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Abstract 
In this article, by using the method of finite difference time domain (FDTD) and PML boundary conditions, we have studied the 
photonic band gaps for both TE and TM modes in square and triangular lattices consisting of air holes in the dielectric medium; the 
results have been compared too. In addition, the effect of the nonlinearity of the photonic crystal background on the photonic band 
gaps and comparison with the results of the linear case (holes in a background medium with the linear dielectric constant) have been 
presented. Comparison of the transmission spectra in the linear and nonlinear cases shows a red shift in the minimum transmission 
for both triangular and square lattices 
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1. Introduction 
There is a lot of ongoing research in the area of photonic 
band gap structures or photonic crystals (PC) [1]. These 
PCs are periodic structures that could manipulate beams 
of light in the same way that semiconductors control 
electric currents. A semiconductor cannot support 
electrons of energies falling within the electronic band 
gap. Similarly, a photonic crystal cannot support photons 
lying in the photonic band gap. By preventing or 
allowing light to propagate through a crystal, light 
processing can be done. By introducing defects or 
nonlinearity, various circuits may be designed. The study 
includes, on the one hand, the research of materials and 
structures that are best suited for this purpose [2]; on the 
other hand, the development (or improvement) of 
numerical tools is discussed [3]. 

A photonic crystal can be made either by arranging a 
lattice of air holes on a transparent background dielectric 
or by forming a lattice of a high refractive index material 
embedded in a transparent medium with a lower 
refractive index [4, 5]. The lattice size may be roughly 
estimated to be the wavelength of light in the 
background medium. The existence of the photonic band 
gap in the photonic crystals implies the possibility of 

spontaneous emission control and the potential 
applicability to optoelectronic devices such as zero-
threshold laser, high-efficient light emitting diodes, and 
low-loss waveguides [6]. 

A two-dimensional crystal is a periodic array of rods or 
holes in a background medium. The lattice constant in 
photonic crystals demonstrates the minimum length along 
which a rod-hole configuration repeats itself. The most 
important effect of the periodicity in the  photonic crystals 
is the existence of band gaps in frequencies for which the 
light propagation is forbidden [1, 7, 8]. Maksymov, and 
Marsal, have simulated and studied the nonlinear photonic 
crystals in 2-D with holes in a background medium for TE 
and TM modes [8]. They showed that band gaps, in the 
nonlinear medium, in comparison with the  linear medium, 
are shifted  to a higher wavelength (see also the results in 
ref. [9]). Han-Youl Ryu et al. have also studied the effects 
of size non-uniformities in two-dimensional photonic 
crystals by using the plane- wave expansion. They have 
investigated the square, triangular, and graphite arrays of 
dielectric rod or air holes [10]. We entered the effect of Kerr 
nonlinearity in the finite-difference time domain (FDTD) 
code [8]; then this effect was studied on the photonic band 
gaps in the transmission spectra of various 
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Figure 1. Unit cells of square and triangular lattices. 
 
wavelengths. The remaining parts of the paper are 
organized as follows: section 2 is devoted to formalism. In 
section 3, the square and triangular lattices of our interest 
are defined and the transmissions in both arrangements are 
calculated for both TE and TM modes. The results obtained 
for the linear and nonlinear materials are compared. Finally, 
in section 4, the final remarks and conclusions will be 
presented. 
 
2. Maxwell’s Equations and the Equivalent Set of 

Finite Difference Equations 
The computational method we used to simulate photonic 
crystal structures is the time domain method. The 
simulation is based on the well-known FDTD technique. 
The FDTD method is a rigorous solution to Maxwell’s 
equations and does not have any approximations or 
theoretical restrictions. This method is widely used as a 
propagation solution technique in the integrated optics. 
FDTD is a direct solution of Maxwell’s curl equations and 
therefore, includes many more effects than a solution of the 
monochromatic wave equation. 

The Maxwell’s equations in an isotropic medium [8] 
are as follows: 
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These equations in the rectangular coordinate system are 
equivalent to the following system of scalar equations: 
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Maxwell’s equations describe a situation in which the 

temporal change in the E-field is dependent upon the 
spatial variation of the H field, and vice versa. The 
FDTD method solves Maxwell’s equations by first 
discrediting the equations via central differences in time 
and space and then numerically solving these equations 
in the software [9]. 
We denote a grid point of the space by : 
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From this, a convenient set of finite difference equations 
for E-field component [Eq. 1a] will be obtained as: 
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Similarly, a convenient set of finite difference equations 
for the B-field component [Eq. 1a] can be obtained as  
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The assumed boundary condition Perfectly Matched 
layers (PML) suppresses the reflection of the outgoing 
waves, creating an infinite space for wave scattering. 
 
3. Photonic crystal with square and triangular lattice 
The square and triangular lattices consist of air holes in 
the linear dielectric background with the dielectric 
constant  1 1.56,   and in nonlinear Kerr dielectric 

background with the characteristics  1 1.56   and 
(3) 19 2 2 4.4 10 m / V     (figure. 1). The radius of the 
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Figure 2. (Color online) Photonic crystal of triangular lattices. 

 
Figure 3. (Color online) Photonic crystal of square lattices.  

 

 
Figure 4. (Color online) Light transmission of linear (dark lines) and nonlinear (dashed lines) photonic crystals for the TE mode with 
the square lattice. 

 

 
Figure 5. (Color online) Light transmission of linear (dashed lines) and nonlinear (dark lines) photonic crystals for the TE mode with the 
triangular lattice. 
 
holes is  0.2 ,  r a  where a  is a lattice constant. For the 

square lattice,     432 nm,x ya a a    and triangular 

lattice,   432  nma . Also, we have used the Gaussian 

modulated pulse with the central wave length, 

 1550  nm,   in our FDTD code [9]. 

The modulated Gaussian pulse has been separately applied 
to square and triangular lattices in figures 2 and 3.     

The results for the TE mode in the square lattices are 
illustrated in figure 4 and the same is done for triangular 
lattices in figure 5. According to the spectrum of light 
transmission in linear and nonlinear crystals, a shift in 

the wave length appears. Likewise, a decrease in light 
transmission occurs due to the presence of the nonlinear 
material in the triangular lattice. One more result was a 
gap in a range from 1.8 to 1.9 microns. 

Figures 6 and 7 demonstrate the light transmission 
of linear and nonlinear photonic crystals for the TM 
mode in square (figure 6) and triangular crystals (figure 
7). By comparing the spectrum of light transmission in 
the linear and nonlinear crystals, a shift in wave length 
for triangular and square lattice was noticed. Also, for 
all the considered lattices, we found a decrease in light 
transmission by the presence of nonlinear materials for 
the both TE and TM modes, but this decrease in 
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Figure 6. (Color online) Light transmission of the linear (dark lines) and nonlinear (dashed lines) photonic crystals for the TM mode 
in a square lattice. 

 

 
Figure 7. (Color online) Light transmission of linear (dashed lines) and nonlinear (dark lines) photonic crystals for the TM mode with the 
triangular lattice. 
 
square lattice as well as the TM mode was smaller than 
that for the others. For the TE mode, in the triangular 
lattice, there was a gap which ranged from 1.8 to 1.9 
microns. 
 
Concluding remarks 
We have used the FDTD algorithm and appropriate 
boundary conditions to solve the Maxwell’s curl 

equations in Cartesian coordinates and obtained the light 
transmission of the linear and nonlinear photonic crystals 
for the TM and TE modes in the square and triangular 
lattices. By comparison, we found the appearance of a 
shift in wave length in the spectrum of light transmission 
in the  linear and nonlinear crystals as a result of the 
nonlinearity properties. One more result was a gap limit 
with a range from 1.8 to 1.9 microns. 
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