نویسندگان

1 گروه شیمی، بخش علوم پایه، دانشگاه پیام نور، تهران

2 گروه مهندسی شیمی، دانشکده فنی مهندسی، دانشگاه اردکان

چکیده

در این کار، ابتدا انرژی تشکیل نقص تهی‌جای اکسیژن در ساختارهای 2TiO آناتاز و روتیل، در اثر جایگزینی Ti با فلزهای 3d، مورد بررسی قرار گرفت. سپس اثر همزمان ناخالصی فلزهای واسطه 3d و نقص تهی‌جای اکسیژن روی پایداری آناتاز نسبت به روتیل و همچنین ساختار الکترونی آنها مطالعه شد. محاسبه ­های سامانمند انرژی شکل­ گیری، پایداری بلوریی، ساختار نواری و چگالی حالت‌های الکترونی نمونه‌های 2TiO آناتاز و روتیل آلائیده به فلزهای واسطه 3d همراه با نقص اکسیژن و نیز بدون نقص اکسیژن، با استفاده از FHI-aims، که یک بسته نرم‌افزاری بر پایه نظریه تابعی چگالی توسعه یافته است، انجام شده‌اند. نتیجه ­های این پژوهش نشان داد که ناخالصی­ های کاتیونی جایگزین شده می­توانند بر انرژی تشکیل نقص تهی جای اکسیژن اثر قابل ملاحظه­ ای بگذارند به گونه­ ای که همه ناخاصی­ ها به جز Mn و Zn انرژی تشکیل نقص تهی‌جای اکسیژن را به گونه قابل توجهی کاهش دادند که خود عامل افزایش غلظت نقص و در نتیجه افزایش فعالیت فوتوکاتالیزگری است. همچنین محاسبه­ های این پژوهش نشان می ­دهند که از میان همه ناخاصی­ ها، تنها Fe می ­تواند در حضور نقص اکسیژن، از استحاله آناتاز به روتیل جلوگیری کند. تجزیه و تحلیل نتایج محاسبه­ های ساختار نواری و چگالی حالت­های الکترونی ساختارها نشان می­دهد که حضور نقص تهی‌جای اکسیژن در هر دو ساختار آناتاز و روتیل، علاوه بر ایجاد ترازهای پر در زیر نوار هدایت که منجر به بروز نیمه ­هادی از نوع n می­شود، گاف انرژی را نیز افزایش می‌دهد. همچنین همزمان با نقص تهی‌جای اکسیژن، عناصر واسطه 3d جایگزین شده، ترازهای ناخالصی ایجاد می­کنند که با روند منظمی از نوار هدایت به سمت نوار ظرفیت با افزایش عدد اتمی ناخالصی جابه‌جا می ­شوند. در اینجا، با عناصرFe, Ni, Co و Cu ترازهای ناخالصی در وسط گاف نواری ظاهر می­ شوند که باعث گسترش ناحیه برانگیختگی به سمت مرئی خواهند شد. آنالیز محاسبه­ های چگالی حالت­های الکترونی جزیی نشان می­ دهد که اوربیتال­ های 3d عناصر واسطه سهم اصلی را در ترازهای ناخالصی دارند.

کلیدواژه‌ها

عنوان مقاله [English]

The simultaneous effect of 3d impurities of transition metals and oxygen vacancy defect on TiO2 anatase and rutile

نویسندگان [English]

  • S M Esfandfard 1
  • M R Elahifard 2
  • R Behjatmanesh-Ardakani 1
  • H Kargar 1

1

2

چکیده [English]

In this work, the formation of oxygen-vacancy defect in 3d metals-doped TiO2 anatase and rutile structures is first investigated. The systematic calculations of formation energy, crystalline stability, band structure and density of state (DOS) of TiO2 samples of anatase and rutile doped with 3d transition metals with and without oxygen defect is done using FHI-aims as a software package based on the density functional theory. The results of this research show that 3d impurities can influence the formation energy of O-vacancy defect noticeably, where all studied dopants except Mn and Zn diminish the formation energy of O-vacancy, leading to a higher activity. Also, among 3d transition matals, only Fe impurity in the presence of O-vacancy shows an inhibitor effect for the transition phase of anatase to rutile. The results of the band structure and DOS also show that the presence of O-vacancy defect in both anatase and rutile phases, in addition to creating occupied defect states under the conduction band, can lead to the appearance of a semiconductor of type n, as well as increasing the original band gap. Also, with O-vacancy, the presence of 3d impurities create defect states shifted to a lower energy from the conduction band to the valance band by increasing the atomic number of impurities. Here, with Fe, Ni, Co and Cu impurities, defect states appear inside the band gap, extending the exciting range of TiO2 photocatalyst to the visible region. The analysis of partial DOS also shows that the 3d orbital of impurities has the main contribution to the defect states.
 

کلیدواژه‌ها [English]

  • TiO2-based photocatalysts
  • anatase and rutile
  • oxygen-vacancy defect
  • 3d-transition matals
  • band structure and density of state
1. M R Elahifard, S Rahimnejad, S Haghighi, and MR Gholami, J. Am. Chem. Soc. 129 (2007) 9552.
2. M Azimzadehirani, M R Elahifard, S Haghighi, and M R Gholami, J. Photochem. Photobiol. Sci. 12 (2013) 1787.
3. A Bahari, K Hasanzadeh, M AmirSadeghi, and M Roodbari, Iranian Journal of Physics Research 8, 1 (2008) 1.
4. M Soleimani Tabar, R Rasul, R Shirsavar, and S Mollaei, Iranian Journal of Physics Research 18, 1 (2018) 53.
5. M R Elahifard and MR Gholami, Environ. Prog. Sus. Energy. 31 (2012) 371.
6. H MilaniMoghaddam and SH Nasirian, Iranian Journal of Physics Research 11, 4 (2012).
7. N Beigmohammadi and MH Maleki, Iranian Journal of Physics Research 13, 2 (2013) 6.
8. T Xia, N Li, Y L Zhang, M B Kruger, J Murowchick, A Selloni, and X B Chen, ACS Appl. Mater. Inter. 5 (2013) 9883.
9. M R Elahifard, M Padervand, SYasini, and E Fazeli, J. Electeroceram. 37 (2016) 4536.
10. J W Pan, C Li, Y F Zhao, R X Liu, YY Gong, L Y Niu, X J Liu, and B Q Chi, Chem. Phys. Lett. 628 (2015) 43.
11. M R Elahifard and R Vatan Meidanshahi, Prog. React. Kinet. Mech. 42 (2017) 244.
12. M R Elahifard, S Ahmadvand, and A Mirzanejad, Mater. Sci. Semicond. Process. 84 (2018) 10.
13. L Samet, J B Nasseur, R Chtourou, K March, and O Stephan, Mater. Charct. 85 (2013) 59.
14. S M Esfandfard, M R Elahifard, R Behjatmanesh-Ardakani, and H Kargar, Phys. Chem. Res. 6 (2018) 547.
15. S S Liu, Q Li, C C Hou, X D Feng, and Z S Guan, J. Alloy. Compd. 575 (2013) 128.
16. Y M Wu, J L Zhang, L Xiao, and F Chen, Appl. Surf. Sci. 256 (2010) 4260.
17. F Ahangarani Farahani and M Marandi, Iranian Journal of Physics Research 17, 3 (2017) 499.
18. X P Cao, D Li, WH Jing, W H Xing, and Y Q Fan, J. Mater. Chem. 22 (2012) 15309.
19. X Y Pan, M Q Yang, X Z Fu, N Zhang, and Y J Xu, Nanoscale. 9 (2013) 3601.
20. C Q Sun, “Springer Series in Chemical Physics”, Heidelberg New York Dordrecht London Singapore, (2014) 805.
21. J P Perdew, K Burke, and M Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
22. D R Hamann, M Schluter, and C Chiang, Phys. Rev. Lett. 43 (1979) 1494.
23. M D Segall, R Shah, C J Pickard, and M C Payne, Phys. Rev. 54 (1996) 16317.
24. C G Vande Walle and A Neugebauer, J. Appl. Phys. 95 (2004) 3851.
25. M Khan, J Li, W Cao, B Mansoor, and F Rehman, Int. J. Mod. Phys. B 28 (2014) 1450170.
26. K H He, G Zheng, G Chen, T Lü, M Wan, and G F Ji, Solid State Commun.144 (2007) 54.
27. W Li, A Kuc, C F J Walther, and T Heine, J. Phys. Chem. A 119 (2015) 5742.
28. H Zhang and J F Banfield, J. Mater. Chem. 8 (1998) 2073.
29. S J Smith, R Stevens, S Liu, G Li, A Navrotsky, and J Boerio-Goates, Woodfield BF 94 (2009) 236.
30. A Janotti and C G Vande Walle, Nat. Mater. 6 (2006) 44.
31. S J Smith, R Stevens, S Liu, G Li, and A Navrotsky, Am. Mineral 94 (2009) 236.
32. H Zhang and J F, J. Mater. Chem. 8 (1998) 2073.
33. J G Yu, P Zhou, and Q Li, Phys. Chem. Chem. Phys. 15 (2013) 12040.
34. X S Du, Q X Li, H B Su, and J L Yang, Phys. Rev. B 74 (2006) 233201.
35. H Y Lee, S J Clark, and J Robertson, Phys. Rev. B 86 (2012) 75209.
36. D X Li, R Q Li, Y Chen, J Yang, and X T Guo, J. Supercond. Nov.Magn. 30 (2017) 243.
37. J Chen, P Rulis, L Ouyang, and W Y Ching, Phys. Rev. B 74 (2006) 235207.
38. I Stanciu, L Predoana, S Preda, J Calderon-Moreno, M Stoica, M Anastasescu, M Gartner, and M Zaharescu, Mater. Sci. Semicond. Process. 68 (2017) 118.
39. R Liu and A Sen, J. Am. Chem. Soc. 134 (2012) 17505.
40. M M Haque, W Raza, A Khan, and M Muneer, J. Nanoeng. Nanomanufacturing 4 (2014) 135.
41. D T Nguyen and S S Hong, J. Nanosci. Nanotechnol. 16 (2016) 1911.
42. Y Xu, M Zhou, L Wen, C Wang, H Zhao, Y Mi, L Liang, Q Fu, M Wu, and Y Lei, Chem. Mater. 27 (2015) 4274.
43. Y Matsumoto, M Murakami, T Shono, T Hasegawa, T Fukumura, M Kawasaki, P Ahmet, T Chikyow, S Koshihara, and H Koinuma, Science 291 (2001) 854.
44. H Peng, J Li, S S Li, and J B Xia, J. Phys. Condens. Matter. 20 (2008) 15207.

تحت نظارت وف ایرانی