. Basko, Nuclear Fusion, 30, 2443 (1990).
[22] S. Atzeni, A. Marocchino, and A. Schiavi, Plasma Physics and Controlled Fusion, 57, 1 (2015).
[23] S. Atzeni et al, Nuclear fusion, 54, 1 (2014).
[24] N. Metzler and J. Meyer-Ter-Vehn, Laser and Particle Beams, 2, 27 (1984).
[25] M. Lafon, X. Ribeyre and G. Schurtz, Applied Physics Letters, 20, 1 (2013).
[26] Keith A. Long, N. A. Tahir, Physical Review A, 35, 2631, (1987).