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Abstract 
Accurate detection of weak periodic signals within noise and the possibility of secure messaging have made Duffing oscillator (DO) 
highly important in the field of communication. Investigation on the properties of DO is, thus, very important. An elegant approach 
to accomplish this is to fabricate electronic circuit simulating DO non-linear equation and to study the effect of input signal 
amplitude (Vin) and frequency (f), disentangling these two from each other. Recently, Vin-driven chaotic dynamics has been studied 
by constructing a simple Duffing-Holmes (DH) oscillator circuit. However, the f-driven characteristics of the oscillator remain 
unknown at constant Vin. The present work is based on the MATLAB simulation of the f-driven chaotic dynamics of the DH 
equation. Similar output, mixed with chaos and non-chaos, is obtained by constructing the circuit, both in lab and by PSPICE 
simulation. The circuit moves into complete chaos at f=270 Hz, while period-2 bifurcation appears at f=680 Hz for the constant Vin 
0.9V. The chaos control is also achieved by two simple methods. In the first method, the variation of the circuit parameter 
(capacitance) induces chaos control. In the second one, synchronization is achieved by coupling two similar oscillators. These two 
methods, though apparently simple, could be highly beneficial for using DH in secure communication. 
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1. Introduction 
Chaos theory is an important branch of science to 
understand the behavioral dynamics of a complex 
nonlinear system. It aims at investigating the general 
order inherent within the disorder and unpredictability of 
a natural system [1, 3]. A large number of chaotic 
phenomena in different fields like physics, engineering, 
mechanics, biology, etc. could be examined in the best 
way by using different non-autonomous second-order 
nonlinear oscillators represented by nonlinear 
differential equations. The Duffing equation 
characterizes one among the equations containing the 
cubic non-linearity. The equation reveals itself in many 
physical as well as biological systems with a wide 
applicability. It models the various oscillations like those 
of soft and hard springs in mechanics. The Duffing 
oscillator (DO) illustrates the remarkable jump 
phenomenon and other non-linear behaviours that can 

help to construct the  reduced order models of complex 
mechanical systems ranging from micro to macro scales 
[4, 5]. The forced Duffing equation also contributes to 
understanding the quasi-periodic behaviour of Bose-
Einstein Condensates in the periodic lattices [6, 7].  

Duffing equation plays an important role in the field 
of electronics and communication. Duffing oscillator, 
one of the simplest of this kind, has a tremendous 
potential to detect weak signals in a noisy environment 
[8]. Besides, the oscillators could well be used in chaos 
based secure communication systems [9]. The chaos 
involved in the Duffing equation, while having been 
extensively studied theoretically, has generally been 
overlooked in the experimental research work 
constructing basic non-linear electrical circuits. 
However, it is important to understand the nature and 
behavior of this oscillator for  the future use in electrical 
circuit under different conditions. The possibility of 
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representing the  Duffing oscillator with the double well 
potential, in the form of the  modified Duffing-Holmes 
(DH) oscillator, by using very simple circuits, was 
recognized in by Tamaševičūitė et al. [10]. The 
nonlinear circuit, in that paper, was found to be 
continuously changing from the  chaotic state to the 
steady one  and vice versa with the increase of the  
external driving force. Therefore, it was almost 
impossible to characterize the dynamics expressed by the 
electrical circuit by the estimation of the Feigenbaum 
constant and the largest Lyapunov exponent.  

The experimental study of the chaotic dynamics of an 
electrical circuit using the frequency of the signal source 
as a driver has rarely been pursued in the past. The 
present work, therefore, investigates the chaotic 
dynamics of the electrical DH oscillator circuit 
experimentally, both as a function of driving frequency 
(input signal frequency) and the  strength of the driving 
force (input signal amplitude). For the  proper 
characterization of chaos, the Feigenbaum constant and  
the largest Lyapunov exponent of the oscillator have also 
been calculated, keeping the signal frequency as the 
varying parameter. However, chaos is usually 
undesirable in electronics and communication systems, 
as it restricts the operating range of the systems. 
Therefore, the control of chaos is highly important.  

The demand of chaos control also arises strongly in 
the case of secure wireless communication [11- 13]. 
Research work exists in the field of the control of chaos 
within the domain of the Chua’s circuit [14]. However, 
there are very few results on chaos control in nonlinear 
oscillators like DH [15]. Unfortunately, the 
implementation of chaos control and synchronization, 
directly in terms of the electric circuit, is rarely studied 
in the past [16]. In this paper, chaos control is achieved 
by two different simple methods implemented directly in 
the electric circuit. The first method changes the 
magnitude of one of the circuit components.  The second 
one, which is shown here, acts by coupling two similar 
chaotic oscillators producing the synchronized and stable 
output. The usage of the DH Oscillator in secure 
communication can be immensely beneficial with the 
two synchronization or chaos control methods. 

 
2. The theoretical analysis 
The Duffing-Holmes nonlinearity of second order is 
written as two equivalent sets of non-autonomous 
differential equations, as can be seen here: 

,x y  (1) 

3 sin ,y x x ay b t     (2) 

where x-x3 is the form of the restoring force F(x). The 
equations (1) and (2), in combination, represent an 
externally driven particle in a double-well non-parabolic 
potential V(x) that can be calculated by integrating the 
force field F(x) with respect to x. a, b and , which are 
the damping constant, the forcing amplitude and  the 
forcing frequency, respectively.  
 
2. 2. Numerical calculation using MATLAB 
Among the three parameters b,  and a, which are  

 
Figure 1. The MATLAB generated the driving force amplitude 
dependence phase space plot by keeping the frequency 
constant; (a) =1.119, b=1.1, a=0.087; (b) =1.119, b=0.9, 
a=0.087; (c) =1.119, b=0.12, a=0.087. Symbols are used as 
described in the text. 
 
involved in the equations (1) and (2), the first two 
parameters were varied in MATLAB to find x and y 
numerically. 

 
2.2 Dependence on the amplitude (b) of the external 
driving force 
Figure 1 (a) to (c) describes how the system moves from 
the steady state to the chaotic one gradually with the 
driving force amplitude, under fixed frequency.  
 
2. 3. Dependence on frequency 
Variation of the angular frequency  with the constant 
amplitude of the driving force results in the variation of 
the phase space plot; also, it reveals the periodic and 
chaotic behaviours of the oscillator. The -driven phase 
space dynamics is found to be an ensemble of chaotic 
and non-chaotic (periodic) modes. The frequency-varied 
response of the equations (1) and (2) is shown in figure 2 
(a) to (f). Among the three parameters b,  and a ,which 
are involved in the equations (1) and (2), the first two 
oes were varied using the MATLAB to find the results in 
terms of x and y numerically. 
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Figure 2. The MATLAB generated variation of the phase space plot with the frequency of the driving force. (a) =0.193, b=0.9, 
a=0.087; (b) =0.201, b=0.9, a=0.087; (c) =0.231, b=0.9, a=0.087; (d) =0.298, b=0.9, a=0.087; (e) =0.440, b=0.9, a=0.087; (f) 
=0.507, b=0.9, a=0.087. Symbols are used as described in the text. 
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Figure 3. Left: The experimental electric circuit diagram. Right: The basic block diagram of the circuit. 

 
3. The experimental analysis 
3.1. Function of the circuit  
The circuit, primarily R-L-C one, is shown in the left 

panel of figure 3 as adopted in [9]. The nonlinear 
elements in the circuit are R1 and the p-n junction diodes 
D1 and D2. The op-amp acts as an amplifier in the 
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IL

 
Figure 4. Amplitude-driven dynamics of the electrical circuit. Left panels: (a), (c) and e are IL vs VC phase space PSPICE simulations 
for the circuit parameters b=1.1 and f=1.5kHz (analogous to figure 1 (a)), b=0.9 and f=1.5 kHz (analogous to figure 1 (b)), and 
b=0.12 and f=1.5 kHz (analogous to figure 1(c)), respectively. Right panels b, d and f are IL vs VC phase space experimental data 
taken from CRO for the circuit parameters b=1.1 and f=1.5 kHz, b=0.9 and f=1.5 kHz and b=0.12 and f=1.5 kHz, respectively. 
Symbols used  are as explained in the text.  
 
nonlinear positive feedback loop as well as a unity gain 
buffer for the external sinusoidal signal (if R3 and R4 are 
kept the same). The required nonlinearity is introduced 
in the positive feedback loop of the op-amp by these 
diodes and resistance. The input sinusoidal signal 
(periodic driving force) is introduced to the output of the 
op-amp using it as the unity gain buffer. Thus, the op-
amp acts both as a positive and negative feedback 
nonlinear amplifier. R2, L1 and C1 constitute the linear 
resonator creating oscillation whose damping is 
prevented by the op-amp. The oscillator, in combination 
with diodes and R2, produces nonlinear oscillation. The 
basic block diagram of the circuit is also shown in the 
right panel of figure 3. 

Mathematically, the differential equations describing 
the circuit are given by: 

1 ,c
L

dV
C I

dt
  (3) 

   1 2 sin ,L
c L

dI
L f V I R A t

dt
      (4) 

Vc and IL are the voltage across the capacitor C1 and 
current through the inductor L1, respectively. The non-
linear function f(V) arising out of the diodes is expressed 
by the following three-segment linear approximation: 
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cutV =0.5 V at 0.1 mA is the cutin voltage drop across an 

the opened diode. Here, we assume R1>=(L1/C1). By 
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the following equations can be framed for the 
comparison with the numerical calculations. 
x y  (6) 

  siny f x ay b t    (7) 

where the non-linear function f(x) is given by, 

   

 

1 , 0.5,

, 0.5 0.5

1 , 0.5

f x x x

x x

x x

    

   

   

 (8) 

Thus, the equations (6) and (7) are analogous to the 
equations (1) and (2). But the form of the non-linear 
function f(x) and hence, the experimental double-well 
potential (piecewise parabolic) can be different from the 
theoretical one, though at smaller x –values, they are 
very similar. The values of the 

Circuit parameters are shown in the figure 3. We take 
the op-amp as IC 741. Figures 4 (a), (c) and (e) display 
the results of PSPICE simulations and figures 4 (b), (d), 
(f) depict the experimental data of IL against VC in the 
form of a Lissajous figure photographed from the CRO 
directly. The results have been obtained by varying the 
external signal amplitude and keeping the frequency 
constant. The corresponding values of signal frequency 
and the input amplitude are also represented.  

Figures 5 (a) to (e) show the frequency driven phase 
space plot from both direct experimental data and 
PSPICE simulation. The left side figure panels represent 
the experimental data and right side ones are from 
PSPICE simulations. The relevant parameters involving 
the data are described in the same figure.  

The experimental results photographed from CRO 
and the simulated data were found to be in agreement 
with the numerical results obtained by using MATLAB 
figures 2 and 5 corroborate each other in terms of
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Figure 5. Frequency-driven dynamics (IL-VC plot) of the electrical circuit. The left panels are PSPICE simulation and  the right ones are 
the experimental data. Panel (a) Vin=0.9V, f=260Hz (analogous to figure 2 (a)); (b) Vin =0.9V, f=270Hz (analogous to figure 2 (b)); (c) 
Vin=0.9V, f=310Hz (analogous to figure 2 c); (d) Vin=0.9V, f=400Hz (analogous to figure 2 (d)); (e) Vin =0.9V, f=680Hz (analogous to 
figure 2 (f). The figures show the interspersing of chaotic and non-chaotic dynamics. Symbols used are as explained in the text. 
 
frequency variation, while figures 1 and 4 conform to 
each other in terms of the input driving amplitude). The 
experimental data along with simulation both confirm 
that the variation of frequency of the driving voltage can 
produce an ensemble of chaotic phase space interspersed 
with non-chaotic and periodic phase spaces. 

 
4. Results and discussion 
4. 1. Feigenbaum constant 
We estimated the Feigenbaum constant from the 
frequency driven experimental data using the  DH 
oscillator circuit. The estimation of this constant from 
the measured data is highly important to understand the 
chaotic dynamics of the oscillator. It was found that the 
circuit showed period-2 bifurcation starting from the 
frequency 680Hz up to 1100 Hz. The period-8 
bifurcation could be seen from the frequency 400 Hz to 
680Hz, while the period-4 was observed from 310 Hz to 
400Hz. By lowering the frequency from 310 Hz to 
270Hz, the circuit showed a chaotic behaviour. By 
lowering further to 260Hz, it gradually moved to the 
non-chaotic phase.  

The Feigenbaum constant [17] is calculated as,  

period4 period2 310Hz 680Hz
4.11

period8 period4 400Hz 310Hz

 
   

 
 (9) 

The value of the constant, being 4.11, signals the onset 
of chaos in the oscillator output. 

 
4. 2. Power spectra and estimation of Lyapunov 
exponent 
To confirm the chaotic nature of the oscillator, the 
largest Lyapunov exponent (LLE) has been calculated 
using Wolf’s algorithm [18] and the equation (3). The 
corresponding figures are also mentioned in this table. 
As it is well-known, the positive LLE signals chaos and 
the negative LLE represents the non-chaotic phases. 

The time response (time vs Vc) of the circuit is shown 
in figures 6 and 7 for bifurcation and non-chaotic 

dynamics, respectively. The left side of each of the 
figures shows the simulated result and the right one 
represents the results directly photographed from the 
CRO. The values of LLE for the response shown in 
figures 6 and 7 were  0.006 and -0.15, respectively, 
thereby indicating chaotic and non-chaotic phases. The 
experimental output shown in figure 6 corroborated  the 
output generated (figure 8) from MATLAB under 
similar conditions. Similarly, MATLAB generated 
output in figure 9, confirming that shown in figure 7 
under the same experimental conditions. 

The input frequency driven chaotic dynamics shown 
in figure 5 is described in table 1 in terms of LLE, input 
amplitude, frequencies, a and b. The period-4 
bifurcation, related with very low LLE (0.009), was 
surprising. However, it could be due to the fluctuations 
in the time series data from which LLE was calculated. 
Therefore, to confirm the chaotic dynamics, in addition 
to the LLE, the power spectra were  also calculated, as 
shown in figure 9.  

  
4. 3. Control of chaos 
The theoretical concept of oscillator synchronization 
came from the idea of Pecora and Carroll [12]. Besides, 
some other theoretical references are also available on 
oscillator synchronizations [19-21]. However, 
experimental references are rarely found. Here chaos 
control in DH oscillator is achieved using two different 
methods of synchronization with direct realization in the 
electric circuits. 

 
a. Method 1 
The first method of chaos control depends on the 
variation of the circuit capacitor C1. The variation in C1 
modifies IL, which, in turn, changes the chaotic 
dynamics. The circuit diagram is shown in figure 10, 
where the capacitor C1 is changed by placing another 
capacitor C in parallel. The chaos can be controlled if the 
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Figure 6. Chaotic time response of VC. Panel a: PSPICE simulation. Panel (b) Experimental data.  

 

 
Figure 7. Time response of VC giving the demise of chaos. Panel (a) PSPICE simulation. Panel (b) Experimental data. 

 

 
Figure 8. (left) Time response of the bifurcation phase of the DH differential equation solution of x in MATLAB for a=0.087, b=0.9 
and =1.119, under similar conditions of Figure 6. (right) Time response of x within the non-chaotic phase of DH differential 
equations solved by MATLAB for a=0.087, b=1.1, =1.119, under similar conditions as in Figure 7. Symbols are used as described 
in the text. 
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Figure 9. The input frequency driven power spectra of the DH oscillator circuit. f=270 Hz gives chaotic spectra. f=310Hz and 400 
Hz show period 4 bifurcations, while f=680Hz is the period-2 only. The details are given in table 1. 

 
Table 1. Characteristics of the observed chaos and the parameters involved. 

Exp. Freq. 
(f) Hz. 

Input amplitude 
(Vin) Volt 

Theo. freq. 
 

a B 
Lyap. Expo. () 
/power spectra 

Figure as displayed 
in the text 

Comment 

270 0.9 0.193 0.087 0.9 .026/ figure 9 (a) figure 5 (b) chaos 

310 0.9 0.230 0.087 0.9 .009/ figure 9 (b) figure 5 (c) 
route to chaos 

period 4 

400 0.9 0.298 0.087 0.9 .030/ figure 9 (c) figure 5 (d) 
route to chaos 

period 4 

680 0.9 0.504 0.087 0.9 -.120/ figure 9d figure 5 (e) 
route to chaos 

period-2 

 

 
Figure 10. Circuit diagram for chaos control in the DH oscillator. Required change in capacitance is incorporated by putting C in 
parallel with C1.  

 
capacitance C is kept within the range 0.2 µF to 4 µF. 
Thereafter, the increase of C gradually initiates the 

demise of chaos and again from C= 10 µF onwards, the 
non-chaotic regions commence. The corresponding 
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Figure 11. Power spectra and phase space diagrams varying the capacitance C (for Vin=0.9V, f=400Hz) of the oscillator. Left (a)-(d) 
panels are the spectra for C =0.1, 2.0, 7.0 and 13.0 µF, respectively. Right panels (e-h) are the corresponding phase space (IL-VC) 
plots.  
 
power spectra and phase space diagrams are shown in 
figure 11. Panels a and e in figure 11 give the power 
spectra and phase space plots (IL vs VC) for C are equal 
to 0.1 µF. The period 2 bifurcation is evident from the 
phase space plot and can also be corroborated by the 
two-component (480 Hz and 1200 Hz) power spectra. 
The other two peaks were simply the mirror images of 
the two fundamentals. The demise of chaos was evident 
for C= 2 µF, as shown in the lower background single 
component peaked power spectra (figure 11 (b)) and the 
non-bifurcated phase space plot (figure 11 (f)). The 
component at 1200 Hz dies out. The chaotic dynamics 
return back again as C is increased to 4µF. The phase 
space plot given in figure 11 (g) and the power spectra in 
figure 11c show the data for C=7 µF. The narrow peak at 
480 Hz was divided into two broad width sub-
components. Similarly, the peak at 1200 Hz was divided 
into two harmonics. In addition, the power spectrum was 
contaminated with large background signaling the onset 
of chaos. The corresponding phase plot giving period-4 
bifurcation agreed well with the dynamics. As C was 
increased, chaos was controlled. Figures 11 (d) and (h) 

show chaos controlled output. To substantiate the 
chaosand its control, the bifurcation plot is shown in the 
left panel of figure 12 for the input driving frequency of 
400 Hz and the driving amplitude of 0.9 V, keeping 
capacitance C as the parameter. If the input frequency is 
lowered, the chaotic and non-chaotic regimes are 
repeated again, but with different capacitance values (C). 
The right panel of figure 12 is the bifurcation plot for the 
input driving frequency of 270 Hz and the driving 
amplitude of 0.9 V, with the similar chaotic and non-
chaotic regimes but C values different from those given 
in the left panel of figure 12. 
 
b. Method 2 
The second method of chaos control is based on the 
principle of coupling or synchronization of two similar 
oscillators. The left panel of figure 13 is the electrical 
circuit showing the coupled nonlinear oscillators. The 
output of the second oscillator is connected to the non-
inverting input of the op-amp in the first oscillator circuit 
for synchronization through the black dashed box shown 
in the figure. The right panel of figure 13 is the basic 
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Figure 12. (left) Bifurcation diagram for the frequency f= 400Hz and Vin=0.9V of the oscillator, showing chaos control regions and 
the highly chaotic region. (right) Bifurcation diagram for the frequency of 270Hz and Vin=0.9V of the oscillator, showing chaos 
controlled regions and the highly chaotic region. 

 

 
Figure 13. (left) The coupled oscillator circuit to control chaos. Parameters with suffix c denote the second DH oscillator. The 
dashed box includes the coupling nonlinear part (made by diode) which synchronizes the first DH by modifying the nature of 
nonlinearity. One can put L-C circuit instead of the nonlinear diodes in the dashed box that will destroy chaos by involving the phase 
changes. (right top) The basic block diagram of the synchronization with the linear L-C circuit. (right bottom) The basic block 
diagram of the synchronization with the nonlinear diode circuit. 
 
block diagram of the synchronized circuits. The 
nonlinear/linear part is the circuit which reduces or 
removes the chaos. We have used a diode as the 
nonlinear part which mixes the nonlinearity of different 
natures in the input of the first DH oscillator. This results 
in the demise of chaos in the output (the right bottom 
panel of figure 13). Instead of the nonlinear circuit, 
linear circuit combination of L-C can also be used to 
destroy the chaos of first DH by involving the changes in 
phase (the right top panel of figure 13). In this case, a 

positive feedback loop is also required to be connected 
from the output to input of the first DH oscillator.  

If the ac input voltage (V3c) of the second i.e coupling 
oscillator is kept more than 0.2V, the first oscillator 
moves to chaos. To show the control of chaos, at first, 
the initial oscillator input voltage Vin is fixed at 0.9 V 
and the input frequency is taken as 500 Hz. At these 
values, the oscillator output is chaotic. Now, the second 
oscillator of similar parameters is coupled to the first one 
as shown in figure 14. The input frequency of the 
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Figure 14. Power spectra and phase space diagrams for the synchronized oscillator circuit, as shown in Figure 14. Left (a)-(d) panels 
are the power spectra for the input voltage of the second oscillator, i.e V3c=0.1, 0.2, 0.3 and 0.4 V, respectively. Right panels (e-h) are 
the corresponding phase space (IL-VC) plots. 
 
coupling oscillator is also taken as 500 Hz. However, the 
input voltage is varied. At V3c=0.4 V, the output of the 
first oscillator is found to be highly chaotic. For V3c=0.3 
V, the output is found to be gradually moving towards 
the non-chaotic phase. Below V3c=0.3 V, the output is 
completely non-chaotic, making the coupled oscillators 
synchronized. Similarly, for V3c more than 0.9V, the 
chaos of first oscillator is destroyed. The chaos control is 
evident from the power spectra and phase space plots 
shown in figure 14.  
 
5. Conclusion 
As the conclusion, the frequency dependent chaotic 
behaviour of a very simple DH oscillator circuit was 
investigated in this work. A collection of intermixed 
phase space was observed which was a typical 

characteristic of this circuit. 
Here, the Feigenbaum constant was estimated from 

the experimental data and chaotic dynamics was 
corroborated by the value of the constant. Wolf’s 
algorithm was used to estimate the largest Lyapunov 
exponent of a non-linear circuit. The amplitude driven 
behaviour of the circuit was also studied in detail. The 
numerical calculation using MATLAB was matched well 
with the PSPICE simulation and the experimental data. 

The chaos in the DH oscillator has also been 
controlled in two simple ways. By varying one of the 
circuit parameters, chaos was efficiently controlled. In 
addition, by coupling two similar DH oscillators, the 
chaos was controlled by synchronizing both oscillators. 
The bifurcation diagram, power spectra and phase space 
plots confirmed the chaos control procedures. 
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